
540 MOTION ANALYSIS BY COMPUTER
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Dynamic vision is an area in computer vision that studies ac-
quisition and processing of time-varying imagery for scene in-
terpretation, and it obtains three-dimensional structure and
motion of the environment in particular. There are a number
of techniques that provide the information necessary to obtain
the three-dimensional structure of the scene from a single
static image, such as shape from shading, shape from texture,
deformation of areas, and vanishing point analysis. However,
these techniques are not always reliable. They may fail when
the underlying assumptions regarding the shape of the world
surface are invalid or under unfavorable illumination condi-
tions. On the other hand, a computer vision system is not
necessarily passive, but can be active. The perceptual activity
of human vision system is exploratory, probing, and search-
ing. Percepts do not simply fall onto sensors as rain falls onto
ground. We do not just see, we look. Our pupils adjust to the
level of illumination, our eyes bring the world into sharp fo-
cus, our eyes converge or diverge, we move our heads or
change our position to get a better view of something, and
sometimes we even put on spectacles. In fact, if there is rela-
tive movement between the camera and the object, the viewer
is automatically provided with several distinctive views of the
object. Therefore they can be combined to produce reliable
three-dimensional information about the object.

In general, use of the dynamic properties of the objects in
the images can provide information useful for the segmenta-
tion of the image into distinct objects, and it can determine
the three-dimensional structure and motion. A variety of real-
world problems have motivated current dynamic vision re-
search. These include applications in industrial automation
and inspection, robot assembly, autonomous vehicle naviga-
tion, biomedical engineering, remote sensing, and general
three-dimensional scene interpretation.

MOTION ANALYSIS

Time-varying motion images can be obtained by either (a) us-
ing a stationary camera to acquire a sequence of images con-
taining one or more moving objects in the scene or (b) moving
the camera in the environment to acquire a sequence of im-
ages. The later method is also known as active perception. In
either case, the sequences of images contain information
about the relative movement between the camera, the objects,
and the environment.

We first describe the fundamental concepts and techniques
of motion analysis with image sequences acquired by a sta-
tionary camera. In this situation, there is no relative move-
ment between the camera and the surrounding background
environment. However, one or more objects in the scene may
move.

Motion Detection

The first step of motion analysis is the motion (or change)
detection. Motion detection is to find where are moving ob-
jects. The simplest approach is to find the difference between
two images from a motion sequence. A straightforward pixel-
wise subtraction of the two images will find regions with non-
zero difference. These dynamic regions correspond to objects
moving in the scene. However, the images acquired from the
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real world could be very noisy. Therefore, the motion (or sures, two simple and commonly used formulas are direct cor-
relation:change) detected by using the simple image subtraction may

not be reliable. Some preprocessings of the images are neces-
sary to reduce the noise in the images before motion detection
is performed. Motion detection may also be performed in fea-
ture spaces derived from the images, such as edge space or
multiresolution decomposed hierarchical space, in order to
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achieve better reliability and improved performance. In addi-
tion, motion detection results obtained from feature spaces

and least-mean-square error (LMSE):can usually facilitate motion analysis in the next step. For
example, edge space is often used for motion detection be-
cause the edge information usually corresponds to boundaries
of objects or textures on object surface. Because the informa-
tion in edge space is at a higher level and in a more compact
form than the original image pixels, the computational cost
can be reduced. Perhaps most importantly, the motion infor-
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mation detected in edge space will readily be available for
interpretation of three-dimensional structures of objects in where f t( ) and f t
1( ) are two images, M is the dimension of

the window, P � (x, y) is a given point in the first image,later stages.
P � (x, y) is a matching point in the second image.

