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OPTICAL CHARACTER RECOGNITION

Character recognition is the process by which bitmaps within
desired fields (regions) of a document are converted into char-
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acter codes (e.g., ASCII, SGML, or Unicode). In other words,
it is the process of mapping a visual image of iconic represen-
tation of text into a symbolic representation. Character recog-
nition based on scanned images is also known as optical char-
acter recognition (OCR), where the word ‘‘optical’’ arose
historically from the fact that the earliest approaches used a
set of optical masks for recognition (1) as opposed to mag-
netic-based approaches. In modern approaches to character
recognition, optical processing is no longer used except for
scanning documents, and recognition is typically imple-
mented by software running on digital computers or special-
ized chips. Because of the increased sophistication of today’s Figure 2. A sample set of handwritten digits. The size of each digit
recognition algorithms and the range of input that they can is normalized to a fixed size of 24 (height) by 16 (width) pixels. Each
handle, such as handwritten data and omnifont machine bitmap is labeled by its truth label above the bitmap.
print, the industry trend is to use the term intelligent charac-
ter recognition (ICR).

Based on the means which produce the document, OCR 4. Document generation and scanning either add noise or
problems are often grouped into the following types: (1) ma- remove valid pixels, which may result in noisy,
chine print; (2) dot-matrix print; (3) constrained or discrete smudged, or broken strokes. They may also introduce
hand print, where characters are printed either in boxes pro- skew and nonlinear distortion into character bitmaps.
vided or with separation by sufficiently wide gaps; (4) uncon- 5. A large variety of writing instruments are in use, which
strained hand print, where neighboring characters may touch produce character strokes with different thickness,
each other; (5) cursive script, where characters are produced darkness, and uniformity.
continuously, without taking the pen off the paper, by means

6. Handwritten text is often slanted in various degrees.of ligatures which connect adjacent characters; and (6) mixed
7. There are significant variations in writing styles amonghand print and cursive script. The level of difficulty in recog-

people of different nationalities, regions of origin, ages,nizing these types generally increases in that order, although
levels of education, professions, and their physiologicalit can be further complicated by the quality of scanned im-
and emotional states. Even for the same writer, theages. Examples of these types of OCR problems are shown in
style changes with the writing instrument, paper (espe-Fig. 1.
cially forms of different types and sizes), and emo-Considerable variability of machine-print fonts and hand-
tional state.written styles make OCR a very challenging problem, which

has attracted more than 45 years of research (1,2). The major
Figure 2 shows a sample set of size-normalized digit bitmaps,sources of variability include:
where significant shape variations can be observed.

With the prevalence of fast computers, computer networks,1. There are about 100 commonly used fonts for machine-
and large and inexpensive memory and storage, there is anprint text. A letter in a particular font can have a very
increasing trend towards online access and processing of asimilar shape to a different letter in another font. More-
large variety of information that is traditionally available onover, serifs often join adjacent characters, which causes
paper media, such as books, journals, and business forms.segmentation difficulties. Horizontal and vertical spac-
Since manual key entry of information on these documents isings can be irregular due to subscripts, superscripts,
labor-intensive and expensive because of the huge volumes,proportional spacing, and kerning.
the need for automatic data capture and processing from pa-

2. The size of characters varies a lot for both machine- per documents has fostered increasing interest in document
print and handwritten characters. image analysis, whose objective is to recognize the text and

3. Text to be recognized maybe accompanied by under- graphics in the scanned-in document images and then convert
lines, highlights, annotations, and graphics. them into computer-understandable form (e.g., ASCII, SGML,

or Unicode).
OCR technology has been widely used to solve a large vari-

ety of real-world problems:

1. Forms Readers for Tax Forms, Census Forms, and Vari-
ous Application Forms (3). The task of a forms reader
is to automatically extract and recognize user-filled-in
data from paper forms. The whole process involves
scanning the forms, recognizing form types, and com-
pressing them for subsequent archiving and OCR. An
automatic tax forms reader can read about 75% of the

(e)

(c)

(a)

(f)

(d)

(b)

forms (3). In such a case, information on the remaining
ones will have to be entered with the assistance of anFigure 1. Types of OCR problems: (a) machine print, (b) dot-matrix
image of the document displayed on the screen and ap-print, (c) constrained hand print, (d) unconstrained hand print, (e)

cursive script, (f) mixed hand print and cursive script. propriate databases or dictionaries. IBM, Lockheed-
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Martin, and Caere are three of the leading providers of comparing the results of the LA and CA recognition, the
error rate can be minimized. In fact, LA recognition isforms-processing solutions.
an ideal application for cursive OCR as the number of2. Postal Mail Sorting (4,5). Reading postal addresses,
possible words in the lexicon is very small, of the ordersorting mail, and delivering mail are labor-intensive
of 30 entries (‘‘one,’’ ‘‘two,’’ . . . ‘‘ten,’’ ‘‘eleven,’’ . . .tasks for postal services throughout the world because
‘‘twenty,’’ ‘‘thirty,’’ . . . ‘‘hundred,’’ ‘‘thousand,’’ ‘‘mil-of the huge mail volumes. Automation is increasingly
lion,’’ etc.). Products offering CA and LA recognition areemployed in this task by scanning the envelopes or par-
available from companies such as a2i, and Parascript.cels, locating the destination-address block, reading the
IBM, Unisys, and NCR are the leading providers ofaddress using OCR, interpreting the address, and im-
commercial check-processing systems.printing a bar code for the delivery point. The mail

