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FEATURE EXTRACTION

Images are the result of a number of complex interactions
between the objects in the scene being observed, the light
coming from the different sources, and the imaging apparatus
itself. While we understand these interactions, and can use
them to generate photorealistic synthetic images, the inverse
problem, which consists of understanding the semantic con-
tents of a scene, is quite difficult. Since the images are the
result of a projection from 3-D to 2-D, it is necessary to invoke
generic constraints, such as smoothness, to infer the structure
of the scene. The accepted methodology is to proceed in a hier-
archical manner, processing small neighborhoods of the im-
ages to generate partial descriptions, and aggregating these
into more global ones. The extraction of such features is the
topic of this article. Feature extraction therefore involves the
inference of primitives directly from the image, or from par-
tial descriptions of it. For ease of presentation, we will only
consider two levels of this hierarchy, and describe the extrac-
tion of features directly from the images, then discuss the ex-
traction of higher level primitives as a representation issue.

Feature extraction is an essential component of any image
analysis or understanding task. Whether we want to match
two or more images (to establish depth in stereo processing,
or compute motion in an image sequence), or match an image
with a model (to establish the presence and find the pose and/
or the identity of an object in a scene, or determine changes),
reasoning directly at the level of the raw image is rarely ap-
propriate, and we need to abstract features from the data.
Clearly, the definition of a good feature depends on the task
at hand, and on the expected variations of the environment:

• Illumination. if the lighting is controlled, the raw inten-
sity values may be directly useful.

• Viewpoint. if the viewpoint is fixed, parts of the scene
may be ignored.
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• Range of observation. for inspection problems, a piece While this procedure is simple and straightforward to im-
plement, it is somewhat ad hoc and suffers from a number ofmay always be presented with the same aspect, or ro-

tated in a plane only, or only appear within a range of shortcomings, including instability in localization.
A better formulation was proposed by Beaudet (2), who in-scales. This analysis leads to different criteria for a good

feature. troduced the rotationally invariant operator det by consider-
ing a second-order Taylor’s expansion of the intensity surface• Segmentation. if the object(s) of interest can be easily
I(x, y):separated from the background, for instance dark flat ob-

jects on a light table, the contours of the object(s) are
excellent features. det(x, y) = IxxIyy − I2

xy (1)

• Occlusion. if an object only appears individually and can
Corners are then defined as local maxima of the absolutebe segmented, global features of its appearance are good

value of this measure.features for analysis.
By considering the image I(x, y) as a surface, it is possible

to understand this approach with tools of differential ge-We can therefore define the following criteria for good fea-
ometry:tures:

The previous measure, det is nothing but the determinant
of the Hessian matrix,1. Distinctness. a feature should reflect that the property

it captures is different from its neighbors. Any external
property should satisfy this criterion (local maximum of
intensity, curvature, . . .)

H =
[

Ixx Ixy

Iyx Iyy

]

2. Invariance. the presence, position, and properties of a
It is therefore related to the Gaussian curvature, which isfeature should be invariant (or slowly changing) with

the product of the two principal curvatures kmin and kmax asrespect to the expected variations of the observation pa-
followsrameters, such as lighting, and imaging distortions.

3. Stability. the detection and properties of a feature
should vary smoothly with respect to variations in view-
point. Under perspective projection, the edge between

kmin × kmax = det
(1 + I2

x + I2
y )2

two faces of a polyhedron is a good feature, whereas the
Note that this operator ignores the finer classification oflength of this edge is not.

the intensity surface as elliptic (kminkmax � 0), hyperbolic
(kminkmax 	 0) or parabolic (kminkmax � 0).We now discuss in detail the steps involved in extracting

Kitchen and Rosenfeld (3) proposed instead a measure ofand representing features. We start with the extraction of
cornerness based on the following expression.point features from images, then describe the extraction and

representation of curve features, then the extraction and rep-
resentation of region features, and turn our attention to
methods which aim at deriving integrated descriptions in

K = IxxI2
y + IyyI2

x − 2IxyIxIy

I2
x + I2

y
(2)

terms of multiple features.
It can be shown that this corresponds to the second direc-

tional derivative in the direction normal to the gradient.EXTRACTION OF POINT FEATURES
Whereas the previous measures involve second order oper-

ators, Noble (4) investigates first order differentials, such asExtraction Directly from Gray Level Images
the Plessey corner detector (5), where

It was observed early that uniform areas in an image do not
provide much local information, and thus not suited for tem-
plate matching or correlation procedures. Authors instead Cp = trace Ĉ

det Ĉ
and Ĉ =

[
Î2

x ÎxIy

IxÎy Î2
y

]
(3)

proposed to use an interest operator, or cornerness operator, to
isolate areas with high local variance. One of the first proce-

and Î represents a smoothed version of I.dures to achieve this goal was the Moravec interest operator
In order to obtain a dimensionless measure, one should(1), as described next.

compute insteadAt each pixel i,j of the image, we compute the variance in
a square window of size 2a � 1 centered around the pixel,

Cp = trace2 Ĉ

det Ĉ
or Cp = det Ĉ − k trace2 Ĉ (4)

var(i, j) =
∑

−a<k,l<a[I(i, j) − I(i + k, j + l)]l
2

As noted by Deriche and Giraudon (6), these approaches
allow the detection of corners, but the localization of theseWe then define, for each pixel, the interest operator value

as the minimum of the variance values in a small neighbor- corners is erroneous for an L junction, and produce multiple
responses for trihedral vertices. They propose to use multiplehood. Next, we check whether the value is minimum, again

by comparing with values in the same neighborhood. Finally, scales of processing to differentiate between these different
junction types, and to refine their localization. They show thatcandidate points are selected by thresholding with respect to

a fixed value, chosen empirically to produce a fraction of the the exact position of a corner can be detected as a stable zero-
crossing in scale-space, and that Beaudet’s local maximumimage points.
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moves in scale space along a line which passes through the
true position of the vertex.

