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ONLINE HANDWRITING RECOGNITION

Online recognition of handwriting has been a research chal-
lenge for almost 40 years (1). Contrary to offline techniques
(2–9), which deal with the automatic processing of the image
I(x, y) of handwritten words as collected using a camera or a
scanner, online approaches aim at recognizing words as they
are written, using a digitizer or an instrumented pen to cap-
ture pen-tip position (xt, yt) as a function of time.

Table 1 shows the basic differences between offline and on-
line handwriting recognition. Figures 1(a) and 1(b) illustrate
a typical image I(x, y) of a word and the (xt, yt) position of the

Table 1. Distinction Between Online and Offline
Handwriting Signals

Method Representation Transducer

Offline I(x, y) Optical scanner
Online (xt , yt) Digitizer, tablet

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.
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Figure 1. (a) Binarized image of a hand-
written word; (b) digitized XY trajectory
of the pen tip; (c) tangential velocity of the
pen tip; (d) angular velocity of the pen tip.
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pen that was used to write it, as a function of time t. As can loops and parallel paths that are essential to design an effi-
cient system. This article surveys the principal trends thatbe seen, the major difference between online and offline data

is that the time sequence of movements for online data is di- have been put forward and published since the previous gen-
eral reviews in the field (10,11).rectly available from the acquired signals. This allows also

the computation of other signals, like velocity signals, from Because of space limitation, this chapter focusses on the
recognition of the English language. Readers interested inthe original data [for examples, see Figs. 1(c) and 1(d)].

Figure 2 depicts a simplified data flow diagram of an on- other languages can consult others surveys (12) or several
books, journals, and conference proceedings where such proj-line handwriting recognition system, highlighting the main

functions performed by such a system. The (xt, yt) coordinates ects are reported (13–15). We also neglect to cover applica-
tions dealing with automatic signature verification (16,17),collected by the digitizer are first filtered to remove spurious

noise. Then some specific characteristics of the signals are ex- shorthand (18), and gesture recognition as well as interactive
tools to help children or disabled persons to learn handwrit-tracted and compared with those of letters or words kept in a

reference lexicon. The candidate letters or words produced by ing. Moreover, we pay particular attention to methods and
approaches that can be used in an electronic pen–pad envi-the recognition algorithms are then analyzed in the context

of lexical, syntactical, semantical, and application-based prag- ronment. Numerous midterm projections (19) have predicted
that these computers without keyboard will be part of thematical rules to make a decision and to propose the most real-

istic solution. Numerous variations of this basic description next computer generation, allowing them to mimic the pen–
paper interaction in numerous tasks that involve both point-have been proposed to take into account the various feedback

Figure 2. Data flow diagram of an online
recognition system.

Digitizer

Pre-
processing

Analysis

Post-
processing

(xt ,yt)

Recognized
words

Linguistic
rules

Lexicon

Comparison

Filtered
coordinates

Specific
characteristics

Letters or
word candidates



ONLINE HANDWRITING RECOGNITION 125

(a) (b)

Figure 3. Examples of electronic pen-pads. A transparent digitizer is superimposed on a liquid
crystal display. The overall system encompasses hardware and software to process the electronic
ink. (a) Pilot (3Com and the 3Com logo are registered trademarks, and PalmPilot and the Palm-
Pilot logo are trademarks of Palm Computing, Inc., 3Com Corporation, or its subsidiaries) and
(b) Newton model.

ing and data entry (20,21) (see typical products Fig. 3). The control mechanisms involving a large spectrum of cerebral ac-
problem of determining writing style (printed, cursive, or tivities, dealing with the emotions, rational thought, and com-
mixed) when it is not known a priori is not considered in de- munications. As such, the study of handwriting constitutes a
tail [see, for example, (22)]. Similarly, we do not address non- very broad field that allows researchers with various back-
textual input recognition. For maximum flexibility, a pen- grounds and interests to collaborate and interact at multiple
based system should allow for more than just textual input levels with different but complementary objectives (34–45).
(consider the openness of a traditional pad of paper to accept As suggested by many of those groups, handwriting in-
anything the user might want to write). Such a system must volves several functions (see Fig. 4). Starting from a commu-
be prepared to accept nontextual data such as equations and nication intention, a message is planned at the semantical,
diagrams (23–25) and graphical inputs (26–29). Another is- syntactical, and lexical levels and converted somehow into a
sue not considered here is the representation and compres- set of allographs, graphemes, and strokes to generate a pen-
sion of handwritten data (30–33). tip trajectory that is recorded on a planar surface physically

The rest of the article is divided into four parts. First, we or electronically. The resulting document will be read later by
briefly survey the basic knowledge related to the handwriting the person to whom the message is dedicated.
generation processes to better understand the ground of the Consistent with this view, some design methodologies in-
methodologies that are described in the next three sections corporate this theoretical framework in the development of
dedicated, respectively, to data acquisition and preprocessing, online handwriting processing systems. So far, numerous
script recognition, and linguistic postprocessing. We conclude models have been proposed to study and analyze handwriting.
by pointing out some of the remaining problems and sug- Depending on the emphasis placed on the symbolic informa-
gesting some promising research directions. tion or on the neuromuscular architecture, two complemen-

tary approaches have been followed: top-down and bottom-up.
The top-down approach has been developed mainly by thoseHANDWRITING
researchers interested in the study and application of the var-
ious aspects of the high-level information processing from se-Handwriting stands among the most complex tasks per-

formed by literate human beings. It requires sensorimotor mantical, syntactical and lexical aspects down to basic motor
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49), whereas the second mostly deals with the calculation of
distances between character strings (50,51). The integration
of syntactical knowledge can also be done using two different
models: structural and probabilistic models. In the first case,
sentences are analyzed using sentence structure grammars to
decide whether a sentence is grammatically meaningful (52).
In the second case (53), probabilities of co-occurrence of three
words (54) in the lexicon or of tri-part of speech (55–57) con-
stitute the basis of model development. It must also be noted
that very often a combination of models and methods lead to
better results.

As for many well-mastered tasks, human subjects gener-
ally work at the highest and most efficient level of abstraction
possible when reading a handwritten document (semantical,
syntactical, lexical). When difficulties are encountered in de-
cyphering a part of the message using one level of interpreta-
tion, they often switch to a lower level of representation (allo-
graphs, graphemes, strokes) to resolve ambiguities. In this
perspective, the lower levels of abstraction, although gener-
ally used in the background, constitute a cornerstone on
which a large part of the higher and more abstract process
levels relies. For example, according to motor theories of per-
ception (58), it is assumed that motor processes enter into
the genesis of percepts and that handwriting generation and
perception tasks interact and share sensorimotor information.
Handwriting recognition tasks also require, directly or indi-
rectly, an understanding of the handwriting generation pro-
cesses from a bottom-up approach.

Bottom-up models [see Plamondon and Maarse (59) for a
survey of the models published prior to 1989 and Plamondon
et al. (60) for a comparative study of numerous models] can
be divided according to the type of basic movements that are
used to analyze and reconstruct a complex pen-tip trajectory
(61,62). Discrete models (61,63,64) reconstruct complex move-
ments using temporal superimposition of a set of simple dis-
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crete movement generally referred to as strokes. Continuous

Figure 4. General overview of the different neuromuscular processes movements emerge from the time overlap of discontinuous
involved in handwriting. strokes. Oscillatory models (65–68) consider oscillations as

the basic movement and complex movement generation is
produced by controlling the amplitude, the phase, and the fre-
quency of the fundamental wave function. A single discontin-control problems like the coding of fundamental units of

movement, the sequencing and retrieval of motor commands, uous stroke is seen here as a specific case of an abruptly inter-
rupted oscillation.the control and learning of movement, and the evaluation of

task complexity. The bottom-up approach has been used by Among these models, various approaches are used to
trackle the problem of handwriting generation. For example,those interested in the analysis and synthesis of the low-level

neuromuscular processes starting at the stroke level to re- Schomaker et al. (69) use a computational approach to de-
scribe handwriting based on motor control principles and oncover graphemes, allographs, the ultimate goal being to re-

cover the message. In the domain of automatic recognition, the knowledge of idiosyncratic feature of the handwriting of
a given writer. Bullock et al. (62) and Morasso et al. (70) usetop-down models are generally used as postprocessing tech-

niques to validate the output of a specific recognition system, nonlinear dynamic approaches, whereas Flash and Hogan
(71), Edelman and Flash (72), and Uno et al. (73) use modelswhereas bottom-up model is mostly used for recovering

strokes graphemes or allographs. that exploit minimization principles—the first group mini-
mizes jerk, the second minimizes the snap, and the third min-Most of the top-down models are not specific to handwrit-

ing and have been developed for other language processing imizes the torque. Other groups (66–68) use basic analytic
functions to describe an oscillatory movement, without anypurposes like automatic speech recognition and automatic

translation. In the domain of handwriting, these models focus further justification.
Figure 5 shows the results of a typical analysis by synthe-mostly on lexical and syntactical knowledge to correct incor-

rect words in a processed sentence. As will be seen in more sis that can be done using a discrete bottom-up model. Ac-
cording to this recent model (61), a handwritten word is adetails in the section dealing with postprocessing, two ap-

proaches are used to integrate lexical information in a sys- sequence of components that is part of the trace between pen-
down and pen-up (59,74). Each component is made up of atem: a statistical and a combinational approaches. The first

approach is based on the statistics of letter occurrence (46– superimposition of circular strokes, each one being analyti-
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Figure 5. Typical result of an analysis-by-synthesis experiment using a bottom-up handwriting
generation model.