If the direct correlation is used to compute the match mea-
Motion Estimation sure, then the best match is the candidate window that has

the maximum value for the match measure. If the LMSE isOnce we know the dynamic regions in the images, we want to
used, then the best match is the candidate window that mini-find out how the image pixels in the dynamic regions move
mizes the match measure. The point at the center of the best-from one to another in the image sequence. To do this, we
match candidate window in the second image is regarded asmust first find the corresponding points between the two im-
the corresponding point for the point of interest in the firstages. This problem is known as the correspondence problem.
image.The correspondence problem in motion analysis is the same

The above technique solves the local correspondence prob-as that defined in stereo vision. In general, the correspon-
lem, because it provides constraints on the displacement of adence problem is to identify image ‘‘events’’ that correspond
point in the image based on image information in the immedi-to each other in the image sequence. The term ‘‘event’’ should
ate neighborhood of that point, and they are solved indepen-be interpreted in a broad sense, to mean any identifiable
dently at all points of interest in the image.structure in the image—for example, image intensity in a lo-

It is also possible to apply nonlocal constraints to motioncal region, edges, lines, texture marks, and so on.
estimation. For example, we usually make an assumption ofGiven a point P in one image, we want to find the corre-
the spatial smoothness of the motion for all the points on rigidsponding point P in the other image. The most direct ap-
bodies in motion. It is also possible to impose on top of thisproach is to match the light intensity reflected from a point
framework a multifrequency, multiresolution approach. In

in the environment and recorded in two images. Discrete cor-
this approach the images are preprocessed with a set of band-

relation can be used to find the corresponding points. Discrete pass filters that are spatially local and which decompose the
correlation is the process in which an area surrounding a spatial frequency spectrum in the image in a convenient way.
point of interest in one image is ‘‘correlated’’ with areas of The matching can be performed at different frequency chan-
similar shape in a target region in the second image (Fig. 1), nels and different resolution levels. The matching results are
and the ‘‘best-match’’ area in the target region is discovered. then combined using a consistency constraint. Some research-
The center of the best-match area in the second image is then ers use the results obtained at a lower resolution level as the
regarded as the point P. Among many suitable match-mea- initial guess for a higher resolution level. The motion estima-

tion results can be adaptively refined in this manner.

Optical Flow

Given the two corresponding points P and P from two im-
ages, the vector v � P � P gives the direction and the dis-
tance of the point P traveled from one image frame to the
next. If the time interval between the two frames is consid-
ered to be unit time, the vector v characterizes the velocity of
point P in motion. If such a motion vector is computed for
every image point, it is called optical flow fields (see Fig. 2).
We should keep in mind that the primary objective of dy-
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Image 1 Image 2 namic vision is to recover the three-dimensional structure of
objects in the scene and/or the motion of these objects in theFigure 1. Given an image point P in image 1 and an M � M window,
three-dimensional world space. We discuss in the followinga correspondence point P is searched in the neighborhood of P in the

second image. the relationship between the motion of a three-dimensional
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where (u̇, v̇)T denotes the velocity of the point (u, v) on the
image plane and (ẋ, ẏ, ż) denotes the velocity of the point (x,
y, z) on the object.

The above equation is known as the fundamental optic
flow equation.
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Figure 2. An optic flow fields in which each vector represents the
where � is a free variable. The first term of the solution equa-velocity of the corresponding image point.
tion is the back-projected optical flow. It constitutes that par-
ticular solution to the optic flow equation in which all motion
is in a plane parallel to the image plane. The second term is
the general solution to the homogeneous equation. It indi-point and the corresponding motion of that point on the per-
cates that any three-dimensional motion along the ray ofspective projection image.
sight is not captured in the optic flow.The point P � (x, y, z) on the moving rigid body has per-

spective project P � (u, v) on the image plane (Fig. 3), assum-
ing the focal length f (the distance from the center of projec- THREE-DIMENSIONAL MOTION AND STRUCTURE
tion to the image plane):

The primary goal of motion analysis is to determine the three-
dimensional structure of the objects in the environment and
relative movement of the camera and the objects in the scene.
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The motion estimation and optical flow fields characterize the
two-dimensional image displacements or velocities of the im-

The motion of (x, y, z) causes a motion of its projection (u, v) age points. This is only the first step in motion analysis. The
on the image. By taking time derivatives on both sides of the interpretation of the displacement (or velocity) fields to deter-
above equation, we obtain the following relation: mine the three-dimensional structure of the environment and

the relative three-dimensional motion between the camera
and the objects is another important step. In this section, we
discuss the fundamental analysis related to rigid body
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motion.