pieces are automatically sorted using the delivery-point 4. Desktop OCR (8–11). Desktop OCR products are used
code in the walk sequence of the postal carrier. This by end users for converting various documents of daily
solution eliminates (or reduces) the need for manual op- use into coded form. For example, users may want to
eration until the point of delivery. For US addresses, scan magazine articles, recipes, letters, etc., and import
the five-digit zip code can be obtained from the zip code them into a word processor for later search, retrieval,
field in the address, which can be verified by city–state and update. Since these are low-volume applications,
name recognition. If the additional four or six digits are the expectations of accuracy (read and error rates) are
not present, they have to be inferred from the street high. On clean machine-printed documents, common
address. Leading providers of postal mail sorting solu- desktop OCR products can achieve better than 99% ac-
tions are IBM, Siemens, Lockheed-Martin, Alcatel, and curacy on a per character basis. The accuracy degrades
Elsag. to the range of 94% to 98% on noisier documents. Spell-

ing checkers to quickly detect errors and correct them3. Bank Check Reading (6,7). Checks are one of the most
are often an integral part of desktop OCR. The leadingpopular instruments of financial transactions. The an-
desktop OCR products are Caere OmniPage, Xerox Textnual check volumes that US banks alone process exceed
Bridge, Expervision TypeReader, and Ocron. They all55 billion per year. Such high volumes of documents are
support some amount of automatic segmentation of textprocessed using high-speed reader/sorters that make
areas from drawings, sketches, images, and the like inuse of magnetic ink character recognition (MICR). Pre-
the document. They also support retention of multipleprinted codelines on checks carry the bank name, ac-
columns of text and the ability to import the OCR re-count, and check sequence numbers in E13B magnetic
sults into word-processing software. Typically, they costink. Typically, the bank of first deposit completes the
less than $100.codeline by determining the payment amount and in-

scribing this datum on the check using E13B charac-
ters. Traditionally, this has been done by manually in-

OCR SYSTEMSspecting the amount written in numbers, called the
convenience or courtesy amount (CA), and key-entering

Figure 3 shows the basic architecture of a typical OCR sys-the data. The amount written in words, called the legal
tem. The input and output to each module in the system areamount (LA), is inspected only when the courtesy
also indicated. A paper document is first scanned by an opti-amount is not legible. Because of the large volumes, this
cal scanner or a camera to obtain a digital (gray-scale or bi-operation is labor-intensive and expensive. Check im-
nary) image of the document. Scanning resolution of 80aging systems are increasingly used by banks to mini-
pixels/cm (200 dots/in.) is adequate for recognition purposes.mize the labor costs by implementing automated data
Desktop scanners tend to use a resolution of 120 pixels/cm.entry with the help of OCR. Good CA recognition is crit-
This scanned image undergoes a set of preprocessing opera-ical for this application. It requires about 50% read rate
tions such as noise filtering, binarization, skew correction,with less than 0.5% error rate to justify the cost of the
layout analysis, and field extraction (extracting the fields ofsystem. While this is easy to achieve on commercial
interest). Different sets of preprocessing operators may be re-checks, which have machine-printed CAs, it is a harder
quired for different applications. Then, for each field of inter-target for personal checks, which usually have hand-
est, the field bitmap is processed by the segmentation moduleprinted CAs. One effective way of reducing the error
to produce a list of character bitmaps (see the following sec-rate is to use an alternate source for the data. Deposit
tion). Next, the recognition module generates a list of hypoth-slips and adding machine tapes that accompany the
eses of character identities for each character bitmap (see thechecks provide a second source for CA recognition. Yet

another source of redundant information is the LA. By section ‘‘Recognition of Segmented Characters’’). The charac-

Figure 3. The basic architecture of a typ-
ical OCR system.
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Figure 4. The architecture of an OCR
system that employs a recognition-guided
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ter hypotheses obtained from this step are subject to errors ognition errors. For difficult OCR problems such as recogniz-
ing cursive script, the multiple hypotheses returned by thedue to wrong segmentation, noise, and ambiguous writing

styles, as well as character classification errors. The contex- segmentation and recognition modules often do not contain
the correct answer. Quite often, these hypotheses make notual postprocessing module is designed to handle these OCR

errors (see the section ‘‘Contextual Postprocessing’’). It recov- sense at all. A more sophisticated design attempts to bring
contextual information into the early stage of segmentationers some of these OCR errors by exploiting certain syntactic