cally described by a velocity vector v(t) whose magnitude �i � log response time of the agonist (i � 1) and antagonist
(i � 2) systems,obeys a delta-lognormal law (75,76):

and with an orientation that evolves along the circle arc ac-
cording to

|vvv(t)| = |DDD1(P0,θ0 ,C0 )|�(t; t0, µ1, σ 2
1 ) − |DDD2(P0 ,θ0 ,C0 )|�(t; t0, µ2, σ

2
2 )

(1)

where
�vvv(t) = θ(t) = θ0 + C0

∫ ∞

t0

|vvv(t)| dt (3)

A whole component can thus be described in the velocity do-
main, as the vectorial summation of velocity vectors:

�(t; t0, µi, σ
2
i ) = 1

σi

√
2π(t − t0)

exp

�−[ln(t − t0) − µi]
2

2σ 2
i

�
(2)

with t > t0

where vvv(t) =
n∑

i=1

vvvi(t − t0i) (4)

Di � amplitude of the agonist (i � 1) and antagonist (i � 2)
commands, with each vi(t � t0i) described by Eqs. (1) and (3), for t � t0i.

Using nonlinear regression, a set individual strokes cant0 � time occurrence of the synchronous input commands,
�i � log time delay of the agonist (i � 1) and antagonist (i � be recovered from the velocity data and each of them can be

characterized by a set of nine parameters as described earlier.2) systems,
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Figure 6. Typical end-to-end preprocessing.

As can be seen in this example [Fig. 5(d)] the word scribe is 4. Stroke segmentation—the segmentation of the pen-tip
trajectory into small segments (e.g., representation ve-made up of four major components, the first component en-

compasses five strokes whereas the second, third, and fourth locity-based strokes or strokes bounded by points of
high curvature).have seven, five, and three strokes, respectively. Figure 5(e)

shows how these strokes superimpose in time. Figures 5(d)
and 5(e) can be interpreted as a spatial and a temporal repre- Noise reduction involves the following steps:
sentation of the action plan that has been used to generate
the specific word. Figures 5(a)–5(c) show that an excellent re- 1. Smoothing—eliminates noise introduced by the tablet
production of the word can be achieve both in the spatial and or shaky writing;
in the velocity domain using this model. Such a global ap- 2. Filtering—reduces the number of data points and elimi-
proach can be use to provide basic knowledge for cursive nates ‘‘wild’’ points;
script segmentation and character and word recognition, as

3. Dehooking—removes artifacts (‘‘hooks’’) at the begin-will be seen later.
nings and ends of strokes;

4. Break correction—eliminates unintended (short) breaks
DATA ACQUISITION AND PREPROCESSING between strokes.

The purpose of preprocessing is to correct for problems in data Common normalization procedures include:
acquisition, to compensate for some of the natural variation
that arises between writers, and to segment handwriting into 1. Baseline drift—corrects for the tendency of the charac-
more basic units for later recognition. ter baseline to rise or fall as writing progresses from

The input to preprocessing is assumed to be a sequence of left to right;
points sampled over time, (xt, yt). These record the trajectory

2. Writing slant—compensates for the natural slant thatof the pen tip over the surface of the digitizer as previously
can vary widely from writer to writer;mentioned. In addition, components or pen-down and pen-up

3. Size normalization—adjusts the characters to be a stan-events are noted using specific contact switch, pressure or
dard size.strain-gauge and the like. Because of the online nature of the

problem, the data has both spatial and temporal aspects that
Lastly, the preprocessor must generate a representation ap-can be employed as appropriate. Depending on the classifica-
propriate for input to the classifier used by unspecific system.tion stages that follow, the output from preprocessing can be
The range of possible representations is enormous and highlyfeatures extracted either from word units or from more primi-
dependent on the classifier. A common operation at this point,tive character or subcharacter units.
however, is to segment the input further into subcharacterThe basic stages of preprocessing include segmentation,
units like strokes (a step also known as oversegmentation).noise reduction, and normalization. The order in which these

Each of these stages is now discussed in more detail.are performed can vary from system to system, and specific
steps may be repeated and/or skipped altogether. Figure 6

Segmentationillustrates the end-to-end process for a typical case. Earlier
overviews of preprocessing can be found in Tappert et al. (77), Segmentation is the process of breaking the input data into
Nouboud and Plamondon (11,78), Tappert (79), and Guerfali smaller and smaller logical units (a divide-and-conquer ap-
and Plamondon (80). proach). These basic units can either be disjoint, or allowed

Segmentation may take place at four conceptual levels: to overlap each other (see Fig. 5). In many cases, the segmen-
tation is only tentative and may be corrected later during

1. Text line segmentation—divides the input ink data into classification. Figure 7(a) illustrates several of the various
individual lines; problems that arise during segmentation, whereas Fig. 7(b)

2. Word segmentation—breaks each line into separate shows their solutions.
word units; The earliest systems achieved segmentation at the charac-

ter level through either an explicit signal from the user (81),3. Character segmentation—if the classifier is character-
based, the words are further segmented into character or by requiring the user to write in predefined boxes (82).

Both of these assumptions can be burdensome, however. Acandidates;
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Figure 7. Illustration of the various seg-
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mentation problems and their solutions.

more accommodating policy is to allow the user’s input to be sumption, however, because it requires the user to learn a
new way of writing.completely free-form, even though this makes the segmenta-

tion problem more difficult. When character segmentation is treated as a preprocessing
step, as described here, it is known as ‘‘external segmenta-
tion.’’ A different strategy is to delay segmentation and han-Text Line Segmentation. If the handwriting is not being rec-

ognized real-time but is being saved for later processing (as dle it within the recognition process; this is known as ‘‘inter-
nal segmentation’’ or ‘‘segmentation by recognition.’’in an electronic reproduction of a paper notepad), the issue of

identifying the lines of text comes first. An approach for text
line segmentation (zoning) for unconstrained handwritten Noise Reduction
cursive script based on approximating spline functions is dis-

Noise reduction is necessary to address limitations in the tab-cussed in Hennig et al. (83).
let hardware (finite resolution, digitization errors, mistaken
components), as well problems the user might cause by dwell-Word Segmentation. Word segmentation can be performed
ing with the pen too long at a single location. Figure 8(a)in either the temporal or spatial domain or through a combi-
shows a contrived example illustrating all of these problems,nation of both (77). For example, a new word can be said to
whereas Fig. 8(b) shows the results of the corrective proce-begin with a pen-down event if the time since the last pen-up
dures described in this section.exceeds a given threshold and/or if the pen tip has moved

more than a certain minimum distance to the right of the
Smoothing. The purpose of smoothing is to eliminate noiseprevious stroke. In the case of word-based classifiers (some-

introduced by the tablet or shaky writing. This is accom-times called holistic approaches), the segmentation process is
plished by averaging a point with certain of its neighbors,complete at this point.
usually those recorded prior to the point in question (so that
processing can proceed forward in time as each point is re-Character Segmentation. Attempting to segment the input
ceived). Possible approaches include using a mobile averageinto individual characters can be extremely challenging. In
filter (78,79).the case of cursive writing, ligatures make it difficult to tell

where one character ends and the next begins. For printed
Filtering. Filtering reduces the number of data points andtext, overlapping characters can still cause problems: the

in particular eliminates duplicates (caused when the user letscross of a t, for example, may interfere with adjacent charac-
the pen tip linger too long at one spot). This could involve, forters on either side. Temporal approaches (i.e., timeouts) have
example, resampling based on a minimum distance betweenbeen applied to the segmentation of carefully handprinted
points, or a minimum change in direction of the tangent tocharacters (77,78). Even so, a t may be crossed right away, or
the writing. The latter allows for more points in regions ofperhaps not until after the rest of the word is finished.
greater curvature and is generally preferable. The filteringAn approach for segmenting cursive script into allographs
procedure also corrects for wild points (hardware-induced out-based on unsupervised learning appears in Mackowiak, Scho-
liers far away from the actual trajectory of the pen tip)maker, and Vuurpijl (84). The problem of segmenting numer-
(78,79).als and capital letters in mixed (cursive/printed) writing is

described in Lee et al. (85).
The difficulties of character segmentation can be side- Dehooking. Hooks are artifacts at the beginnings and ends

of strokes caused by the inaccurate detection of pen-down/stepped by changing the input alphabet to a unicomponent
(86) [see also Fig. 3(a)]. Because each character is represented pen-up events. They can be found and removed by searching

for a significant direction change near the edge of a compo-by exactly one component (pen-down to pen-up), there is no
ambiguity as to character boundaries. This is a radical as- nent and, if the size of the hook is small, eliminating it (79).
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Figure 8. Illustration of the various noise conditions and their solutions.