They therefore use the points detected by Beaudet’s mea-
sure at two different scales of smoothing to extrapolate the
true location of the vertex, as explained below:

• Compute the Laplacian image
• Compute two det functions using scales 
1 and 
2

• Threshold and detect the elliptic maxima A and B in
det
1 and det
2, with 
2 � 
1

• Compute the line joining A to B
• Select the point on the line AB where a zero-crossing oc-

curs in the Laplacian image

Smith and Brady (7) propose to bypass derivative computa-
tions in their smallest univalue segment assimilating nucleus
(SUSAN) corner detector. It computes the area n(x, y) of
points inside a circular region Nxy which has a brightness sim-
ilar to the brightness of the center pixel (x, y):

n(x,y) =
∑

(i, j) in Nxy

e−(Iij−Ixy )
2
t (5)

The parameter t controls noise sensitivity, and the value
of n(x, y) is compared to the maximum possible value nmax

leading to the corner strength function

cs(x, y) = nmax

2
− n(x, y) if n(x, y) <

nmax

2
0 otherwise

(6)

To reduce false positives, two additional criteria must be
Figure 1. Corners from four different detectors. (a) Original image;satisfied:
(b) Moravec corners; (c) Beaudet corners; (d) Susan corners; (e) FEX
corners. Corners correspond to extremal values of an expression com-

1. The center of gravity of the circular region must be dis- puted in a small window. The results depend on the form of the ex-
tant from the center point, and pression and the size of the window.

2. All pixels on the line between the center point and the
center of gravity must have similar brightness

parameters (angles, contrast, color, . . .) as discriminating
attributes for matching features.Figure 1 shows the results of some corner detectors applied

to the same image, shown in Fig. 1(a). This gray level image
is 256 by 213 pixels coded on 8 bits. Figure 1(b) shows corners EXTRACTION OF CURVE FEATURES
from the Moravec corner detector. Figure 1(c) shows corners
from the Beaudet corner detector. Figure 1(d) shows corners Detection of Edgels
from the Susan corner detector. Figure 1(e) shows corners ex-

From the very early days of computer vision, edge detectiontracted from the feature extraction (FEX) system (described
was recognized as an essential step, with a simple implemen-later).
tation of a gradient function (9). Noise sensitivity advocates
the inclusion of a smoothing step before differentiation (10).

Representation Issues
This can be explained by the fact that differentiation is a typi-

The representation of a point feature, as extracted by the pro- cal ill-posed problem. The general theory of regularization
cedures already described, does not present specific difficul- (11) may be used to transform ill-posed problems into well-
ties. It should be noted, however, that while some methods posed problems by restricting the class of possible solutions.
identify pixels as point features, it is also possible to generate Smoothing serves to regularize the input, making the differ-
features with subpixel precision. One possible way to achieve entiation operation mathematically well-posed.
this result is by fitting a continuous surface to the discrete The images can be either smoothed by convolution with
intensity image. An instance of such an approach is presented some filters (Gaussian, for example), or approximated locally
by Zuniga and Haralick (8), using bicubic polynomials. by a smooth analytic function. Therefore, we can roughly di-

Also, it may be useful for certain applications to keep infor- vide the edge detection techniques into two categories:
mation about the feature in addition to its location. For in-
stance, if the feature is identified as a vertex, one may use • Gradient estimation for edge detection is performed by

first convolving the image with filters. For linear filters,the type of the vertex (L, Y, Fork, T, . . .) and associated



316 FEATURE EXTRACTION

the order of differentiation and convolution is inter- ing nice scaling properties, that is, no new events occur as
scale increases.changeable, so the image is convolved directly with the

derivative of the smoothing filter. The filters can either Convolution with the Gaussian filters has the well-known
property of constituting a solution to the following heat equa-be rotationally invariant, leading to closed zero-crossing

contours, or directional, leading to better localization ac- tion (15):
curacy.

• Edge detection can be achieved by fitting a local surface ∂

∂t
I(x, y, t) = c∇2I(x, y, t) (7)

expressed in terms of polynomials or splines, for exam-
ple, in order to derive local properties (such as gradient)

with initial condition I(x, y, 0) � I0(x, y), the original image.of the image, then to decide whether a point should be
And this is the foundation of the Gaussian scale space whichmarked as an edge or not.
has been widely used in multiscale description of images (15–
18). The essential idea is to embed the original image in a

We start with the derivation of linear filters, and discuss family of derived images I(x, y, t) obtained by convolving the
in particular the Gaussian filter and its derivatives. We then original image I0(x, y) with a Gaussian kernel G(x, y, t) of
discuss surface-fitting methods which use a variety of basis variance t. The parameter t, bearing the physical meaning of
functions to perform the approximation. In these methods, a time in the heat diffusion equation, serves as the scale param-
differentiation operation is then performed analytically on the eter in the scale space paradigm.
approximation of the intensity function. Efficient Algorithm for Computation. Another reason for the

popularity of Gaussian filters comes from practical considera-
Linear Filters tions, that is, the convolution of an image with a Gaussian
The Gaussian Filter. By far the most popular smoothing fil- filter can be computed very efficiently, whether by approxima-

ter is the Gaussian: tion or not. There are other optimal filters which have been
derived by vision researchers, but most are very similar to
the Gaussian filters. The computational efficiency has madeg(x) = 1√

2πσ
e− x2

2σ 2

Gaussian filters very good approximations of their smoothing
filters.

and its derivatives, the first derivative of the Gaussian: Figure 2 presents the results of convolving the image of
Fig. 1(a) with Laplacian-of-Gaussian filters of different sizes.
The edges are on the transition curve between the black and
white regions, corresponding to positive and negative re-

g′(x) = − x√
2πσ 3

e− x2

2σ 2

sponses, respectively. We present results at the following
the second derivative of the Gaussian: scales: 
 � �2, 1.5�2, 2�2 and 3�2.