Rigid Body Motion

The geometrical nature of the optical flow fields can be under-
stood through a serious of equations that relate the coordi-
nates of the image points and the motion parameters to
their velocity.

Let X–Y–Z be a Cartesian coordinate system affixed to the
camera and let (u, v) represent the corresponding coordinate
system on the image plane (Fig. 4). Without loss of generality,
we assume the focal length of the camera to be 1.

Consider a point P in the scene, located at (Xp, Yp, Zp). The
three-dimensional velocity V � (Ẋp, Ẏp, Żp) of the point is
given by

V = � × P + T (7)

where � � (�X, �y, �z) is the rotation vector and T � (TX,
TY, TZ) is the translation vector, whose direction and magni-
tude specify the direction of translation and the speed, respec-

f

P'(u,v)

P (x, y, z )

tively. The task of determining the three-dimensional motion
of an object can be described as the task of recovering theFigure 3. A point P in the scene is perspectively projected onto the

image plane at the point P. parameters � and T. If P � (u, v) is the image position of
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translation. The number of parameters is two, thus greatly
simplified the problem of general motion, which has six pa-
rameters. Additionally, knowing that all the displacements
have to lie along the radial lines from FOE provides a power-
ful constraint that simplifies the correspondence problem.

The displacement �D of the image of the projection of a
point in the three-dimensional environment is directly pro-
portional to the distance D of the projection from the FOE
and inversely proportional to the distance Z of the point from
the camera:

	D
D

= 	Z
Z

(10)
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where �Z is the displacement of the camera toward the envi-

Figure 4. A Cartesian system illustrates the geometry of optical flow ronment along its optical axis. If the FOE is known, then D
fields through rotation and translation.

is known and �D can be measured. Then, the ratio �Z and Z
can be obtained. If we assume that �Z is the unit length, then
the depth Z is recovered. Alternatively, some point in the im-the point P, and U � (u̇, v̇) is the velocity of the image point
age can be chosen as a reference point, and then the relativeP, then using the equations of perspective projection x �
depth of the others can be obtained. Some simple algorithmsX/Z and y � Y/Z, we derive from Eq. (7):
are available for finding the location of FOE.

u̇ = −�X uv + �Y (1 + u2) − �Zv + (TX − TZu)/Z (8)
Pure Rotation. When the motion of the camera is pure rota-

tion about an arbitrary axis, each image point follows a conicv̇ = −�X (1 + u2) + �Y uv + �Zu + (TY − TZv)/Z (9)
path. The exact curve along which the point travels is the

Notice that the above equations are specific forms of the fun- intersection of the image plane with a cone passing through
damental optical flow equation [Eq. (5)] for rigid bodies under the image point (Fig. 5). Given a hypothesized axis of rota-
rotation and translation. Six parameters describe the motion tion, the path of each point can be determined.
of an object and three parameters describe its three-dimen- The second type of technique requires knowing the corre-
sional structure. The three components each of � and T spec- spondences for sufficient number of points in the image to
ify the relative motion of the object and the camera. The X, determine the three-dimensional structure and motion of the
Y, Z coordinates of all the points on the object together specify objects in the scene. The general idea is that displacement of
the structure of the object. The parameters of motion typically each image point is a function of the motion parameters (six
do not vary from point to point in the image. All the points in number) and the depth of the point. Therefore, in order to
on a rigid object undergo the same motion and have the same be able to solve for these unknown parameters and depths,
motion parameters. Hence the number of motion parameters we need only to obtain a sufficient number of points and their
are few, with one set corresponding to each area of the image displacements corresponding to the same rigid object in the
having an independent relative motion with respect to the scene. Several well-known algorithms are available for solv-
camera. When only the camera moves, the whole image forms ing this problem.
one coherently moving area, this situation is discussed in de- The third type of technique requires an optical flow fields.
tail in the section entitled ‘‘Active Perception.’’ There are two ways in which the optical flow fields can be