Break Correction. Inadvertent breaks between components mum velocity (and minimum curvature), in downward strokes
of robust length (90).can be corrected by connecting adjacent components when the

distance between the pen-up and pen-down is small relative
to the size of the writing (77). Size Normalization. In the case of character-based recogni-

tion, the characters may be normalized by mapping them into
Normalization a box of a fixed size (78). In addition, their coordinates may

be translated so that the origin lies at a specific location rela-In practice, there is a great deal of variability in the way peo-
tive to the bounding box (e.g., the lower left corner) (77). Com-ple write a particular allograph (87). The goal of geometric
ponent-based schemes may normalize each component to anormalization is to minimize (or at least reduce) these in-
specific number of points (77).stance- and writer-dependent variations. An example illus-

trating these problems is shown in Fig. 9(a), whereas their
solution appears in Fig. 9(b). Subcharacter Segmentation

As was remarked earlier, segmenting cursive handwritingBaseline Drift. As the user writes across a tablet, it is not
into characters on the basis of bottom-up, data-driven knowl-unusual for the text to drift upward or downward (this is es-
edge can be extremely difficult. Instead, a more promisingpecially true if the tablet has no visible guidelines). The later
strategy is to segment the input into strokes (see Fig. 5),determination of certain key features such as ascenders and
which are then interpreted and combined in various waysdescenders depends on having an accurate estimate of the
during the recognition process (oversegmentation). For mostcharacter baseline. Hence, drift must be compensated for (88).
of the systems based on Hidden Markov Models (HMMs), seg-
mentation and recognition naturally take place at the sameWriting Slant. Cursively written text can exhibit significant
time as part of the optimization performed using for exampleslant. This is estimated and corrected using techniques such
the Viterbi algorithm. Also in other approaches (91,92), theas those described in Brown and Ganapathy (88) (on a per-
segmentation into characters takes place because of a seg-word basis) or Burr (89) (on a per-character basis). A good
mentation through classification approach. In fact, suchestimate of the writing slant angle is the direction of a vector
methods utilize higher-level information of a lexical or statis-which is tangential to the writing trace at the points of maxi-
tical nature to solve the otherwise ill-posed segmentation
problem for mixed and cursive script types (e.g., the word
minimum).

A component-based approach to stroke segmentation is de-
scribed in Fujisaki et al. (93). A method based on attempting
to locate three distinct shapes in the writing—cusps, intersec-
tions, and inflection points—appears in Higgins and Ford
(94). Another approach based on extracting shape primitives
is described by Bontempi and Marcelli (95). Lower-level
schemes for segmenting strokes based on local extrema of cur-

Baseline and
normalization

Baseline and slant
normalization

vature points is Li et al. (96,97). Schomaker (98) uses a veloc-
ity-based segmentation into strokes, which also yields strokeFigure 9. Illustrations of the various normalization conditions and

their solutions. boundaries at points of maximum curvature. Identifying per-
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ceptually important (i.e., robust) strokes is the focus of An- may fuse into a single stroke, barely representing the taught
letter characteristics (109). However, human readers are of-quetil and Lorette (99).

A scale-space approach—segmentation points obtained at ten very well able to read sloppily written words, provided
that a minimum number of legible characters are present. Ina range of scales are combined to form the final segmenta-

tion—appears in Kadirkamanathan and Rayner (100). Over- many languages, the writer anticipates this ability of the
reader and sloppily rushes over the lexically redundant tailssegmentation based on horizontal and vertical constraints be-

tween allographs is discussed in Parizeau and Plamondon of the words, similar to a damped oscillator.
(101). Segmentation at vertical velocity zero crossings is the
subject of Karls et al. (102). The notion of dual strokes (two Allographic Variation. An allograph is letter-shape variant

(Fig. 4). A capital letter A and a lowercase letter a are bothsuccessive down-up or up-down strokes that form certain
shapes) as the basis for segmentation is discussed in Abbink allographs of the letter identity a. Allographs are produced by

different writers, on the basis of their writing education andet al. (103).
Segmentation using indefinite models learned through personal preferences. But also within a writer, multiple vari-

ants of a letter shape may be used. Examples are differenttraining is discussed in Hu et al. (104,105). Cusps, loops, and
humps form the basic units of segmentation in Bercu and Lor- forms of s and t, depending on the position in the word. The

number of allographs is very high in Western handwriting.ette (106). Segmentation into elemental ‘‘frames’’ prior to
HMM recognition is described in Bellegarda et al. (107). In Even within a limited category, like digits, a large amount of

training data must be present to cover all shapes likely to beLee et al. (108), letter spotting is performed by a Hidden Mar-
kov Model yielding a word hypothesis lattice that is then encountered by an online handwriting recognizer in a practi-

cal application. For the letters of the alphabet, allographicsearched to find the optimal path.
variation is virtually unlimited, because of the freedom for

Handwriting Variability individual expression, which is given to writers in many
Western cultures. It is useful to make a distinction betweenThe recognition of online handwriting was originally coined
the kernel of a character shapes, and the initial and final liga-as an easy first step toward the more difficult recognition of
tures and embellishments that may be encountered, espe-speech, as was expected at the time. However, the problem of
cially in connected-cursive handwriting styles.translating an input stream of pen-tip coordinates into an

ASCII string of characters that correctly represents the text
Sequencing Problems. As discussed previously, handwritingthe writer intended to produce appears to be a very difficult

is a form of human motor output and suffers from the internaltask. Why is handwriting recognition so difficult? There are
noise present in the central nervous system. Apart from thefour basic and independent sources of variability and noise in
consequences at the micro level (see the section on modeling),handwriting patterns. The four factors all exert their influ-
neural variability also expresses itself in the form of errorsence on the quality of the written shapes:
and variations in the sequence of produced strokes. As an ex-
ample, the capital letter E written as an isolated handprint1. Geometric variations: affine transforms;
character, may be produced in 4!(24) � 384 different stroke

2. Neuro-biomechanical noise: sloppiness space; orders (four strokes with two starting points per stroke). Al-
3. Allographic variation: letter-shape variants; though there is a preferred stroking order, there are individ-

ual differences, and the process is stochastic rather than de-4. Sequencing problems: stroke order, spelling problems,
terministic. Spelling errors, letter omissions, letter insertions,corrective strokes.
and post-hoc editing with the pen all fall within this category.
Also here, the handwritten product may very well be legibleGeometric Variations. Position, size, baseline orientation,
by humans, who are not aware of the underlying sequenceand slant are all under voluntary control by the writer and
variability. The last type of problem in this category comesmust be normalized away. This can be done using an affine
from delayed dotting on the is and js and the crossing of thetransform based on parameter estimation, as explained in the
t. This process is also of a nondeterministic nature, and itpreprocessing section. It is at present unclear, however,
cannot be predicted exactly when the dots and bars will bewhether the human writer just applies an affine transform
produced. In the worst case, the small dots and bars may bewhen asked to write at a different slant, or whether more
entered after finishing a whole sentence or paragraph.fundamental changes in the stroke production process also

Although some of the problems mentioned can be normal-take place (109).
ized away through a proper preprocessing method, as ex-
plained in the previous section, there will always remain aNeuro-Biomechanical Noise. Depending on the writer’s

mental concentration and the writing speed, stroke formation considerable variation and variability in the shapes that must
be classified during the recognition process of online hand-may be accurate or deformed. Sometimes the term sloppiness

space (86) is used to describe this factor. The control of pen- writing. The most difficult problem to handle is that of sloppi-
ness space. Whereas the problem of allographic variation cantip movement is an articulation process that is under the in-

fluence of the recent past in the handwriting trajectory as be solved by using larger training sets of handwritten sam-
ples to develop online handwriting recognizers, it is difficultwell as under the influence of shapes that are being planned

to be produced by the human motor system. Under conditions to deconvolve the fused and sloppy pen traces back into their
clean, intended form (109).of suboptimal cognitive resource distribution, a number of ef-

fects may be observed at the microlevel of detailed trajectory Furthermore, it is evident that handwritten shapes iso-
lated from their context cannot be recognized correctly by hu-control. Usually sharp stroke endings become obtuse or

looped, and consecutive individual (velocity-based) strokes mans (110,111). Thus, linguistic context must be taken into
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Figure 10. An arbitrary sample of natural handwriting obtained
from a large database.