and semantic constraints as well as redundant information and recognition, rather than to use it for postprocessing. Fig-
ure 5 shows such an architecture where contextual informa-existing in many OCR applications such as form processing,

check reading, and postal address recognition. tion is integrated into the segmentation and recognition
modules.Note that there is no interaction between the segmentation

module and recognition module in this basic architecture. The recognition-guided segmentation scheme and the more
advanced segmentation–recognition scheme are normallyThis design may work reasonably well on good-quality ma-

chine-print, dot-matrix-print, and constrained hand-print text more computationally intensive than simple segmentation-
followed-by-recognition scheme. Therefore, a particular OCRwhere most characters are separated from their neighbors. If

a document contains many touching characters, this architec- system may employ all three architectures and adaptively de-
termine which one to use, based on the type and quality ofture will make lots of segmentation errors due to a large de-

gree of inherent ambiguity in identifying character bound- the input image.
aries.

It is well known that human readers rely heavily on recog-
nition in identifying character boundaries. This suggests a SEGMENTATION–DISSECTION TECHNIQUES
recognition-guided segmentation scheme (see the section
‘‘Recognition-Guided Segmentation’’). In this scheme, the final Segmentation refers to the process of determining character

boundaries for a given image of a line of text or a word. Asegmentation points are determined by the quality of recogni-
tion results on the individual segments. The architecture of number of approaches have been proposed in the literature.

An excellent survey of strategies in character segmentation isan OCR system that employs such a scheme is depicted in
Fig. 4. provided in Ref. 12, where various segmentation schemes are

grouped into three categories: (1) dissection techniques, (2)In both the architectures in Figs. 3 and 4, the contextual
processing module is a postprocessor that does not have any recognition-based segmentation, and (3) oversegmentation-

based techniques. (The ‘‘holistic’’ category in Ref. 12 does notinteraction with the segmentation and recognition modules.
This limits its ability to resolve many segmentation and rec- deal with segmentation.) Techniques in the second and third

Figure 5. The context-guided architec-
ture where contextual information is inte-
grated into the early stages of segmenta-

Scanning Preprocessing Segmentation Recognition

Paper
document

Digital
image

Fields of 
interest

Segments ASCII
 codes

Contextual
information

tion and recognition.



230 OPTICAL CHARACTER RECOGNITION

categories belong to the recognition-guided segmentation
scheme and will be discussed in the section on that subject.

Dissection techniques attempt to decompose the image into
classifiable units on the basis of general image features.
These techniques include white-space and pitch analysis, ver-
tical projection analysis, connected-component analysis, and
landmark analysis.

Character Feature
extraction Classification

hypotheses

Character

bitmap

Classifier with built-in feature extractor

Feature

vector

The vertical projection of a line of text consists of a count
Figure 6. Basic modules for recognizing segmented characters. Mostof black pixels in each column. By analyzing the vertical-pro-
OCR systems have two separate modules for feature extraction andjection profile, one can identify character boundaries. Consec-
classification, while others employ classifiers with built-in feature ex-

utive zero counts in the profile indicate a vertical gap between traction capability.
two adjacent characters. A local nonzero valley may imply a
possible slightly touching or overlap of two adjacent charac-

RECOGNITION OF SEGMENTED CHARACTERSters. However, simple projection may give a false impression
of the continuity of the image. For example, if one pattern

Recognition is the process of assigning a symbolic label to theterminates in column c while its neighbor starts in column
input character bitmap. Figure 6 shows a diagram of a typicalc � 1, the projection is the same irrespective of the relative
recognizer for isolated characters. It consists of a feature ex-vertical positions. Such cases are quite common in machine
tractor and a classifier. The input to the recognizer is a char-printing. The end of one character may intrude upon the
acter bitmap, and the recognizer returns a list of hypothesesspace of its neighbor with only light contact or none at all.
on the character identity. Most classifiers also associate a con-Kerning of adjacent characters (e.g., ‘‘Ta’’) and italic text give
fidence value (or probability) to each hypothesis. Thesethe same effect. Such ‘‘shadow’’ effects can be reduced by an
hypotheses can later be used to guide segmentation of touch-overhang-reduction process before applying a projection rule.
ing characters or to resolve OCR errors by contextual postpro-This process creates a new image in which each column is the
cessing.logical AND of three neighboring columns in the original im-

Note that it is not always necessary to have a separateage. This process can produce local valleys at the shadowed
feature extraction module in an OCR system. Some classifi-positions in the vertical projection. It can also make the ex-
ers, such as feedforward neural networks, have built-in fea-isting valleys deeper and thus easier to detect.
ture extraction capabilities. Figure 7 illustrates these two dif-Connected-component analysis is also a popular method

for segmentation. A connected component is a region of black
pixels that are connected together, that is, one can walk, pixel
by pixel in eight or four directions, from any black pixel to any
other black pixel in the connected component without going
through a white pixel. Connected components in an image can
be efficiently computed using a standard two-pass algorithm.
Further processing may be necessary to combine or split these
connected components into character images. For noncursive
characters, the distribution of bounding boxes of connected
components and their positions provides a fairly reliable clue
to decide what connected components to merge or split.