Optimal Frequency Domain Filter. Shanmugan, Dickey, and
Green (19) obtain a frequency domain band-limited filter
which concentrates maximal energy near an (ideal step) edge.g′′(x) = 1√

2πσ 3

�
x2

σ 2 − 1
�

e− x 2

2σ 2

Following Slepian, Pollak, and Landau (20,21), they decom-
pose the optimal filter in terms of prolate spheroidal waveThe popularity of the Gaussian filters as smoothing opera-
functions and show that the optimal filter output is �1, thetors for edge detection comes from the following facts:
first order prolate spheroidal wave function, with space-band-Optimality. Marr and Hildreth (12,13) argue that smooth-
width parameter depending on the space bandwidth cutoffsing should have both limited support in the spatial domain

and limited bandwidth in the frequency domain. In general
terms, limited support in the spatial domain is important be-
cause the physical edges to be detected are spatially localized,
and a limited bandwidth in the frequency domain provides a
means of restricting the range of scales over which intensity
changes are detected. The Gaussian function minimizes the
product of the bandwidths in spatial and frequency domains.
The smoothing functions that do not satisfy the limited band-
widths in space and frequency can sometimes lead to poorer
performance, reflected in sensitivity to noise, detection of
edges that do not exist, or poor ability to localize the position
of edges. In two dimensions the basic approach is to convolve
the signal with a rotationally symmetric Laplacian-of-
Gaussian mask (sometimes approximated by a Difference-of-
Gaussians), and to locate zero-crossings of the convolution. A
paper by Torre and Poggio (14) judiciously points out that bet-

(a) (b) 

(c) (d)ter results may be obtained by using two-directional filters
with directional derivatives, especially in the neighborhood Figure 2. Edges from a Laplacian-of-Gaussian filter at different
of corners. scales. (a) 
 � �2; (b) 
 � 1.5�2; (c) 
 � 2�2; (d) 
 � 3�2. As 


Nice Scaling Behavior. Image events occur at different reso- increases, more smoothing is applied, and fewer edges are detected;
also, noise tolerance increases at the cost of a loss in localization.lutions or scales, and Gaussian filters are the only filters hav-
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required. This method, unlike the situation with a Gaussian,
allows the space and the bandwidth cutoff to be chosen inde-
pendently. Specifically, the transfer function of the optimal
filter is given by:

(a) (b) (c)H(ω) = K ×
ψ1 ×

�
�I,

ωI
�

�

i × F(ω)
i f ‖ω‖ < �

Figure 3. Edgels from the Canny operators at three different scales.
and H(�) � 0 if ��� � �, where K is a real constant, �1 is the (a) Filter size � 4; (b) Filter size � 8; (c) Filter size � 16. Different
first order prolate spheroidal wave function, � is the half size masks extract edges at different scales.
bandwidth (i.e., the signal is nonzero only when � � (��, �)),
the energy is to be concentrated in the spatial interval (�I,
I), and F(�) is the Fourier transform of the ideal input. Using

where s is an unknown constant equal to the slope of the func-an approximation proposed by Slepian, the optimal filter
tion f at the origin. The Canny operator can be well approxi-within the passband can be approximated by:
mated by a first derivative of a Gaussian, which can be com-
puted efficiently not only in 1-D, but also when extended to
2-D. Canny does not directly consider a 2-D optimizationH(ω) = K1 × ω × e−K2×ω2

i × F(ω)
(8)

problem for deriving the optimal filter in 2-D; instead he
starts from the point he reached with the 1-D problem. The

where K1 and K2 are simple functions of � and I. When the approach is to use an operator of the form h(x, y) � f (x) �
input is an ideal step edge, this reduces to: g(y), for various orientations of the orthogonal coordinates,

where g is a Gaussian. Deriche (23) develops a recursive filter
for edge detection using Canny’s criteria. The filter can beH(ω) = K1 × ω2 × e−K2×ω2

(9)
implemented efficiently because of its recursive nature and
therefore it does not need the Gaussian approximation, suchThis is equivalent to a second derivative of a Gaussian (i.e.,
as used by Canny, for fast computation.Laplacian-of-Gaussian) with proper choice of K1 and K2 to

We display the results of the Canny edge detector for thematch the variance 
 of the Gaussian.
picture in Fig. 1(a) on Fig. 3, using different scales. TheseThe Canny Edge Detector. Canny (22) proposes an edge de-
scales correspond to the following values of filter size: 4, 8,tection scheme based on efficiency of detection and reliability
and 16.in localization. He seeks an optimal filter satisfying the fol-

lowing criteria:
Good Detection. The edge detector should have a low prob- Surface Fitting. Surface modeling of image data defines an-

ability of failing to detect real edge points, and also low proba- other category of edge detectors. This method involves an ini-
bility of falsely marking nonedge points as edges. Both these tial parameterization of the local image data in terms of some
probabilities are monotonically decreasing functions of the set of basis functions, followed by the estimation of the con-
output signal-to-noise ratio, the good detection criterion corre- trast and location of the best-fit step edge from the parame-
sponding to maximizing the output signal-to-noise ratio. ters. The idea is to first find a continuous function whose sam-

Good Localization. The points that are marked as edge ples correspond to the discrete image. It is then
points by the edge detector should be as close as possible to mathematically appropriate to compute derivatives and other
the actual location of the edge points. differential properties which, strictly speaking, cannot be ob-

Only One Response to a Single Edge. This criterion is some- tained from discrete data.
what implicitly captured in the good detection criterion since The Prewitt Operator. Prewitt (24) discussed a wide range
when there is more than one response to the same edge, only

of image understanding problems from image formation to ob-
one can be considered as true edge and the other responses

ject extraction. She used a quadratic set of basis functions formust be considered false. However, the mathematical form
surface fitting. The so-called Prewitt operator is a 3 � 3 win-of the first criterion does not capture the multiple response
dow to estimate the gradient, which give /x and /y forrequirement and it has to be made explicit.
that surface directly from the data. She also discusses ori-Canny poses the 1-D edge detection problem as an optimi-
ented edge masks as approximations to the gradient. Thezation problem over the set of convolution operators, which
Prewitt operator for estimating the gradient is based on thehe solves by the use of both variational and numerical meth-
best fit of a plane. However, since the support is very small,ods. He derives the optimal operator, in one dimension, which
global structures cannot contribute to the edge finding pro-is a linear combination of four exponentials:
cess, and the derived image description is limited to one or
two local parameters, which is in general not sufficient.