Table 2. UNIPEN Benchmark Overview: Categories of
Handwritten Input

Benchmark Description

1a Isolated digits
1b Isolated uppercase
1c Isolated lowercase
1d Isolated symbols (punctuations, etc.)
2 Isolated characters, mixed case
3 Isolated characters in the context of words or texts
4 Isolated printed words, not mixed with digits and

symbols
5 Isolated printed words, full character set
6 Isolated cursive or mixed-style words (without digits

and symbols)
7 Isolated words, any style, full character set
8 Text (minimally two words of) free text, full

character set

to be the disambiguation between the categories: Does a smallaccount, as will be described in the section on postprocessing
vertical line refer to a letter i, a letter l, a digit 1? Is it thetechniques. Figure 10 displays many problems of handwriting
beginning of a line which should be beautified into a straightrecognition. For a human writer, the word is fairly easy to
line? Or is it just intended to be sketched ink? It is very diffi-decipher. Below the dotted line, some actual segments of
cult to detect these categories automatically, and it is veryhandwriting are cut out from the local context. For each seg-
cumbersome for the user to identify the categories, becausement in the pen-tip trajectory, many reasonable character
users are now generally accustomed to modeless user inter-hypotheses can be generated, only one of them being the cor-
faces. The use of gestures does not automatically solve therect letter. Here is a small list of problems in this example:
problem fundamentally because gestures themselves may(1) The ts are not crossed, (2) the initial letter s may be upper-
have an ambiguous shape when compared with other shapecase or not, (3) the ts looks like a b, (4) several letters (w, r,
categories present in a system. Also, it should be noted thath) are ill formed, and (5) the base line is not horizontal. Fur-

thermore, this writer produces a mixed style: some compo-
nents are in hand print style, whereas other components are
written in cursive style. A good handwriting recognition sys-
tem must solve all these problems. The intended word was
sweatshirt.

RECOGNITION

Before proceeding with the description of the actual recogni-
tion methods, the object of the recognition must be defined. It
is important to note that a number of categories in handwrit-
ing recognition are meaningless to the user of a pen computer
but are extremely important to the developer of a recognition
system. In recognition practice, there are classifiers of iso-
lated characters, and there are classifiers of whole words, or
even of sentences or paragraphs. In the UNIPEN project (33)
for benchmarking handwriting recognition systems, the fol-
lowing categories have been defined in Table 2.

Benchmark number 8 refers to the most difficult case of
unsegmented free text. The category of punctuations is much
neglected in current research and not trivial. Similarly, the
diacritics that are very important in some languages are an
underexposed research topic. The categories described earlier
fit very well in the framework of handwriting recognition re-
search. On the other hand, consider the taxonomy from the
point of view of the pen user interface (PUI) design (112). The
following taxonomy has been proposed in Table 3.

Current efforts in online handwriting recognition research
are largely focused on the handwriting shape categories, with-
out taking into consideration the problems encountered in
user-interface design. One of the most difficult issues appears

Table 3. A Taxonomy of Pen-Based Input

[1] Textual data input
[1.1] Conversion to ASCII

[1.1.1] Free text entry
[1.1.1.1] Fully unconstrained (size, orientation,

styles) (e.g., PostIts)
[1.1.1.2] Lineated form, no prompting, free order of

actions
[1.1.1.3] Prompted

[1.1.1.3.1] Acknowledge by ‘‘OK’’ dialog box
[1.1.1.3.2] Acknowledge by Time-out (e.g.,

800 ms)
[1.1.1.3.3] Acknowledge by Gesture (see

item 2.2)
[1.1.2] Boxed forms
[1.1.3] Virtual keyboard

[1.2] Graphical text storage (plain handwritten ink)
[2] Command entry

[2.1] Widget selection
[2.2] Drag-and-drop operations
[2.3] Pen gestures

[2.3.1] Position-independent gestures
[2.3.2] Position-dependent context gestures

[2.4] Continuous control (e.g., sliders, ink thickness by pressure)
[3] Graphical pattern input

[3.1] Free-style drawings
[3.2] Flow charts and schematics
[3.3] Mathematical symbols
[3.4] Music scores

[4] Signature verification

aFrom Ref. 112.
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the recognition of handwritten text [item 1.1] is just one of Structural, Rule-Based Classification Methods
the forms of pen-based input, and not the necessarily the es-

Structural rule-based or shape-syntactical approaches are
sence of all pen-based applications.

based on the idea that character shapes can be formally de-
scribed in an abstract fashion, not paying attention to irrele-

Classifiers vant variations in shape. This rule-based approach originates
in the 1960s and has been abandoned to a large extent be-Having noted this, we now identify the most common types of
cause it has appeared to be extremely difficult to formulatehandwriting classifiers:
general rules that can be determined in a reliably way. As an
example consider the statement ‘‘all lowercase ts consist of a1. Isolated-characters recognizers
vertical elongated ink component that is crossed by a hori-2. Word recognizers
zontal but shorter elongated ink component.’’ We need the at-

a. Character-based word recognizers tribute ‘‘shorter’’ to disambiguate between � (plus) and t.
b. Whole-word classifiers There may be writers who violate this rule in a number of

ways. The horizontal bar may be slanted, or it may even be
located above the vertical bar for a group of writers. Addition-
ally, the attributes that are of a symbolic nature must be ac-Isolated Character Classifiers. In the character classifier, it

is assumed that the basic input ink object is a single charac- companied by metric or geometric constraints, usually in the
form of one or more scalars. For example, the symbolic attri-ter or gesture. Note that, for the word category, we have used

the term recognizer instead of classifier, because a word-based bute ‘‘shorter’’ from the preceding example may require an
additional scalar constraint: ‘‘the length of the horizontal barsystem will generally be much more complex than a system

for the classification of isolated characters. A typical word- of a t is no longer than 60% of the length of the vertical bar.’’
Using this approach leads to brittle recognition systems withbased recognizer also has to solve the problem of segmenta-

tion into characters (it will often have more than one embed- a large number of parameters and thresholds that are diffi-
cult to determine by means of automatic methods. More re-ded character classifier), and it will have modules that ad-

dress the incorporation of linguistic, usually lexical top-down cent approaches within this area of handwriting recognition
classification methods therefore incorporates fuzzy rules andinformation. Within the class of word recognizers, we can

make a distinction between systems that try to identify the grammars (113,114) that use statistical information on the
frequency of occurrence of particular features. Although theindividual characters within a word and the holistic word

classifiers, which do not try to find characters but are based rule-based approach often has not produced very impressive
results, when applied in isolation, the fact remains that ifon word-level shape features, such as word contour.
solid rules can be defined and if their conditions can be deter-
mined reliably, then useful decisions can be taken by such aShape Classification. Shape classification is the process by
recognizer. A particular advantage of a rule-based approachwhich given raw samples of a handwritten trajectory are
is that it does not require large amounts of training data.identified as belonging to either a known or a more abstract
However, a more conspicuous advantage of the rule-based ap-class of similar shapes. In this respect, shape can refer to the
proach is that the number of features used to describe a classshape of whole words, of characters, of glyphs (multicharacter
of patterns may be variable for each class, a property lackingshapes, possibly consisting of fused characters), or even of the
in the statistical approaches presented in the next section.shape of individual strokes. Therefore, the design of an online
And, what is more, a single particular feature may be used tohandwriting classifier starts with the object definition: what
disambiguate between two particular classes. As an example,is the target object of the classification process? As described
the feature top-openness [feature r in Fig. 11(a)] is noninfor-earlier, this object is currently either the individual character
mative in most contexts along the handwriting trace, but mayor the whole word in most existing recognizers of online hand-
be useful to disambiguate between the cursive a and cursivewriting. Regardless of the object definition, there are two dis-
u without clouding the classification process in cases wheretinct classification methods in online handwriting recognition,
this feature is irrelevant.which can be characterized as

Statistical Classification Methods1. (I) formal structural and rule-based methods and
2. (II) statistical classification methods. In statistical approaches, the handwriting shapes (stroke,

character, or word, usually) are described by a fixed and a
limited number of features, which are designed to create aThe statistical classification methods can be further divided

into explicit-statistical and implicit-statistical methods. In ex- multidimensional space, in which the different classes are
present in the form of a class vector or centroid, with a multi-plicit-statistical methods, knowledge of the statistical proper-

ties of the data is modeled and used, under a number of as- dimensional probability distribution around it. Observation of
instances of a class must be close to the centroid of that classsumptions such as distribution shapes and independence of

the variables involved. The implicit-statistical classifiers are and as far as possible away from the other classes. Another
way of looking at this problem is to realize that there mustthe artificial neural networks (ANN) for pattern classification.