When a connected component is elected to be split, a clue
is typically available to detect the point of contact of the two
characters. The clue may be described as a concavity located
at the contact point and existing on at least one side of the
penetrating stroke. This suggests that when a pattern of
merged characters is suspected, the segmenter should seek
such a concavity in the most likely part of the image, viz.,
the middle section of the pattern [see Fig. 10(a, b)]. Contour
following is commonly used in such a search (13,4). A set of
potential split points are located in portions of the outer con-
tour that are locally concave and have nonvertical direction.
The points are searched in order of an estimate of local curva-
ture, and a split point (or cut) is identified if it is within a
specified distance of a point on the opposite side of the same
contour. This guarantees that a break of the pattern between
these two points will divide it into two subpatterns (single
contact point).

Dissection techniques are suitable for segmenting good-
quality machine-print and constrained hand-print text where Figure 7. Two schemes for recognizing isolated (segmented) charac-
characters touch only occasionally and lightly. But they often ters: A recognizer with an explicit feature extractor (left) and a recog-

nizer with a built-in feature extractor (right).fail on unconstrained hand-print and cursive script.
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ferent schemes. An example of such systems is LeCun’s cients (15). Some other features, such as lakes and bays,
are invariant to scaling, skew, and slight local deforma-network (14) for digit recognition. A 16 pixel by 16 pixel nor-

malized gray-level image is presented to the feedforward net- tions, but are very sensitive to writing styles and noise.
It is very difficult to obtain features that are truly in-work with three hidden layers (not identical to the network

shown in Fig. 7). The units in the first hidden layer are locally variant to all the variations.
connected to the units in the input layer, forming a set of local 3. Training the Classifier with a Large Data Set That Covers
feature maps. The second hidden layer is constructed in a as Much Variability as Possible. Since class boundaries
similar way to the first hidden layer. Each unit in the second in the feature space can be very complex due to the high
hidden layer also combines local information coming from fea- variability, a classifier that is able to form complex deci-
ture maps in the first hidden layer. sion boundaries should be used. A large feedforward

The goal of feature extraction is to extract the most rele- network and the k-nearest-neighbor classifier (see the
vant (to classification) measurements (features) from the subsection ‘‘Character Classification’’) are the two popu-
character bitmaps, so as to minimize the within-category vari- lar choices. In order to avoid overfitting to noise, misla-
ability while increasing the between-category variability. Fea- belings, and variations in the training data, a large
ture extraction often leads to dimensionality reduction, which training data set must be collected. The data collection
helps to avoid the well-known ‘‘curse of dimensionality’’ in and manual truthing of collected data can be very labor-
pattern recognition. But unlike data compression, good fea- intensive. Several character degradation models (16)
tures need not be those with small reconstruction error, as can be used to artificially generate more training data
long as they can discriminate between classes. from existing training data by adding noise to the

The feature extractor also specifies the complexity of the stroke contours, nonlinearly deforming the bitmaps,
classifier following it. If features are good in the sense that and randomly slanting and skewing the bitmaps ac-
in the feature space, patterns from different classes are well cording to certain distributions.
separated while patterns from the same class are highly con- 4. Using Invariant Recognition Methods. Examples are
centrated, a simple classifier such as a linear classifier or the nearest-neighbor classifiers using tangent distance (17)
nearest-mean classifier would be sufficient. Unfortunately, and deformable template matching (18). These ap-
such good features are often very difficult to obtain. On the proaches only achieve invariance to small linear trans-
other hand, if features are at a very low level, then a classifier formations and nonlinear deformations. Besides, they
capable of forming complex decision boundaries must be used. are computationally very intensive.
A tradeoff between the complexity of the feature extractor
and classifier must be considered in designing an OCR No single approach is able to achieve perfect invariance. A
system. combination of these four approaches in various degrees is

As we can see from Fig. 2, there are considerable varia- often used in designing OCR systems.
tions in character shapes for every single category. A recog-
nizer that is able to map all these variations of a single cate- Feature Extraction
gory into a single label must achieve a high degree of

A large number of feature extraction schemes have been pro-invariance with respect to these variations, including scaling,
posed in the literature (15). Commonly used character fea-skew (or rotation), slant, stroke thickness, nonlinear deforma-
tures can be grouped into the following categories: (1) topolog-tion, noise, and shape variations due to writing styles. The
ical features such as loops, junctions, stroke end points,invariance property can normally be achieved through the fol-
bending (high-curvature) points, lakes, bays, and Euler num-lowing four different ways:
ber; (2) moment features, such as geometric moments and
Zernike moments; (3) transform-based features such as the