The Hueckel Operator. Hueckel (25,26) applied basis func-
f (x) = a1eαx sin(ωx) + a2eαx cos(ωx) + a3e−αx sin(ωx)

+ a4e−αx cos(ωx) + c
(10)

tions with circular support and tried to fit a single-step edge
for each circular area. The basis functions are chosen so as to

and is subject to the boundary conditions: give an approximate Fourier transform of the circular region
which is 32 to 137 pixels. In edge fitting, the image function

f (0) = 0, f (−W ) = 0, f ′(0) = s, f ′(−W ) = 0 I(x, y) defined over a support D is compared with an ideal
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edge model Mp(x, y), where p is the edge parameter vector. and accepts the surfaces with the smallest adequate basis. He
uses tanh as an adequate basis for a step edge, and its combi-The error difference is given in the form
nations are adequate for the roof and the line edges. He also
takes into account the blurring function of the imaging sys-Ep = ∑∑

(I(x,y) − Mp(x, y))2 (11)
tem, which is a Gaussian function, to a first-order approxima-

Hueckel used an orthogonal transform to solve the edge tion. It is a very complex algorithm as far as edge detection
fitting problem. In particular, the error is given by is concerned. It first fits a planar surface to the window and

minimizes the square-error, followed by a 1-D cubic surface
fit with the same error criteria to refine the estimate. It then
fits an optimal tanh 1-D surface compared to a quadratic fit

Ep =
N∑

i=0

(ai − si )
2

and uses F-statistic to determine the existence of the edgel.
The process is repeated for each pixel location in the image.where
He claims that his approach is robust with respect to noise,
and for (step-size 1/
noise) � 2, it has subpixel position resolu-ai = ∑∑

Hi(x, y)I(x, y)

tion and a 5� angle resolution.
and

Contour Representation
si = ∑ ∑

Hi(x, y)Mp(x, y)

Most edge detection methods, as presented in the last section,
produce edgels which need to be further aggregated intoTheoretically, N should approach infinity, but the approxi-
chains. This grouping step is called linking, and has receivedmation can be made using a truncated form. The orthonormal
much less attention that the detection part. Nevatia (32) pro-expansion Hi’s used consists of polynomials in x, y with a uni-
poses a local heuristic method seeking the most compatibleform radial weighting function �1 � x2 � y2. For the edge op-
candidate in a small neighborhood, and handles junctions.erator, eight polynomials of degree up to three are used (25),
Zero-crossing edge detectors are easier to handle, as they arewhile the edge-line uses nine polynomials of degree up to four
guaranteed to produce closed contours and no junctions. The(26). The edge parameter vector pmin that minimizes the trun-
resulting chain can be extracted with subpixel accuracy (33).cated form (N � 7 or N � 8) can be found by solving simple

Once a chain of points has been extracted, we need to ad-algebraic equations. The edge/no-edge decision is based on
dress the issues of representation. A digital curve can simplythe angle between the projections of the data and the best-fit
be represented by a linked list of its component pixels. Whileedge in the truncated space. Abdou (27) presented a detailed
complete, this description is cumbersome and wasteful. An-analysis of Hueckel’s operator, and noticed that the difficult-
other complete representation is the chain code: given two ad-ies with the operator came from the truncation of the series
jacent pixels (xi, yi) and (i � 1, j � 1) of the curve, it is suffi-expansion, inaccuracies in the minimization procedure, and
cient to represent the direction changes between the ith andthe computation of the edge parameters.
i � 1 pixel, as there exist only eight possible such directionThe Haralick Operator. In his 1980 article, Haralick (28)
changes. Many algorithms have been designed to operate di-proposes to fit the image data by small planar surfaces or
rectly on such a representation (34).facets. Edges are marked at points which belong to two such

Rather than describing the curve in terms of pixels, it mayfacets when the parameters of the two surfaces are inconsis-
be useful to approximate the curve in terms of higher leveltent. The test of consistency is based on the goodness of fit of
primitives, such as linear segments, or curved segments, typi-each surface within its neighborhood and uses a �2 statistic.
cally low order polynomials. The issue to be addressed relatesThe statistics become more complicated for more complicated
to the selection of breakpoints between these primitives, afits. A more general surface fitting technique is used in his
step also called corner detection.later work (29). He used higher order polynomial basis func-

A simple approach (35) consists of using a single line seg-tions with larger operator supports. He imposes 1-D symme-
ment to approximate a curve, then of recursively splitting thetry on the index sets of the polynomials, that is, the points at
curve into two subcurves at the point maximally distant fromwhich they are defined must be symmetric about the origin.
the line. It is also possible to use a merging algorithm, whichHe uses the tensor product of his 1-D set to define the 2-D
iteratively builds longer segments until an error threshold isbasis functions. He then shows how to fit by the method of
exceeded. Another approach consists of mapping edgels ontoprojection onto the orthonormal basis. His definition of edges
a representation which consists of the arc length and the tan-are the zero-crossings of the second directional derivative in
gent (36), as straight lines map to horizontal straight lines.the gradient direction, namely the maximum of the gradient.
The estimation of the tangent value, however, is difficult. ForThe choice of polynomials for the facet model is basically on
a detailed discussion and implementations, see the book bythe ground that they are easier to manipulate. The degree of
Pavlidis (37). In principle, these methods can be extended toapproximation of polynomials is poor especially at discontinu-
fit with higher level primitives, such as conic sections, but theities or edges in the images. In their 1985 article, Watson,
estimation of distance to the curve is difficult, and the fit mayLaffey, and Haralick (30) propose a general spline approach
be unstable or biased.to improve the performance of the facet model.