used in this process. The local derivatives of the flow vectors
Restricted Class of Motions can be used to provide information about the structure and

motion of the object. Alternatively, some global measures ofIt should be noted in Eqs. (8) and (9) that, unless some as-
the flow vectors can be used by taking into account the factsumptions are made regarding the structure of the environ-

ment, there is one unknown Z value for each image point.
There are three approaches for dealing with this problem.

The first type does not require prior computation of optical
flow. Often, these techniques apply only to restricted camera
motion. We illustrate these techniques by two examples: pure
translation and pure rotation.

Pure Translation. When the camera motion is a pure trans-
lation toward the environment, all displacements of the image
points appear to emanate radially from a single point in the
image. This point, often known as the focus of expansion
(FOE), is the point of intersection of the axis of translation
with the image plane. This case is interesting because it is

P

P'

the practical situation for a pilot attempting to land. In this
case, the problem of determining the motion of camera re- Figure 5. The motion of camera is a pure rotation about an arbi-

trary axis.duces to that of locating the FOE or, equivalently, the axis of
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that the motion parameters are the same for an entire rigid
object, and attempt to recover them. Several existing tech-
niques for dealing with this problem are also available.

ACTIVE PERCEPTION

Active perception leads naturally to exploration and mobility.
Perception is a constructive but controlled process, and active
perception can help us fill in missing information. Clearly, the
whole sensing and perceptual process are actively driven by
cognitive process incorporating a priori knowledge. The vision
system receives feedback and actively follows up by seeking
novel information. The exploratory behavior alluded to is one
of the characteristics of dynamic vision. Furthermore, dy-
namic vision is also characterized by flexible perception,

P
Epipolar line 2

Epipolar line 1

Epipolar plane

Projection
center 2

Projection
center 1Image 

plane 1

Image 
plane 2

whereby hierarchical modeling can prime the operation and
Figure 6. A configuration illustrates the definitions of epipolar plane

integration of modular processes toward actual recognition. and epipolar lines.
This later aspect is also referred to as functional perception.

With a single perspective projection image, limited three-
dimensional information may be derived about the objects by
using techniques, such as shape from shading, shape from
texture, and so on. If two cameras are placed apart to take a orthogonal to its direction of motion (Fig. 7). For this type of
pair of perspective projection images, the depth information motion, the epipolar planes for a point P in the scene is the
can be recovered for every image point by using the models same for all pairs of camera positions. Furthermore, the epi-
developed in stereo vision. Furthermore, if we have only one polar lines associated with one epipolar plane are horizontal
camera, but we can move it around an environment, then two scan lines in the images. The projection of P onto these epipo-
or more images can be acquired along the path at different lar lines moves to the right as the camera moves to the left.
positions during the camera movement. Motion analysis tech- The velocity of this movement along the epipolar line is a
niques using pairs of images are designed to process images function of P’s distance from the line joining the projection
that contain significant changes from one to another between centers. The closer the distance is, the faster the projection
views. These large changes force the techniques to tackle the point moves. Therefore, a horizontal slice of the spatiotempo-
difficult problem of stereo correspondence. On the other hand,

ral data formed from this motion contains all the epipolarif we take a sequence of images from positions that are very
lines associated with one epipolar plane (Fig. 7). This type ofclose together, this sampling frequency guarantees a continu-
slice is called epipolar plane image.ity in the temporal domain that is similar to continuity in