1. Preprocessing. Scaling invariance is fairly easy to Fourier transform and the Karhunen–Loeve transform (or
achieve by size normalization, which scales the original principal-component analysis); (4) projection-based features;
bitmap up or down to a fixed size, say 24 pixels in and (5) local or zoned contour direction features and multi-
height and 16 pixels in width. However, care must be resolution gradient features.
taken to decide when to preserve the character aspect As an example, we now briefly describe a scheme for encod-
ratio of vertically or horizontally elongated characters ing the bending-point features. Bending-point features repre-
(e.g., ‘‘I,’’ ‘‘l,’’, ‘‘-’’) and relative position and size informa- sent some topological characteristics of a character, such as
tion of punctuation. Many OCR systems employ a skew high-curvature points, terminal points, and fork points.
and slant detection and correction algorithm. However, Strong curvatures, labeled as bending points, are detected in
features that are invariant to small-angle skew and the character image by tracing the contour of strokes. A spe-
slant are still desirable, because no skew correction and cial geometrical mapping from bending points and their attri-
slant correction algorithm can guarantee perfect de- butes (e.g., acuteness, position, orientation, and convexity or
skewed and deslanted character bitmaps. Invariance to concavity) to a fixed-length (96) feature vector has been de-
noise is usually achieved by noise filtering and contour signed. The size-normalized image is evenly divided into 12
smoothing. Invariance to nonlinear distortion and dif- (4�3) regions. The bending points in the normalized image
ferent writing styles is very difficult to achieve by any are coded by their positions specified by corresponding region
preprocessing methods. indices and by their curvature orientations, which are quan-

2. Using Invariant Features. Features invariant to trans- tized to eight cases (four orientations, each of which is either
lation, scaling, and rotation can be derived from geo- convex or concave). The acuteness of a bending point is used

as the magnitude for the corresponding component in the fea-metric moments, Zernike moments, and Fourier coeffi-
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hidden layers, and one output layer of units, which are suc-
cessively connected (fully or locally) in a feedforward fashion
with no connections between units in the same layer and no
feedback connections between layers. For the character classi-
fication, each input unit receives a character feature, and
each output unit represents a character category. Given an
input feature vector, the network is first evaluated. Then the
class corresponding to the largest output is selected as the
character hypothesis. Multiple hypotheses can also be formed
by selecting the largest few outputs.

The most popular class of multilayer feedforward networks
is multilayer perceptrons, in which each computational unit
employs either the thresholding function or the sigmoid func-

Figure 8. Bending-point features. tion. Multilayer perceptrons are capable of forming arbitrarily
complex decision boundaries and can represent any Boolean
function (20). The development of the backpropagation learn-

ture vector. An example of bending points and this mapping ing algorithm for determining weights in a multilayer per-
scheme is shown in Fig. 8. ceptron has made these networks the most popular among

researchers as well as users of neural networks.
Character Classification We denote by w(l)

ij the weight on the connection between
the ith unit in layer l � 1 and the jth unit in layer l.The task of pattern classification is to assign symbolic names

Let �(x(1), d(1)), (x(2), d(2)), . . ., (x(p), d(p))� be a set of p train-(or labels) to observations (feature vectors) of patterns. In the
ing patterns (input–output pairs), where x(i) � Rn is the inputcontext of OCR, character classification assigns an ASCII
vector in the n-dimensional pattern space, and d(i) � [0, 1]m,code (in general, a symbolic name) to the feature vector ex-
an m-dimensional hypercube. For classification purposes, mtracted from the raw character bitmap.
is the number of classes. The squared-error cost function,A large number of classifiers have been used for character
which is most frequently used in the neural network litera-classification. These classifiers were developed in different
ture, is defined ascommunities such as statistical pattern recognition, struc-

tural pattern recognition, neural networks, machine learning,
and fuzzy set theory. Although most of these classifiers are
applicable to character classification, two predominant ap- E = 1

2

p∑
i=1

‖yyy(i) − ddd(i)‖2 (1)

proaches are feedforward networks (function approximation
in general) and k-nearest-neighbor classifiers. This can be

where y(i) is the output vector of the network given the inputseen from the test results at the First Census Optical Charac-
pattern x(i).ter Recognition System Conference held in 1992 (19), where

The backpropagation algorithm (21) is a gradient-descentmore than 40 different handwritten-character recognition
method to minimize the squared-error cost function in Eq. (1).systems were evaluated based on their performance on a com-

A special class of multilayer feedforward networks is themon database. The top ten performers among them used ei-
radial basis function (RBF) network (22), a two-layer network.ther some type of multilayer feedforward network or a near-
Each unit in the hidden layer employs a radial basis function,est-neighbor-based classifier.
such as a Gaussian kernel, as the activation function. TheIn the next two subsubsections, we briefly introduce these
radial basis function (or kernel function) is centered at thetwo types of classifiers.
point specified by the weight vector associated with the unit.
Both the positions and the widths of these kernels must beFeedforward Neural Networks. Figure 9 shows a typical
learned from the training patterns. The number of kernels inthree-layer perceptron. In general, a standard L-layer feedfor-
the RBF network is usually much less than the number ofward network (we adopt the convention that the input nodes
training patterns. Each output unit implements a linear com-are not counted as a layer) consists of one input stage, L � 1
bination of these radial basis functions. From the point of
view of function approximation, the hidden units provide a
set of functions that constitute an arbitrary basis for repre-
senting input patterns in the space spanned by the hidden
units.