The methods already discussed produce corners as a resultThe Nalwa Operator. Instead of marking pixels as belong-
of the fitting procedure. A number of methods instead proposeing to an edge, Nalwa (31) defines an edge in terms of edgels,
to first detect points of maximum curvature, then to performthat is, short linear segments, each characterized by an orien-
a fit between consecutive ones. Curvature estimation is a nu-tation and a position, and corresponding to discontinuities in
merically delicate operation, which can be performed usingthe image data. He fits to the window a series of 1-D surfaces,

that is, surfaces constrained to be constant in one dimension, the edgel chain (38–40) or directly from the partial deriva-
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tives of the image with respect to x and y (41). We present
some details of a method to fit a curve to a set of data points
using B-splines (42).

Given C, an ordered set of p � 1 points Pi � (xi, yi), we look
for the B-spline which best approximates C. The approach
proposed in Ref. 43 consists of minimizing the distance

y

x

θ

ρ

Figure 4. Polar representation of a line. This representation avoids
problems created by infinite values in slope-intercept form.

R =
p−1∑
i=0

‖Q(ui) − Pi‖2

=
p−1∑
i=0


�m−1∑

j=0

XjBj (ui) − xi

�2

+
�

m−1∑
j=0

YjBj (ui) − yi

�2



(12)

where � is the angle between the line and the x-axis, and � isand ui is some parameter value associated with the ith data
the distance from the origin to the line. Figure 4 illustratespoint. Minimizing R is equivalent to setting all partial deriva-
this relation between x, y, �, and �.tives R/Xl and R/Yl to 0, for 0 � l 	 m, which yields

Any line passing through the point (xi, yi) must satisfy

xi cos θ + yi sin θ = ρ

This equation defines a sinusoidal curve in (�, �) space,
corresponding to the Hough transform of point (xi, yi) into the
(�, �) space. Collinear points in Cartesian space produce

m−1∑
j=0

Xj

p−1∑
i=0

Bj (ui)Bl (ui) =
p−1∑
i=0

xiBl (ui)

m−1∑
j=0

Yj

p−1∑
i=0

Bj (ui)Bl (ui) =
p−1∑
i=0

yiBl (ui)

(13)

curves which intersect at a single point in (�, �) space. Figure
5 shows the two curves in (�, �) space corresponding to the

with 0 � l 	 m.
two points (�1, �1) and (1, 1), which intersect at � � 0 and

These linear systems are easily solved for all Xj and Yj us-
� � 135�.

ing standard linear algebra, yielding the guiding polygon of
This observation is the key to the following implemen-

the B-spline which best approximates the original curve. The
tation:

choice of m (the number of vertices) determines how close to
the original data the approximation is, which is measured

• Quantize the (�, �) space
by R.

• For each point (xi, yi), generate the corresponding digi-
tized curve in (�, �) space

Adapting a Predefined Pattern to the Data
• For each point (�i, �i) of this curve, increment the counter

at this locationIn many applications, we are looking at an image for a spe-
cific pattern, which can be defined by a curve or a set of • Locations in (�, �) with high counter values correspond
curves. Depending on whether we have an initial guess of the to the desired lines
position of the curve pattern or not, we can use different
methods. We first study the problem of estimating the param- The critical issues in the implementation of the Hough
eters of a known curve pattern to a set of data points, in the transform relate to the choice of the quantization parameters:
presence of noise and outliers. We then show how to extract a coarse quantization produces poor localization, and a fine
a smooth curve, whose exact equation is not known, given an quantization leads to poor noise tolerance.
initial estimate of its position.

The Hough Transform. The Hough transform (44,45) is a
method which allows detection of instances of a pattern whose
analytic expression is known, by working in the space of the
parameters instead of the image space. The method is most
useful for the detection of shapes defined by three or less pa-
rameters, such as straight lines or circles. The method uses
an accumulator array of dimensions equal to the number of
parameters of the family of shapes being sought. For in-
stance, straight lines require two parameters, and the dimen-
sion of the array is two. Circles require three parameters (co-
ordinates of the center, and radius), so the accumulator
dimension is three. We next describe in more details the pro-
cedure to detect lines given a set of points.
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The general equation of a straight line can be written in
Figure 5. Hough accumulator from two points, (1, 1) and (1, �1).polar form as
Each point produces a sinusoidal curve in the accumulator space. The
intersection between these curves corresponds to the line joining the
two points.x cos θ + y sin θ = ρ
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Figure 6. Example of line detection using the Hough transform. (a) Original image; (b) Edgel
image; (c) After Hough transform. A filtering step is needed in (c) to clip the lines produced by
the Hough transform.

Many improvements have been suggested to improve the the snake act like a membrane and the second order one like
a thin plate. This energy is the regularizing term of the mini-basic technique, including probabilistic formulation (46) and

a randomized approach (47). We refer the reader to Ref. 48 mization.
The minimization of Esnake is solved by using the calculusfor a recent overview.

We present the results of applying the Hough transform to of variations and resolving Euler equations, and yields the
following equations in the discrete case (49):detect straight lines in Fig. 6. Figure 6(a) shows the original

image. Figure 6(b) shows the edges extracted. Figure 6(c)
shows straight lines extracted from the Hough transform.