The performance of these latter classifiers is strongly influ- be a watershed boundary (or separatrix) between two classes
in feature space. In Fig. 11, for example, two features areenced by the statistical properties of the training data, but no

explicit statistical modeling is being used in ANNs. A sepa- calculated for three letters (a, u, and d). Feature 1 reflects the
distance (r) between the first point of the letter and the lastrate and special variant of the statistical classifiers is the

Hidden Markov Modeling method. vertical maximum produced in the pen-tip trajectory. Feature
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Data Analysis and Methods and in theoretical Pattern Recog-
nition. There are many commercial software packages that
allow for the analysis and classification of high-dimensional
stochastic data, such as feature vectors derived from online
handwriting signals. Examples are Linear Discriminant
Analysis, which allows for finding linear separatrices between
two classes (of, e.g., characters); Hierarchical Cluster Analy-
sis, which allows for a tree-oriented representation of the data
structure; and Principal Components Analysis, which allows
for the detection of a number of orthogonal axes in the high-
dimensional feature space which are sufficient to describe the
variance in the data. The problem with the explicit statistical
approaches is that there are often assumptions about the sta-
tistical distribution of the features that cannot be held, either
because the corresponding theoretical distribution is not
known or because it is known but is not allowed in a given
classification approach. Most approaches assume Gaussian
distribution of the features. The relative importance of differ-
ent features is determined by their average values, for which
reason scaling is needed. There are well-founded approaches
that try to transform the features in such a way that the class
distributions are spherical, using the inverse of the covari-
ance matrix (115). A practical problem in online handwriting
may be that the available software cannot handle the high
dimensionality of the feature vectors and the enormous size
of the data sets. The advantage of the explicit statistical ap-
proaches is that they have a theoretical basis. The method
and its results can be explained easily to colleagues in the
field or to the users of the recognition system (for example,
because performance aspects can be reported in the form of
real probabilities). A disadvantage of the explicit statistical
approach is that it is sometimes difficult to translate the
method to real working practical systems, which are often
small hand-held computers with limited computing and mem-
ory resources.
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Implicit Statistical Approaches. The term Artificial Neural
Figure 11. Illustrations of the statistical approach to letter classifi- Networks refers to a class of algorithms for which the design
cation in online handwriting recognition. of the computational architecture and the process involved is

inspired by knowledge of information processing in the physi-
ological brain. Information is processed by a large number of

2 is the sine of the angle (phi) of the same vector [Fig. 11(a)]. simple processing elements that exchange information in the
There were 2000 instances of each letter, taken from the UNI- form of activation levels. An activation level is usually a real-
PEN database. A scatter plot of the two features for the three valued parameter, reflecting the state of a neuron or unit,
letters (a, u, and d) shows that simple boundary functions similar to the physiological firing rate of a biological neuron
may be found in planes, separating the classes. However, at measured at a given time instance. Usually, the artificial neu-
the same time, it is evident that there will be some overlap ral networks are not considered to be statistical classifiers.
such that a perfect classification will not be possible using This is only partly correct. The ANN method is indeed not
these two features alone. A limiting characteristic of this ap- statistical in the sense that it is based on theoretical probabil-
proach is the fact that the dimensionality of the feature vector ity density functions. However, the ANN method is statistical
is fixed, for all classes. This means that a feature that is help- in the sense that the classification behavior of an ANN sys-
ful in discriminating between two classes a and u in Fig. 11(b) tem will be fully determined by the statistical characteristics
may act as noise in the comparison of class d versus u. of the data set that has been used to train the system. The

The following three variants of statistical approaches exist: relationship between ANNs and statistical approaches is de-
scribed in detail by Bishop (116).

1. Explicit statistical approaches, A well-known class of ANN approaches consists of the
2. Implicit statistical approaches (neural networks), Multi-Layer Perceptron (MLP) usually trained by the method

of error Back Propagation (BP) (117). The training of such3. Markov modeling and Hidden Markov Modeling.
networks is supervised, meaning that the classes of shapes
(e.g., all digits 0–9) are well defined. The input features areExplicit Statistical Approaches. Explicit statistical ap-

proaches in online handwriting recognition use the knowledge mapped onto the input units of the MLP, and the output units
of the network are defined to represent a particular class ofand tools which have been developed in the research field of
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characters (e.g., the digit 4). A training set is presented sev-
eral times to the network until a satisfying rms error between
target and obtained output activations has been achieved.
Subsequently, the classification performance of the MLP is
tested against a new and unseen test set. For a limited sym-
bol set as in the case of digits, this approach may be useful,
provided that suitable features are being used in the input
representation. The MLP is able to find a nonlinear separa-
trix between classes, if one or more hidden layers are used. A
straightforward approach, for example, would entail the use
of an N � M � 26 unit architecture with N input units for
the online handwriting features, M hidden units, and 26 out-
put units for the letters of the alphabet. However, there are
a number of problems with this ‘‘naive’’ approach to handwrit-
ing recognition.

1. Symbolic categories such as the letters in the Western
alphabet may encompass a very large range of shape
classes, especially if a large population of writers has
contributed to the training set. What works for digits
does not by necessity deliver good results for other char-
acter classes where the number of shape variants is
large.

2. Problems of geometric invariance are still present. Even (a)
if a geometric normalization stage is present in the pre-
processing of the characters, a substantial amount of
variation will still be present.

3. The generalization from the recognition of isolated
shapes to the recognition of connected-cursive script is
difficult.

A number of solutions has been proposed to solve these prob-
lems. The problem of allographic variation (many shapes refer
to a single letter symbol) can be solved by using techniques
that are based on automatized detection of prototypical
shapes in a large training set of character samples. A common
‘‘neural’’ technique for automatic allograph class identifica-
tion is the Kohonen (118) Self-Organized Feature Map
(SOFM). Similar approaches make use of k-means clustering
or hierarchical clustering. The result of the application of
such techniques is a finite list of allographs (character proto-
types), that can be used in several ways as the basis for a
classification system, such as the MLP. Figure 12 shows an
example of a Kohonen SOFM. In Fig. 12(a), within a predeter-
mined planar map of 20 � 20 cells, the algorithms has found
a place for prototypical character shapes, already at the ini-
tial stages of training, as shown here. More elaborate training
on a larger dataset will ultimately reveal detailed class (b)
shapes for all the characters, provided that their distribution

Figure 12. (a) A Kohonen SOFM with characters after unsupervisedin the training set is equalized. Figure 12(b) depicts a SOFM
training on 4000 characters. Features consisted of 30 (x, y, z) coordi-in which the individual cells represent velocity-based strokes.
nates per character. (b) A SOFM in which the individuals cells (20 �Stroke features mainly consisted of angles along the trace. 20) represent velocity-based strokes and are based on about 40,000

The heavy black dots denote stroke endings. White strokes strokes of 40 writers.
are pen-up movements, which are also recorded and pre-
sented to the Kohonen network. The vector-quantization
properties of the Kohonen SOFM can be used in subsequent ous interpretations are possible for a single stroke out of

context.character recognition stages by mapping the shape codes to
their possible interpretations in the language. For example, Problems of sensitivity to scale and translation dependence

in space and time were solved by a particular type of MLP,in characters, the cursive and looped e shape may be interpre-
ted as representing both the 1 and the e interpretation. In the which exploits the notion of convolution kernels for digital

filtering. This technique (i.e., convolutional Time-Delay Neu-case of strokes, which may occur in different characters, vari-
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based recognizer may have to represent the English word ‘‘a,’’
as well as the word ‘‘dermatomucosomyositides.’’ Such a wide
range of sequence lengths cannot be handled gracefully by a
cTDNN as such, and methods involving some form of state
recursion will provide a solution. In the area of online hand-
writing recognition, Recurrent Neural Networks (RNN) have
been applied occasionally, as well as in speech recognition.
Recurrent Neural Networks are a special form of multilayer
perceptron, in which a portion of the system state at pro-
cessing time step k is reentered into the network at pro-
cessing k � 1. Recursive connections may run from output
units to hidden or input units, and/or individual neurons may
possess self-recurrent connections. The RNN approach re-
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quires a large amount of training and training data. The fol-
Figure 13. An example of a convolutional Time-Delay Neural Net- lowing class of statistical classifiers yields considerable suc-
work (TDNN) architecture, as applied to the recognition of online cess in speech recognition and is currently successfully
handwriting. applied to the recognition of online handwriting: the Hidden

Markov Models (HMM), which appear to be a better solution
to the problem of variable sequence duration.