There are a variety of learning algorithms for the RBF net-
work (22). The basic algorithm employs a two-step learning
strategy (hybrid learning): estimation of kernel positions and
kernel widths using some unsupervised clustering algorithm,
followed by a supervised least-mean-square algorithm to de-
termine the connection weights to the output layer. Since the
output units are linear, a noniterative (closed-form solution)
algorithm can be used. After this initial solution is obtained,

Input layer Hidden layers Output layer

xq wqi wij wjk yk

(1) (2) (L) (L)

a supervised gradient-based algorithm can be used to refine
the network parameters.Figure 9. A typical three-layer feedforward network architecture.
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This hybrid learning algorithm for training the RBF net- feedforward networks is independent of the size of the train-
ing set.work converges much faster than the backpropagation algo-

rithm for training multilayer perceptrons. However, for many
problems, the RBF network often needs a larger number of

RECOGNITION-GUIDED SEGMENTATIONhidden units than a multilayer perceptron. This implies that
the run-time (after training) speed of the RBF network is of-

When a document contains many touching characters, theten slower than the run-time speed of a multilayer per-
dissection techniques discussed in the section ‘‘Segmenta-ceptron. The efficiencies (error versus network size) of the
tion–Dissection Techniques’’ often make a number of segmen-RBF network and the multilayer perceptron are, however,
tation errors due to a large degree of inherent ambiguity inproblem-dependent. It has been shown that the RBF network
identifying character boundaries. Recognition-guided segmen-has the same asymptotic approximation power as a multi-
tation attempts to use character recognition to improve thelayer perceptron.
reliability of segmentation. It includes the recognition-basedAnother special case of feedforward networks is the polyno-
segmentation strategy (12) and the oversegmentation-basedmial classifier (23), which consists of two layers. The hidden
strategy (12).layer computes the polynomial combinations of input fea-

Recognition-based segmentation avoids dissection and seg-tures, and the output layer computes a linear combination of
ments the image either explicitly, by classification of specifiedthese polynomials. As a result, each output unit implements
windows, or implicitly, by classification of subsets of spatiala polynomial function of input features. As in the RBF net-
features collected from the image as a whole. Examples inworks, the weights associated with the output layer can be
this category include the hidden Markov model (HMM) withdetermined by matrix inversion. The polynomial classifier has
a sliding window (27). The oversegmentation-based scheme isbeen successfully used in character classification (23).
a combination of the dissection and recognition-based seg-
mentation strategies, employing dissection to segment an im-

k-Nearest-Neighbor Classifiers. The k-nearest-neighbor age into so-called graphemes (primitives) and then employing
(k-NN) classifier (24,25) is a well-known and commonly used dynamic programming to recombine graphemes into admissi-
classifier in statistical pattern recognition. It is a nonpara- ble segments based on recognition results. Oversegmentation-
metric approach, which makes no assumption about the un- based HMMs can also be built (28). In general, oversegmen-
derlying pattern distributions. tation followed by dynamic programming does not require

Let n training pattern vectors be denoted as x(i)(l), i � 1, 2, probabilistic modeling. Heuristics can be easily incorporated
. . ., nl, l � 1, 2, . . ., C, where nl is the number of training into the recognition. On the other hand, word-level optimiza-
patterns from class �l, �C

l�1 nl � n, and C is the total number tion is difficult to perform without any probabilistic modeling.
of categories. The k-NN classifier examines the k nearest To illustrate how segmentation works in detail, we now
neighbors of a test pattern x and classifies it to the pattern focus on the oversegmentation-based scheme. This scheme
class most heavily represented among the k neighbors. In consists of the following phases: (1) identifying potential split
mathematical terms, let Kl(k, n) be the number of patterns points, (2) constructing a graph, and (3) finding the shortest
from class �l among the k nearest neighbors of pattern x. The path in the graph from the leftmost node to the rightmost
nearest neighbors are computed from the n training patterns. node.
The k-NN decision rule �(x) is defined as

Identifying Potential Split Points
δ(xxx) = ω j if Kj (k,n) ≥ Ki(k,n) for all i �= j

This phase attempts to identify a set of split points that is a
superset of the ideal split points. The idea of oversegmenta-

The Euclidean distance metric is commonly used to calcu- tion is not to miss any character boundaries, even at the cost
late the k nearest neighbors. Other metrics (26), such as the of including false alarms.
optimal global nearest-neighbor metric, can also be used. The dissection techniques discussed in the section ‘‘Seg-