{
Ax + Fx(x, y) = 0

Ay + Fy(x, y) = 0
(15)

Snakes. Active contour models were introduced in Ref. 49
as a methodology to deform a predefined curve under a set of where F � Eext depends on the image features to extract and
forces. The forces result from an internal energy describing A is a pentadiagonal matrix depending on � and �.
the elasticity of the curve, and from an external energy de- This system of equations in (x, y) is solved by introducing
scribing the quality of the fit. This active contour model fits in an energy dissipation functional to dissipate the kinetic en-
an interactive human–machine environment when the user ergy during the motion. Let � be the Euler step size. The ex-
supplies an initial estimate of the object to extract, and the pression of the snake as a function of time is then:
snake is used to refine the results (49,50). It is also useful
when a first estimate is given by a prior processing level. We
will next describe the equations needed to implement such
a scheme.

{
xt+1 = (A + γ I)−1(γ xt − Fx(xt, yt ))

yt+1 = (A + γ I)−1(γ yt − Fy(xt, yt ))

A snake is a deformable, continuous curve, whose shape is
controlled by internal forces (the implicit model) and external (A � �I)�1 can be calculated by LU decomposition (a prod-
forces (the data). Internal forces act as a smoothness con- uct of a lower and upper triangular matrices) in O(n) time (n
straint, and external forces guide the active contour towards is the length of the snake).
image features. The convergence rate of a snake using all points can be

Let v(s) � (x(s), y(s)) be the parametric description of the slow, so authors have proposed to represent the curve by a B-
snake (s � [0, 1]). Its total energy can be written as: spline instead of points (51). The equations are the same, but

the number of points is reduced, leading to stability.

EXTRACTION OF REGION FEATURES

Unlike the preceding methods, which aim at finding bound-

Esnake =
∫ 1

0
Es(v(s))ds

=
∫ 1

0
[Eint(v(s)) + Eext(v(s))] ds

(14)

aries between regions sharing one or more common proper-
with: ties, region segmentation procedures aggregate adjacent pix-

els into connected components by splitting, merging, or a
combination of these two operations.Eint(s) = 1

2
(α(s)|vs(s)|2 + β(s)|vss(s)|2)

We briefly describe these procedures next.

We seek the snake that minimizes the energy Esnake, given
Detection of Regions

some external energy adapted to image features to extract
(Eedge � ���I(x, y)�2, for example) and internal energy whose Thresholding. The simplest possible method to generate a

set of regions is by means of thresholding. This consists ofexpression was previously given. The first order term makes
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Figure 7. Region segmentation using two fixed thresholds. (a) Histogram; (b) After thresholding.
The two threshold values, 60 and 190, were chosen by hand, and correspond to valleys in the his-
togram.

partitioning the set of gray levels into a coarser set of inter- Region Growing. Region growing (or merging) methods,
proceed from a set of seed regions, either individual pixels, orvals, and of assigning each pixel with a given value to the

corresponding class. Thresholding methods are appropriate groups of pixels with nearly identical properties, and absorb
neighbors of a region by comparing their relative properties.for scenes in which high-contrast objects are imaged in front

of a uniform background, for instance, characters on a page. These may include, besides average intensity, criteria such
as regularity of shape. Regions grown from seed regions mayClearly, the central issue to be addressed is the choice of the

threshold values. These may be manually estimated from a overlap, and therefore produce a description which is not a
partition of the image. Examples of such schemes can betraining set of images, or from known operational conditions.

Instead, these thresholds can be derived by considering the found in Ref. 55. Also worth noting is the approach of Besl
and Jain (56) which decides whether a set of pixels belongs tohistogram of the image. Homogeneous regions should produce

peaks in the histograms, so potential thresholds should be a region by comparing least-squares errors of fitting multiple-
order bivariate polynomial surfaces, up to the fourth order, tochosen in valleys between peaks. Several problems are associ-

ated with histogram-based methods: first, the extraction of the pixel values.
valleys may be difficult, as there may be many such minima,
and some of these may be flat. Second, pixels in the same Split and Merge Segmentation. It is possible to combine the
class may not form a coherent region, but a large number of ideas already expressed into a split and merge scheme, as
small ones, as the spatial distribution of gray-levels is ig- described in Ref. 57, in which, given an arbitrary initial parti-
nored. Third, boundaries of the regions may not coincide with tion in a pyramidal data structure, adjacent regions having
contours, again because spatial information is not used. A similar approximations are merged, and regions with a high-
number of methods have been proposed to reduce, but not error norm are split. To achieve the partition, we first create
eliminate, these problems. Of particular interest is the su- a pyramid representation of the image, in which a pixel at a
perspike technique (52) which performs iterative local averag- given level represents four pixels at the level below. At the
ing to produce sharper histogram peaks. Also of interest is top, the whole image is encoded as a single region, and at
the approach of Pappas and Jayant (53) which uses multiple the bottom, each region is a pixel of the original image. The
size windows, and imposes a Markov random field model to algorithm then proceeds by moving up and down in this pyra-
enforce spatial coherence. mid, performing merging and splitting operations, which de-

Figure 7 illustrates region segmentation by thresholding crease the approximation error norm, until a minimum is at-
on the original image from Figure 1(a). Figure 7(a) shows the tained.
histogram of the original image. Figure 7(b) shows the seg-
mented regions after using 60 and 190 as two thresholding