ral Networks), is not based on fully interconnected layers as Hidden Markov Models. Hidden Markov Models refer to a
is the standard MLP but uses many fewer connections (Wij) particular method of Markov modeling (121–125) where the
by defining a limited-size receptive field for units in hidden idea of transition probabilities between symbols in a language
layers. Figure 13 gives a schematic overview of this architec- is abstracted from the observation of symbols as such. In-
ture. The convolutional TDNN (cTDNN) can be used both in stead, a number of states is defined for the handwriting object
spatial representations for optical character recognition, as in of interest (character, word, sentence), in which either the oc-
space–time representations for the online recorded handwrit- currence of a set of symbols is lumped (discrete HMM), or the
ing signal (119,120). In Fig. 13, the input buffer (I) contains occurrence of particular real-valued feature values is lumped
the time-varying features values fm. Each hidden unit in the together as being characteristic for a particular state. Thus,
hidden layer (J) can be viewed as a convolution kernel, with instead of a Markov model for observable stochastic symbol

strings, HMM assumes several unobservable hidden states.a receptive field that is swept over the complete input layer
The first stage in designing a HMM recognizer of handwritingduring the training of an individual character. The same con-
is the design of the state machine that captures all possiblevolution approach may be used for the following layers. In
and relevant transitions between the assumed hidden states.this example, layer K constitutes the final character classifi-
It has been shown that the HMM is a more general approachcation stage. The convolutional TDNN approach allows for
for an early dynamic programming approach (Dynamic Timethe automatic detection of time- and position-invariant fea-
Warping, DTW). Instead of different templates for a particu-tures, whereas saving a considerable number of parameters
lar class, as in the DTW approach, a HMM aims at represent-(weights W) as compared to a static and fully interconnected
ing all stochastic variations within a class within a singlemultilayer perceptron.
model per class.The strength of the cTDNN approach is mainly due to the

Therefore, the model must represent all possible forms offact that a useful degree of invariance to spatial and temporal
state transition: Simple continuation from state Si to statevariations in input can be obtained. At the end of a training
Si�1, dwelling (from Si to Si itself), and skipping (from statesession, the hidden units often will represent meaningful po-
Si to Si�k). A particular example of an HMM transition modelsition- and time-independent features. If the position of fea-
is given in Fig. 14. The model is designed to capture all sto-tures in spatiotemporal zones reflects information that is use-

ful to the classification, the coverage area of the convolution
kernel of a hidden or output unit may be constrained within
the total input field in order to retain this translation depen-
dency of some features. The use of the cTDNN architecture
entails a substantial reduction in the number of free parame-
ters as compared to a standard MLP. However, the number
of hidden layers in a cTDNN will be usually somewhat larger
than in the case of a standard MLP. At the level of single
characters, the cTDNN is able to compensate for temporal
and spatial variabilities in the pen-tip trajectory. However,
the cTDNN approach does not solve an inherent problem of
all types of TDNNs, which is the fixed time-window. Espe-
cially when making the step from single characters to whole
words, it becomes evident that the problem of varying-dura-
tion patterns has not been solved completely.
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As in the automatic recognition of speech, an automatic
recognizer of online handwriting must be able to deal with Figure 14. An example of a Hidden Markov Model describing the

character e.patterns of broadly varying duration. As an example, a word-
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chastic variation of a particular class of words or characters. where P(Sj, t) will correspond to P(C, O) when t is at the end
A distinction is made between a number of states Si occurring of the sequence P(Si, t � 1) has a similar meaning and corre-
between an initial state Sb and a final absorbing state Se. This sponds to the previous time step, p(i, Ot) is the probability of
particular model example allows for the following transition Ot being produced in state Si, and finally and most impor-
types between states: Type (1) concerns the normal time pro- tantly aij is the probability of transition from state Si to state
gression of states, type (2) is a self-recurrent transition that Sj. The estimation of aij constitutes a central and often diffi-
models durational variability of a particular state, type (3) in cult aspect of the HMM approach. The advantage of the HMM
this example allows for the occasional omission of one single approach is that the number of states can be much smaller
state, during the sequence. This is an example of a discrete than the number of symbols in the observed sequences, as
HMM of the character e. Feature vectors are obtained from a long as sufficient information is retained to identify the model
sliding time window and subsequently quantized and repre- corresponding to the correct class. Instead of calculating the
sented by discrete codes of type LL in this example. These state probabilities for all classes (e.g., words) separately and
codes will have a probability distribution over the whole let- then finding the model with the highest probability, a best-
ter, differing for the different states. first search strategy can be used, saving considerable time. A

Contrary to explicit (surface) Markov models of transition disadvantage of the HMM approach is that it requires a large
probabilities in symbol strings, the states in HMMs are con- amount of training data to ensure reliable estimates of the
tainers for sets of observable symbols or events. For the mod- probabilities involved. Historically, the success of HMM in
eling of online handwriting, usually a sliding time window speech recognition could not be replicated quickly in the area
along the pen-tip trajectory is used as the basis for the input of online handwriting recognition until good models and fea-
to a HMM recognizer. From the XY coordinates of a time win- ture representations were developed.
dow W of duration T occurring at time t, feature values are No single classifier approach will be suitable to all classes
calculated. A successful approach uses a cTDNN for feature of online handwritten input. Therefore, classifier combination
vector calculation (126). schemes are needed in a realistic high-performance system.

The HMM approach can be based on two different event But also within a class of input shapes (digits, words) there
models: discrete symbol observations (and their transition will be subclasses for which a particular recognizer design is
statistics) or continuous models. The application of the dis- more suitable than another. Multiple-expert combination ap-
crete HMM approach requires that the input feature vectors proaches have been developed, using a multitude of informa-
are converted into discrete symbols by using a vector quanti- tion integration algorithms including such techniques as
zation (VQ) algorithm. The occurrence probabilities of these Bayes, Dempster-Shafer, Borda count, and linear combina-
symbols for the stroke shapes in sliding window W are then tion. Some authors conceptualize a system consisting of sev-
used as the basis for the HMM algorithm (Fig. 14). The sec- eral expert classifier algorithms as a new meta classifier
ond approach, continuous HMM modeling, uses the variances (127–129).
and covariances of the features to estimate the probability For any multiple classifier scheme, the performance im-
of occurrence of an observed feature vector (e.g., under the provement will be best if the classifiers are independent (i.e.,
assumption of Gaussian feature distribution). Using Bayes’ based on different signal models, feature schemes, and classi-
theorem, the goal of the HMM algorithm then is to find for fication algorithms). Finally, it should be noted that the recog-
each word C in a lexicon (or for each character in an alphabet,

nition of isolated handwritten words is not perfect in humandepending on the type of classifier), the probability that class
reading (110,111,130).C is the most likely class, given a sequence of observations

In Table 4, results of four small human reading experi-O1, O2, . . ., On: ments are shown. Experiment A required single and isolated
word recognition of neatly written and well-known words. InP(C|O) = P(O|C) · P(C)/P(O) (5)
experiments B–D, three-word sequences were presented, the

where P(C�O) is the probability that C is correct, given se- middle word had to be recognized, and flanking words were
quence of observations O, P(O�C) is the probability that class linguistically related or unrelated (C) or linguistically unre-
C elicits sequence O, P(C) is the probability of occurrence of lated but from the same or a different writer. From these
class C in the real world (e.g., in particular language), and findings, it can be observed that human recognition rate is
P(O) is the probability that any class C elicits sequence O to sensitive to handwriting style and context. This context can
be emitted from a combined system that consists of the writer be linguistic (Table 4, conditions B and C) or based on neigh-
and the feature computation algorithm. This process is called boring shapes (Table 4, condition D). If linguistic context and
the a posteriori probability calculation. The essence of the shape context are absent or noninformative, human recogni-
HMM approach is thus to determine the a posteriori probabil- tion performance can be rather low. In the next section, we
ity for a class, given an observed sequence, by using the prob- will address methods in online handwriting recognition that
ability that the HMM state machine jumps to a particular try to include the use of higher-level information in the recog-
state Sj at a given time t, when Si was the previous state and nition process, in order to improve on the raw, shape-based
observations O1, O2, . . ., Ot have just been made. The transi- classifier performances.
tions from the beginning Sb to S1 and the transition from the
last state SN to the end Se are treated slightly differently, but
the core of the so-called forward algorithm consists of the fol- POSTPROCESSING
lowing recursive equation:

Because of the variability in handwriting styles and distor-
sions caused by the digitizing process, even the best hand-
written word recognizer is unreliable when the number of

P(Sj, t) =
N∑

i=1

P(Si, t − 1) · p(i,Ot ) · aij (6)
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Table 4. Human Recognition Rates of Handwritten Words on Paper

Target Words
Experiment Context Style Writers Words Readers Recognized

A Frequently used words Hand print 1 30 12 N � 360 98%
Frequently used words Neat cursive 1 30 12 N � 360 88%

B Sentence fragments, same writer Cursive 3 15 12 N � 180 85%
C Sentence fragments, same writer Cursive 4 13 20 N � 260 85%

Unrelated words, same writer Cursive 4 13 20 N � 260 77%
D Unrelated words, same writer Fast cursive 12 12 15 N � 180 72%

Unrelated words, different writers Fast cursive 12 12 15 N � 180 54%

word choices is large. Systems that perform word-based recog- confusion between very different syntactic categories (e.g., as,
an). The handwriting recognition problem is further com-nition require a predefined lexicon. Differenti sets of features

may be extracted from the segmented word unit to reduce the pounded by the possible absence of the correct word in the top
n choices.size of this lexicon (to speed the later recognition process).