A severe drawback of the k-NN classifier is that it requires mentation–Dissection Techniques’’ can be used to overseg-
a large amount of computation time and memory. The stan- ment machine-print and hand-print text. However, for cursive
dard k-NN classifier stores all the training patterns. In order script a different scheme must be employed. This is because
to find the k nearest neighbors of an input pattern, we have in cursive script, adjacent characters are joined by a ligature,
to compute its distances to all the stored training patterns. which is normally very smooth [i.e., no point with a high cur-
Because of this computational burden, the k-NN classifier is vature value can be found; see Fig. 10(c, d)]. Most of pure
not very popular where real-time requirements have to be cursive script can be cut into graphemes at the valley points
met. Many modifications to the k-NN classifier have been pro-
posed in the literature. For example, one can eliminate a
large number of ‘‘redundant’’ training patterns using the con-
densed nearest-neighbor (CNN) rule, the reduced nearest-
neighbor (RNN) rule, or the edited nearest-neighbor (ENN)
rule (26). Alternatively, one can use efficient algorithms for
computing the nearest neighbors, such as the branch-and-
bound algorithm (25). Figure 10. The three main features on the upper contour used to

Feedforward networks tend to be superior in speed and detect cuts. The relevant cuts are denoted by an arrow in the upper
memory requirements to nearest-neighbor methods. Unlike contour and a corresponding arrow in the lower contour: (a, b) high-

curvature points; (c, d) smooth valleys; (e, f) horizontal stretches.the nearest-neighbor methods, the classification speed using
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of the ligatures. These points, together with the high-curva- Finding the Shortest Path
ture points and the middle points of horizontal stretches [see If we assign a length to each edge in the graph, the length of
Fig. 10(e, f)], can cover approximately 98% of true split points a path is taken to be the sum of the lengths of the edges along
in mixed hand-print and cursive script. the path. The optimal path can then be defined as the short-

Finally, some cuts are dropped, using various criteria: (1) est path. Now the problem is how to assign these length val-
If two cuts are close by, then the longer cut is dropped. (2) If ues so that the shortest path is likely to be the desired path
the cuts cross each other, then also the longer cut is dropped. containing the correct segmentation points.
(3) The longer cut of two adjacent cuts that produce a very To assign a length value to an edge, a common practice is
small segment is also removed. (4) A cut is dropped if the to use a transformed confidence or probability (e.g., negative
resulting two segments have too small vertical overlap but too confidence or negative log probability) associated with the rec-
large horizontal overlap. ognition of the corresponding segment. Various other infor-

mation can also be integrated to improve the reliability of
such an assignment, using neural and fuzzy approaches (29).Constructing a Segmentation Graph

A dynamic programming technique is used for finding the
The potential split points are ordered according to their hori- shortest path from the leftmost to the rightmost node. The
zontal locations. Each neighboring pair of split points defines algorithm is modified to generate the shortest N paths (N is
a grapheme of the image. Neighboring triples define larger typically 3), so that a contextual postprocessor can take the
segments, and so on. A segmentation graph is a directed advantage of these alternative paths.
graph in which each interior node represents a split point, Note that this sequence of characters may not form a valid
and the first and the last nodes represent the left and right word (or string) in a dictionary. Many paths in the segmenta-
sides of the image, respectively. All the edges in the graph are tion graph can contain segments that appear to be valid char-
directed from left to right. Each edge represents the subimage acters. Very often, the desired path may not appear in the
(segment) defined by the two split points that the edge con- top N paths selected by the dynamic programming algorithm.
nects. If the oversegmenter rarely generates more than three Therefore, in situations where a lexicon of limited size can be
graphemes for a single character, any edge that covers more derived (e.g., in postal address recognition, a list of city–state
than three graphemes can be removed. A segmentation of the names can be retrieved from a database once we know the
image can be described by a path from the leftmost node to zip candidates), a lexicon-driven matching is more desirable
the rightmost node, with the nodes on the path being the final (13,29,4). For each entry in the lexicon, the dynamic program-
split points. The number of characters is one plus the number ming technique is used to choose which path in the segmenta-
of interior nodes on the path. Figure 11(b) shows the segmen- tion graph best matches with the entry, and a matching score
tation graph for the word images shown in Fig. 11(a). is then assigned to the entry. The entry with the highest

matching score is chosen as the recognition hypothesis.
Given a sequence of M graphemes and a string (lexicon

entry) of length W, the dynamic programming technique can
be used for obtaining the best grouping of the M graphemes
into W segments. A dynamic table of size M � W must be
constructed to obtain the best path. The dynamic table size
can be reduced to (M � W � 1) � W by taking advantage of
the oversegmentation assumption (i.e., no undersegmenta-
tion) (4). The reduction is significant when W is large (e.g.,
city–state–zip matching). Given a lexicon of L entries, the
complexity of the lexicon-driven matching is O(L � (M �
W � 1) � W). As we can see from the above analysis, the
speed of the lexicon-driven system decreases inversely as the
lexicon size. Recognition accuracy also decreases when the
lexicon size becomes larger. Therefore, it is very important to
perform lexicon reduction in a lexicon-driven recognition
system.