Region Representationvalues.
Given a connected set of pixels forming a digital region, the
issue of representation arises again. We can represent a re-Recursive Segmentation. Rather than setting thresholds

statically, it is possible to apply a recursive procedure: given gion by its bounding curve(s), in which case the representa-
tion issues are identical to the ones covered in the sectionan initial set of thresholds based on histograms, each re-

sulting region is considered a new image, for which new titled ‘‘Contour Representation.’’
A region can be represented by a list of points belonging tothresholds can be derived. The process is repeated until no

new peaks can be isolated, or the regions become too small. it, or by a spatial occupancy array, which is a binary mask
taking values 1 for pixels inside a region, and 0 otherwise. AAn excellent implementation is described in Ref. 54. If the

input is a color image, then the method computes histograms very useful encoding of such an array can be performed using
quadtrees (58): given an image, one builds a pyramid by suc-in different spaces, and selects at each iteration the most

prominent peak. cessively reducing resolution by a factor two. A pixel at any
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level above the original image level can be assigned one of titled ‘‘The Gaussian Filter’’ with discontinuities. Geman and
Geman (65) use a stochastic formulation of the problem andthree values, Black, White, or Gray. A pixel is Black (respec-

tively White) if all four corresponding pixels at the lower level impose a Markov random field (MRF) model on the image.
Blake and Zisserman (66) perform surface reconstructionare Black (respectively White), Gray otherwise. Many opera-

tions, such as union, intersection, and genus, can be effi- with discontinuities using an elegant algorithm. Finally,
Förstner (67), in a system called FEX, produces an integratedciently computed using quadtrees, as complexity depends on

the number of blocks rather than on the number of pixels. description in terms of corners, curves, and regions.
The main drawbacks are that quadtrees are not invariant un-

Anisotropic Diffusionder translation or scale shifts.
A region can also be represented by a covering consisting Perona and Malik (64) point out that Koenderink (16) moti-

of the set of maximal disks which touch at least two points of vates the diffusion equation formulation by the following two
the boundary (59,60). Given the loci of the disk centers and criteria:
their radii, the shape can be regenerated. Such a representa- Causality. Any feature at a coarser resolution must be
tion is called the symmetric axis transform (SAT), medial axis caused by an event at finer resolution, therefore no new fea-
transform, or Blum transform. While it is an elegant repre- tures will arise when traversing the scale space from fine to
sentation with interesting properties (uniqueness, generative coarse.
capability), it has rarely been used in applications, probably Homogeneity and Isotropy. The blurring is required to be
because of its instability: a small change in the boundary may space-invariant.
create major changes in the axes. These criteria lead naturally to the formulation of the

Finally, it is worth noting that, for some applications, ap- heat-diffusion equation. Gaussian smoothing has long been
proximations of the shape may be sufficient. Properties such criticized because it not only reduces the noise but also
as perimeter, area, compactness (perimeter2/area), elongation smooths the edges and introduces inaccuracy to the edge lo-
(ratio of maximum chord A to maximum chord B perpendicu- calization. The Gaussian scale space therefore always has to
lar to A), Euler number, moments, and Fourier descriptors, deal with the correspondence problem in scale space. Perona
have been used. Also popular are best fit by a parametric fam- and Malik point out the important observation by Hummel
ily of shapes, such as minimum bounding rectangle, bounding (15) that the maximal principle from the theory of parabolic
ellipse, and best-fit ellipse. A generalization of the quadrics differential equations is equivalent to causality in scale space.
leading to an interesting family of shapes called superquad- The causality criterion does not force the unique choice of the
rics was proposed by Hein and promoted by Barr (61). A Gaussian kernel for smoothing. Perona and Malik (64) derive
superellipse is given by the equation (x/a)n � (y/b)n � 1, with an algorithm by varying the conduction property of the mate-
a, b, n � 0. rial and still preserve the causality principle while per-

forming the edge-preserving smoothing. In the standard heat
equation already discussed, the material is considered to beCOUPLED EXTRACTION OF POINTS, CURVES, AND REGIONS
homogeneous and the conduction property of the material is
described by the constant c on the right-hand side of the heatWhereas the previous methods explicitly attempt to extract
equation. The idea of anisotropic diffusion is therefore to in-points, curves, or regions independently, it is possible to state
troduce inhomogeneity into the material and the smoothingthe problem in a coupled form, as finding the optimal parti-
process becomes a controlled diffusion process. The purposetion of the image into homogeneous regions, and its edges, or
is, of course, to prevent the diffusion or smoothing acrossboundaries. What constitutes optimality crucially conditions
edges. The anisotropic diffusion is formulated as follows:the results. Mumford and Shah (62) define a so-called univer-

sal segmentation model, as a joint smoothing/edge detection
problem: given an image g(x), find a piecewise smoothed im-

∂u(x, y, t)
∂t

= ∇(c(x, y, t)∇u(x, y, t)) (17)
age u(x) with a set K of discontinuities. The solution is ob-
tained by minimizing Note that, if c(x, y, t) is a constant, then Eq. (17) reduces

to the isotropic heat-diffusion equation. The function c(x, y,
t) is intuitively chosen as a function of the gradient of the
image at that point. Since the gradient at the region bound-

E(u,K) =
∫

�\K
(|∇u(x)|2 + (u − g)2) dx + length(K) (16)

ary tends to have higher gradient value, c(x, y, t) should be
small to prevent the diffusion across the boundary. On theThe first term imposes that u is smooth outside the edges,

the second that the piecewise smooth image u(x) indeed ap- other hand, if the gradient is small, the point is most likely to
be inside a region and the diffusion is encouraged, thereforeproximates g(x), and the third that the discontinuity set K

has minimal length (and therefore in particular is as smooth c(x, y, t) is large at that point. Anisotropic diffusion differs
from a standard iterative smoothing formulation in whichas possible).