Word shapes are often used to serve this purpose (131–134). Language modeling for handwriting recognition systems
can consist of several phases. The process of matching charac-Generally speaking, it is clear that the key to improving raw

handwriting recognizer (HR) output is to use contextual ter recognizer output against a lexicon of words, a process
referred to as string matching, could be considered the firstknowledge such as linguistic constraints (which employ

phrase and sentence-level context) to achieve a performance phase. Following this, various linguistic models, ranging from
simple word n-grams to syntax and deeper semantic modelslevel comparable to that of humans (135–137). This process

is referred to as language modeling. may be employed (138,139). Hybrid models that combine both
linguistic knowledge with recognizer confidences have alsoLanguage modeling for handwriting recognizer systems

borrows heavily from the techniques used to postprocess been proposed. Performance metrics show the utility of accu-
rate language models by measuring recognition accuracy as aspeech recognition and optical character recognition (OCR)

systems. However, some adaptation of these models to the function of the amount of processing required. Srihari
(135,140) reports on earlier efforts toward achieving thesehandwriting medium is required. Furthermore, effective de-

sign and use of training corpora and lexicons is necessary be- goals.
cause language employed in handwritten text tends to be in-
formal and ungrammatical. String Matching

As an example, consider Fig. 15, which shows the digitized
Since the candidate words produced by the word recognitionimage of the sentence ‘‘My alarm clock did not wake me up
phase may not be legal words, a string matching procedurethis morning’’ along with the output of the handwriting recog-
between candidate words and the lexicon is required. Kukichnizer. If we restrict the recognizer to return only the top
(141) contains a detailed discussion of isolated-word error cor-choice for each input word, the sentence will be erroneously
rection techniques. String matching algorithms rank the lexi-read as ‘‘my alarm code soil rout wake me up thai moving.’’
con according to a distance metric between a candidate wordAlthough more correct words can be found in the top n
and each word in the lexicon. The ranked lexicon consists ofchoices, it requires the use of contextual constraints in order
sets of words n1, n2, . . ., nt such that all the words in a setto override the (sometimes erroneous) top choice. This exam-
ni have the same value for the distance metric. From theple also illustrates the tendency of word recognizers to mis-
ranked lexicon, word recognition systems typically select aread short (three characters or fewer) words more frequently
neighbourhood N of words that (hopefully) contain the in-than longer words. Furthermore, short words tend to be pro-

nouns, prepositions, and determiners causing frequent word tended word.

Figure 15. Isolated word recognition out-
put. Correct words are shown in bold; ital-
icized lists indicate that correct word is
not among top choices.

my

me up thai
taxis
trie
tier
this

moving
having
morning
running
loving

alarm code
circle
shute
clock

soil
raid
risk
visit
mail

rout
hot
list
riot
most

wake
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Typically, string-matching algorithms use for string edit crucial that the text used in training is representative of what
the model is intended for.distance some variation of the Levenshtein distance metric,

which incorporates edit costs in ranking the lexicon. Tradi- Statistical models are the most common language model
used in postprocessing the output of noisy channels (speech,tionally, edit costs have been associated with the most com-

mon edit errors encountered in typographical systems, OCR, handwriting). Such models reflect both syntactic and
semantic knowledge, albeit, at a very local level (e.g., a neigh-namely, substitution, insertion, and deletion. Wagner and

Fischer (142) discuss a dynamic programming algorithm to borhood of three words). The advantage of such models is
their robustness, as well as the ability to train them on spe-compute string edit distances.

Edit costs in handwriting are based on the probabilities cific corpora. Because these are typically modeled as Hidden
Markov Models, depending on the recognition technique beingof substitutions, merges, and splits occurring. Although it is

possible to model these as combinations of substitution, inser- employed, it is possible to combine postprocessing with recog-
nition; Schenkel et al. (148) describe such work.tion, and deletion operations, some researchers have at-

tempted to increase the accuracy of string matching by explic- Context-free grammars model language by capturing the
syntax of all possible input sentences and reject those sen-itly modeling splitting (e.g., u being recognized as ii) and

merging of characters (e.g., cl being recognized as d) as dis- tence possibilities not accepted by the grammar. The prob-
lems with such a method are (1) the inability of the grammartinct edit operations (143). Furthermore, the errors have been

quantized into one of three categories, and weights have been to cover all possibilities (especially because informal language
is frequently ungrammatical) and (2) the computational ex-determined for each type of error. Errors associated with mis-

interpretation of ascenders or descenders are given the high- pense involved in parsing (increased due to several word
choices). For these reasons, context-free grammars have notest weight (i.e., most costly). The modifications do not ad-

versely affect the complexity of the algorithm. Finally, recent seen any significant use in postprocessing handwriting recog-
nition output. Stochastic context-free grammar’s (149) allevi-work (144) has also focused on learning weights for various

edit costs based on machine learning techniques; given a cor- ate the first problem somewhat because techniques have been
developed for automatically constructing context-free gram-pus of examples reflecting output from a recognizer, such

methods learn the optimal string edit distance function. mar’s from large training corpora.
These methods take into account channel information only.

N-Gram Word Models. The performance of a handwritingString matching can be improved by incorporating dictionary
recognition system can be improved by incorporating statisti-statistics such as the frequency of letter transitions, words, in
cal information at the word sequence level. The performancethe training data. Good (145) as well as Gale and Church
improvement derives from selection of lower-rank words from(146) discuss some techniques (and possible pitfalls) for ac-
the handwriting recognition output when the surroundingcomplishing this task. String matching produces a ranking of
context indicates such selection makes the entire sentencethe lexicon for each word position; thus, an input handwritten
more probable. Given a set of output words X that emanatesentence or phrase results in a lattice of word choices. After
from a noisy channel (such as a handwriting recognition), n-completing the string matching process, language modeling
gram word models (150,151) seek to determine the string ofcan be applied to select the best sentence or phrase among
words W that most probably gave rise to it. This amounts tothe lattice of word choices.
finding the string W for which the a posteriori probability

Language Models and Perplexity

Language models are used in recovering strings of words after P = (W |X ) = P(W )∗P(X |W )

P(X )
(8)

they have been passed through a noisy channel. The ‘‘good-
ness’’ of a language model as applied to a given corpus can be is maximum, where P(X�W) is the probability of observing X
measured in terms of the corresponding perplexity of the text. when W is the true word sequence, P(W) is the a priori proba-
Intuitively, perplexity measures the average number of suc- bility of W, and P(X) is the probability of string X. The values
cessor words that can be predicted for each word in the text for each of the P(Xi�Wi) are known as the channel (or confu-
(based on a language model). As an example, if the language sion) probabilities and can be estimated empirically. If we as-
model utilizes only first-order transitions between successive sume that words are generated by an nth order Markov
words (bigrams), the perplexity P of a corpus with T words is source, then the a priori probability P(W) can be estimated as

P = (W ) = P(Wm+1|Wm+1−n) . . . P(W1|W0)∗P(W0) (9)
P = exp

�
− 1

T

T∑
t=1

ln( p(wt|wt−1))

�
(7)

where P(Wn�Wk�n . . . Wk�1) is called the nth-order transitional
probability. The Viterbi algorithm (152) is a dynamic method

where p(wt�wt�1) is the probability to get the word wt given the of finding optimal solutions to the quantity in Eq. (9).
word wt�1 (based on this corpus). In the worst case, the per- Guyon and Pereira (136) discuss a technique for effectively
plexity is the same as the number of words in the corpus. using character n-grams. It is interesting to note that in the
Using higher values of n will lower the perplexity; however, early days of OCR systems, character n-grams were the only
estimating the conditional probabilities P(wk�wk�1) becomes a viable technique for postprocessing because memory and
problem. Brown et al. (147) describe a language model as a speed restrictions did not permit the use of higher-level word
computational mechanism for obtaining these conditional models. As these restrictions relaxed, word n-grams have
probabilities. In general, the more powerful the language seen widespread use. However, Guyon and Pereira (136) re-

port on techniques for combining several character n-gramsmodel is, the more computationally intensive it will be. It is
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effectively; the resulting model is almost as powerful as a demonstrated to outperform language models using tradi-
tional back-off techniques.word n-gram model. More importantly, the composite model

satisfies various requirements of online handwriting recogni-
tion systems such as (1) ability to predict the next character, N-Gram Class Models. In n-gram class models, words are
thus providing user with immediate feedback; (2) compact- mapped into syntactic (155,156) (or semantic classes, dis-
ness; (3) rapid customization; and (4) ability to generalize to cussed in the next section). In this situation, p(wt�wt�1) be-
words not present in the training data. The composite con- comes
sists of a generic module representing statistics about general
English; this is combined with specialized models for capital- p(wt |wt−1) = p[wt |C(wt )]p[C(wt )|C(wt−1)] (11)
ization, number strings, symbols, and proper nouns.