The lexicon-driven recognition scheme belongs to the con-
text-guided architecture. It brings contextual information into
recognition to avoid producing invalid hypotheses.

CONTEXTUAL POSTPROCESSING

Over the past four decades, significant improvement has been
made in the recognition accuracy of basic OCR systems. The
recognition accuracy of a state-of-the-art OCR system on iso-
lated characters is comparable to human performance (30).Figure 11. Oversegmentation followed by dynamic programming: (a)
Even with this level of performance on isolated characters,original word image, (b) graphemes and segmentation graph, (c) seg-
the word-level recognition may be still unacceptable. Considerments on the correct path (following the solid edges) in the segmenta-

tion graph. the following scenarios: an OCR with a 98% recognition accu-
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racy on isolated digits would achieve only 83.4% accuracy on Annual Test of OCR Accuracy in 1995 (33), where eight com-
mercial OCR systems were tested on machine-print, multifont9-digit social security numbers under the independence as-

sumption on errors. If the digits are touching, the recognition English documents, the recognition rates of the best commer-
cial OCR system ranged from 94.26% to 99.03%, dependingaccuracy could be even lower. A high accuracy recognition of

handwritten (especially cursive) words or strings remains an on the quality of the document images. In May 1992, NIST
(National Institute of Standards and Technology) held a con-open problem.

Due to the ambiguity in character shapes and in seg- ference in which 44 different hand-print OCR systems were
considered. This conference tested the ability of these systemsmenting touching characters, most of the OCR errors cannot

be resolved at the character level of recognition—for example, to recognize presegmented hand-printed characters. For con-
strained hand-printed characters, the best OCR system couldthere is an inherent ambiguity in distinguishing between let-

ters ‘‘O,’’ ‘‘l,’’ ‘‘S’’ and digits ‘‘0,’’ ‘‘1,’’ ‘‘5,’’ respectively. A touch- achieve a recognition accuracy of 98.60% for numerics,
96.36% for uppercase, and 91.00% for lowercase (30). The sig-ing pair of letters ‘‘I’’ and ‘‘V’’ can form a valid letter ‘‘N’’ and

the letter ‘‘W’’ can be split into letter pair ‘‘IN’’ or ‘‘VV.’’ These nificantly lower accuracy on lowercase was due to the fact
that the test data set had a significantly different distributionOCR errors have to be resolved using contextual information.

In many applications of OCR systems, such as forms pro- from the training data set. Also note that in this test, nu-
meric, uppercase, and lowercase were tested separately withcessing, postal address recognition, and bank check reading,

there always exists a certain amount of contextual informa- known types. Recognition accuracy on mixed data would be
significantly lower. The overall conclusion from the NISTtion, most of which is introduced by design to increase the

reliability of the extracted information. Common sources of study was that the state-of-the-art OCR systems are as good
as human readers on discrete hand-printed characters. How-contextual information include:
ever, for nonsegmented hand-print fields (with some cursive

1. Syntax Constraints. There are limits on the length of a fields), the recognition accuracy of the best OCR system was
word or string, and there is an allowable character set significantly lower than human performance, according to the
for each position in the string. Examples are social secu- second NIST conference in 1994 (30). The best OCR system
rity numbers, dates, account numbers, and telephone achieved only 60.3% accuracy at field level, while human op-
numbers. erators were able to achieve 91.5%. In order to achieve the

2. Semantic Constraints. There is a lexicon of valid words same accuracy, the OCR system had to reject 50% of the
(e.g., city names, state names, person’s names), a check- fields.
sum, etc. We should point out that it is not necessary for OCR sys-

tems to read hand-print or cursive words and phrases as well3. Redundancy in Documents. To increase the reliability
as human readers before they can be economically viable forof information, certain entries are duplicated or can be
use in various applications (30). This has been evident fromderived from others by certain rules. For example, on a
many successful real-world applications such as forms pro-bank check, the LA field and CA field indicate the same
cessing, postal mail sorting, bank check reading, and desk-amount; on forms (e.g., tax forms), some fields can often
top OCR.be derived from other fields; in postal addresses, the

Combining multiple OCRs has received a considerable in-city–state address and the ZIP code are redundant.
terest in recent years. A large number of experimental studiesThis redundant information can be used for cross-vali-
have shown that it is an effective way to design OCR systemsdation.
with high recognition accuracy, reliability, and robustness4. Statistical Information. For recognizing free text, the
(34,35).above constraints are often not applicable. However, for

It is well known that human readers rely heavily on con-a given language, the co-occurrence of neighboring let-
text, knowledge, and experience. The effectiveness of usingters often exhibits a heavily skewed distribution. For
contextual information in resolving ambiguity and difficultexample, only 70% of all letter pairs (digrams) occur in
cases is the major differentiator between human reading abil-English text, and their frequencies are very different.
ity and machine reading ability. How to effectively use con-The percentage of valid letter triples (trigrams) is much
textual information in segmentation and recognition in OCRsmaller. The digram and trigram statistics can be de-
systems is still an open problem.rived from a dictionary.
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