An excellent analysis of the mathematical issues is pre- each center pixel is replaced by a window of weighted neigh-
borhood. It concerns the diffusion between neighboring pixels,sented in Ref. 63, showing that minimal segmentations exist,

but are not unique. Furthermore, it claims that most segmen- that is, each pixel is updated by a certain amount depending
on the gray levels between the center pixel and its directtation methods can be interpreted as attempts to minimize

this variational energy functional. neighboring pixels. Anisotropic diffusion provides a good tool
for discontinuity preserving smoothing and it is well formu-We next present four very different approaches to the cou-

pled feature extraction problem: anisotropic diffusion (64) lated mathematically. The well-developed mathematical tools
in the area of partial differential equations, especially theproposes to solve the heat equation discussed in the section
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where N is a normalization number, T is a (temperature) pa-
rameter, and U is the sum of potentials that specify how each
neighbor, pair of neighbors, and so on contribute to the proba-
bility that the pixel has a certain value. The potential func-
tion U usually consists of two terms: one associated with the
interaction potential and one associated with the difference
between the predicted image and the observed data. Geman
and Geman assume, in their image model, the expected simi-
larity between gray-level intensity values of the neighboring
pixels. They also assume edges may occur between pixels and
that edge contours are assumed to be lines. The image resto-
ration problem is therefore to find a set of pixel values and a
set of line values that maximize the a posteriori probability
of that state given observed data.

Weak Continuity Constraint

Blake and Zisserman (66) introduce the concept of weak conti-
nuity constraints to allow discontinuities in surface recon-
struction. Following Blake and Zisserman’s notation, the be-
havior of an elastic string over an interval [0, N] is defined byFigure 8. Gaussian and adaptive smoothing at 2 different scales. (a)
an energy, which is a sum of three components:After adaptive smoothing (k � 12); (b) After adaptive smoothing (k �

24); (c) After Gaussian smoothing (
 � 2); (d) After Gaussian smooth-
1. The Penalty P measures the sum of penalties � levieding (
 � 4). Gaussian smoothing is uniform, whereas adaptive

for each break (discontinuity) in the string.smoothing sharpens boundaries while smoothing regions.

2. The Difference D measures the faithfulness to data.
3. The Smoothness S measures how severely the functionheat-diffusion equation, make anisotropic diffusion easy to

u(x) is deformed.analyze. In anisotropic diffusion, however, we assume that
edges are perfect steps and therefore cannot directly deal

The problem is to minimize the total energy:with other type of edges such as roof edges. Also, anisotropic
diffusion needs a very large number of iterations to reach its

E = D + S + Pfinal convergent state, but this problem can be handled by
considering that edges do not change after a few iterations.

The finite element method allows converting the continu-Figure 8 shows the results of Gaussian and adaptive
ous problem to the following discrete problem:smoothing at two different scales. Figure 8(a) and (b) show

the results after adaptive smoothing with k set to 12 and 24
respectively. Figure 8(c) and (d) show the result of Gaussian E =

n∑
i=1

(ui − di)
2 + λ2

n∑
i=1

(ui − ui−1)2(1 − li) + α

n∑
i=1

li (19)
smoothing with 
 set to 2 and 4 respectively.

where li is a so-called line-process. It is defined such thatStochastic Approach
each li is a Boolean-valued variable: either li � 1, indicating

Geman and Geman (65) link together mechanical systems that there is a discontinuity in the interval [i � 1, i] or li � 0
like soap films, splines, and statistical theory. They use the indicating continuity in that interval. The solution of this ap-
MRF model as the formalism for describing images, establish proximation problem can be found by the following iterative
theorems that provide a means for specifying the probability scheme of successive over-relaxation:
of a particular original image given the observed degraded
data, and use the technique of simulated annealing as a
mechanism for finding the image that maximizes the proba- u(t+1)

i = u(t)
i − ω

T
∂E
∂ui

(20)
bility of it being the replica of the original image given the
observed data. Finally, a model of spatial coherence in images

where 0 	 � 	 2 is the successive over-relaxation (SOR) pa-is introduced to allow the placement of image boundaries that
rameter, governing the speed of convergence, and Ti is an up-terminate this coherence. A Markov random field is a lattice
per bound on the second derivative:of pixels and each pixel can be assigned any of its allowed

values. The conditional probability for a pixel having a cer-
tain value, given the values of all the other pixels in the im-
age, is only a function of the pixels in a finite neighborhood

Ti ≥ ∂2

∂u2
i

E

of that pixel. These conditional probabilities specify uniquely
Since the energy function to be minimized is in general notthe probability that the system is in a particular state. The

convex, the system ui may have many stable states, each cor-probability is a Gibbs distribution whose form is particularly
responding to a local minimum of the energy function. Thesimple to compute. In particular,
stable state reached usually depends on the initial state of
the system. It is unlikely for that stable state, that is, the
local minimum, to be the global minimum unless the convex-

Probability = 1
N

e− U
T (18)
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ity of the energy function is guaranteed. Blake and Zisserman
come up with an elegant model called graduated nonconvexity
(GNC) for minimizing the above weak continuity constraint
equation. The basic idea is to find a sequence of approximat-
ing functions E(p), where p varies continuously from 1 to 0 (for
practical purposes, p is set to be 1, ��, ��, ��, . . .), E(1) is a convex
function and E(0) is the original energy function to be mini-
mized. Starting from E(1), its convexity guarantees that the
local minimum is also the global minimum. The iteration pro- (a) (b)
ceeds as follows: the minimum found for E(1/m) is used as the

Figure 9. Results of the FEX system. (a) Corners � edges; (b) Blobs.initial value to find the minimum of E(1/2m). The basic model of
All three types of features are extracted simultaneously.weak continuity constraint measures the smoothness con-

straint with the first derivatives of the reconstruction, they
are called weak string and weak membrane for 1-D and 2-D

CONCLUSIONrespectively. Blake and Zisserman also consider second deriv-
atives to the energy term in smoothness constraint for weak

Feature extraction is a central issue in the design and imple-rod (1-D) and weak plate (2-D). The visual reconstruction with
mentation of any vision system. As a result, the literature onweak continuity constraint model can be applied to a wide
the subject is varied and abundant. We have provided a broadrange of image data. The results are very impressive, al-
overview of the issues involved in selecting proper featuresthough a large number of iterations is required to minimize
for a given application, and given details on some of the morethe energy function. Furthermore, the causality criterion is
popular strategies.not respected and new events can therefore occur at higher

scales.
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