The problem with word n-gram models is that as the num- where p[C(wt)�C(wt�1)] is the probability to get to the class
ber of words grows in the vocabulary, estimating the parame- C(wt) following the class C(wt�1) and p[wt�C(wt)] is the proba-
ters reliably becomes difficult (151). More specifically, the bility to get the word wt among the words of the class C(wt).
number of low or zero-valued entries in the transition matrix The following example illustrates the use of n-gram class
starts to rise exponentially. models by using part-of-speech (POS) tags as the method of

Rather than using raw frequency data as estimates of classifying words. The notation A : B is used to indicate the
probabilities, several alternatives that improve the approxi- case where word A has been assigned the tag B. For each
mation have been proposed. This includes back-off models as sentence analyzed, a word : tag lattice which represents all
well as maximum entropy techniques. possible sentences for the set of word choices output by string

matching (see Fig. 16) is formed. The problem is to find the
best path(s) through this lattice. Computation of the best pathSmoothing, Back-Off Models. Most standard language mod-
requires the following information: (1) tag transition statisticsels are based on the bigram or trigram model. Even if very
and (2) word probabilities.large corpora are used, it will contain only a fraction of the

possible trigrams; hence, it is necessary to smooth the statisti-
Word Latticecal data in order to provide better estimates of the unseen

events. The maximum likelihood estimate for the probability Transition probabilities describe the likelihood of a tag follow-
of an event E that occurs r times out of a possible R is P(E) ing some preceding (sequence of) tag(s). These statistics are
� r/R. Smoothing techniques involve distributing the proba- calculated during training as
bility mass so that unseen events are also covered. Typically,
this is achieved by various discounting strategies. Instead of
using r, r* is used, where r* � rdr and dr is a chosen dis- P(tagB|tagA) = #(tagA → tagB)

#(tagA)
(12)

counting function. The Good–Turing discounting strategy
(145) is frequently used. Beginning- and end-of-sentence markers are incorporated as

Back-off models refer to the process of using lower-order tags themselves to obtain necessary sentence-level infor-
statistical models to estimate higher-order models. For exam- mation.
ple, if P(w1, w2, . . ., wn) has not been observed, the condi- Word probabilities are defined (and calculated during
tional probability P(wn�w1, w2, . . . wn�1) can be estimated training) as
from P(wn�w2, w3, . . . wn�1). Very often, smoothing and back-
off techniques are combined. Clarkson and Rosenfeld (153)
describe a toolkit for statistical language modeling that im- P(Word|Tag) = #(Word : Tag)

#(AnyWord : Tag)
(13)

plements various smoothing and back-off strategies.

The Viterbi algorithm is used to find the best Word : Tag se-
Maximum Entropy Methods. The Maximum Entropy (ME) quence through the lattice, that is, the maximal value of the

principle has been successfully employed as a powerful tech- following quantity:
nique for combining statistical estimates from various sources
(154). The ME principle calls for the reformulation of the vari-
ous statistical estimates (e.g., bigrams, trigrams, quadgrams)

n∏
i=1

P(Wordi|Tagi )P(Tagi|Tagi−1) (14)

as constraints; among all the probability distributions that
satisfy the constraints, the one with the highest entropy is over all possible tag sequences T � Tag0, Tag1, . . ., Tagn�1
chosen. A unique ME solution is guaranteed to exist and where Tag0 and Tagn�1 are the beginning- and end-of-sentence
takes the form tags, respectively. The Viterbi algorithm allows the best path

to be selected without explicitly enumerating all possible tag
sequences. A modification to this algorithm produces the best
n sequences.

P(x) =
∏

i

u fi (x)

i
(10)

The lattice of Fig. 16 demonstrates this procedure being
used to derive the correct tag sequence even when the correctwhere the uis are some unknown constants (to be found), and

the f is are constraint functions associated with each con- word (‘‘the’’) was not output by the handwriting recognition.
The chosen path is illustrated in boldface. The values on thestraint i. An iterative algorithm for searching the solution

space for Eq. (10), known as Generalized Iterative Scaling, edges represent tag transition probabilities, and the node val-
ues represent word probabilities. Analysis showed that theexists; this is guaranteed to converge to a solution if it exists.

Language models based on Maximum Entropy have been correct tag most frequently missing from the lattice was the
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WORD LATTICE

Actual sentence:
    he/PP

Selected sentence:
    he/PP

HWR word choices:
    ha
    he

Word/Tag lattice:

ha/UH
1.8e-2

he/PP
0.20

    /DT
1.0e-4

0.0

0.0

0.12

1.5e-3

2.0e-3

6.8e-3

6.6e-4

0.79

0.29

0.0

will/MD
0.30

wider/JJR
4.7e-3

sign/NN
3.3e-4

tie/NN
4.6e-5

tie/VB
2.9e-4

    /DT
1.0e-4

sign/VB
1.0e-3

0.12
6.2e-3

0.12

6.0e-3

0.47

6.7e-3

6.0e-2

4.9e-3

0.22

letter/NN
9.9e-4

0.10 ./.
0.98

will/MD

will/MD

will
wider

sign/VB

sign/VB

sign

the/DT

_/DT

tie

letter/NN

letter/NN

letter

Figure 16. Sample word : tag lattice for analysis of HR choices.

determiner (DT) tag. Thus, the DT tag is automatically in- We make the valid assumptions that a score value si depends
only on word wi and not on the other word wj�i and that si iscluded in the lattice in all cases of short words (fewer than
independent of the tag ti. Thus,four characters) where it was not otherwise a candidate.

The percentage of words correctly recognized as the top
choice increased from 51% to 61% using this method; the ceil-
ing is 70% because correct word choice is absent in handwrit-

P(S|W, T ) =
n∏

i=1

P(si|witi ) =
n∏

i=1

P(si|wi) (16)

ing recognition output. Furthermore, by eliminating all word
choices that were not part of the top 20 sequences output by Bouchaffra et al. (157) report on preliminary research toward
the Viterbi, a reduction in the average word neighborhood of calculating probabilities P(si�wi) from a training corpus anno-
56% (from 4.4 to 1.64 choices/word) was obtained with an er- tated with scores.
ror rate of only 3%. The latter is useful if an additional lan-
guage model is to be applied (e.g., semantic analysis) because Semantics
fewer word choices and, therefore, far fewer sentence possibil-

There have been attempts (137) to use semantic knowledgeities remain.
for improving recognition performance. Previously, semantic
information had to be handcrafted for specific applications.
Nowadays, semantic information is available through elec-Incorporating Signal Information
tronic resources such as machine-readable dictionaries and

The Word–Tag model in the previous section is a pure lan- can also be computed from electronic corpora. One such tech-
guage model because it does not deal with the recognizer nique involves the use of dictionary definition overlaps be-
score-vector S � (s1, s2, . . ., sn) associated with W. The score tween competing word candidates in neighboring positions.
si provides signal-level information about the input and is The candidates with the highest overlap in each word position
useful in discriminating among word-tag paths that are are selected as the correct words. For example, if the word
equally likely. Postprocessing models of handwriting recogni- choices for neighboring positions include (savings swings), and
tion systems could incorporate both language models as well (accept account), respectively, then the obvious correct choice
as recognizer confidences. It should be pointed out that confi- would be the words savings account. Another technique in-
dences associated with recognizers are not probabilities and, volves the use of collocations (158). Collocations reflect strong
hence, should be interpreted with caution. co-occurrence relations and account for a large percentage of

Incorporating word score into the word-tag model would English word combinations. Examples include ice cream and
thus involve determining the word-tag path (W, T) which computer science. Word neighborhoods at distances of up to
maximizes the following quantity: four word positions are compared with a list of potential collo-

cates; each candidate is assigned a score according to the
overlap between its neighborhood and its list of likely collo-
cates. Finally, attempts have been made to use semantic codes
that are available in certain dictionaries such as the Long-

n∏
i=1

P(si|witi)P(wi|ti )P(ti|ti−1) (15)
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man’s Dictionary of Contemporary English (LDOCE) (159). A biguation processes. Similarly, linguistic processing is a criti-
cal phase required in most of these systems. Language modelspredefined set of domains has been established by LDOCE;

content words such as nouns, verbs, adjectives, and adverbs for handwriting recognition are still too slow; they are not
robust enough nor adaptable to new domains.are associated with one or more of these domain codes. These

codes are then applied to select word candidates whose senses As long as these issues are not addressed and their solu-
tions are not integrated into the different design phases of aconform to the same domain. Although specific working exam-

ples of these techniques have been illustrated, there are no system, it will be difficult to develop a pen-pad that consis-
tently recognize general handwritten text with a level of per-large-scale test results demonstrating the effectiveness of us-

ing semantic information in postprocessing the results of an formance that is required to make these tools a viable market
product for a horizontal market. Meanwhile, it is expectedhandwriting recognition system. Furthermore, phenomena

such as collocations can be efficiently handled by variations that the development of specific pen-pads for some specific
applications will continue and that several systems will be-of n-gram techniques.
come successful in many vertical markets.

Combining Language Models. Maximum Entropy on its own
is a very general framework and can be used for modeling ACKNOWLEDGMENTS
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