There are several things to notice about the epipolar im-spatial domain. Thus, an edge of an object in one image ap-
age. First, it contains only linear structures. Given a point Ppears temporarily adjacent to its occurrence in both preceding
in the scene, let P be the projection point of P on the imageand following images. This temporary continuity makes it
plane. Assume P is not moving. When the camera translatespossible to construct a solid of data in which time is the third
from right to left along a straight line, the projection pointdimension and continuity is maintained over all three dimen-
P shifts from left to right. In the epipolar plane image, thesions. By slicing the spatiotemporal data along a temporal
shift of P as a function of time forms a sloped line. Second,dimension, locating features in these slices, we can compute
the slopes of the lines determine the distances to the corre-three-dimensional positions of the objects.
sponding points in the scene. The greater the slope, the far-We illustrate the above idea by moving a camera along a
ther the point.straight line. First consider two general arbitrary positions of

The (x, y, z) location of a point P in scene can be derivedthe camera (Fig. 6). The camera is modeled by a center of
as the follows. Figure 8 is a diagram of a trajectory in anprojection and a projection plane in front of it. For each point
epipolar plane image derived from the right-to-left motion il-P in the scene, there is a plane, called an epipolar plane,
lustrated in Fig. 7. The scanline at t1 in Fig. 8 corresponds towhich passes through the point P and the line joining the
the epipolar line l1 in Fig. 7. Similarly, the scanline at t2 corre-centers of the two projections. The epipolar plane intersects

with the two image planes along epipolar lines. All the points sponds to the epipolar line l2. The point (u1, t1) in the epipolar
in the scene that are projected onto one epipolar line in the plane image corresponds to the point (u1, v1) in the image
first image are also projected onto the epipolar line in the taken at time t1 at position c1. Thus, as the camera moves
second image. The importance of these epipolar lines is that from c1 to c2 in the time interval t1 to t2, the point P moves
they reduce the search required to find matching points from from (u1, t1) to (u2, t2) in the epipolar plane image.
two dimensions to one dimension. That is, to find a match for Given the speed of the camera, s, which is assumed to be
a given point along one epipolar line in an image, it is only constant, the distance from c1 to c2, �x, can be computed as
necessary to search along the corresponding epipolar line in follows:
the other image. This is termed the epipolar constraint.

Now consider a simple motion in which the camera moves
from right to left along a straight line, with its optical axis 	x = s	t (11)
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Figure 7. When the camera translates from right to left, the image point shifts from left to right.

where �t � (t1 � t2). By similar triangles (see Fig. 7) we obtain

u1

h
= x

D
(12)

u2

h
= 	x + x

D
(13)

From the above two equations, we can derive

	u = (u2 − u1) = h
D

	x (14)

Thus, �u is a linear function of �x. Since �t is also a linear
function of �x, �t is linearly related to �u, which means that
trajectories in an epipolar plane image derived from a lateral
motion are straight lines. The slope of line corresponding to a
point P in the scene is defined by

m = D
h

= 	x
	u

(15)

From similar triangles, the (x, y, z) position of P can be ob-
tained by

(x, y, z) =
�D

h
u1,
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(x, y, z) = (mu1, mv1, mf ) (17)Figure 8. The trajectory an image point on an epipolar plane image.
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Similar analysis can be applied to other types of camera mo- MOTION SENSORS. See TACHOMETERS.
tions to derive the corresponding trajectories in the epipolar MOTOR DISABILITIES. See ASSISTIVE DEVICES FOR MO-
plane images and to find the formula for solving three-dimen- TOR DISABILITIES.
sional positions. However, the formula may be very compli- MOTOR DRIVES. See SWITCHED RELUCTANCE MOTOR
cated depending on the type of motion.

DRIVES.
The epipolar plane analysis method described above has

assumed that the object is not moving. Tracking of moving
objects, though still in the developmental stages, is becoming
increasingly recognized as important capabilities in vision
systems. An active camera tracking system could operate as
an automatic cameraperson. It is hoped that tracking com-
bined with other technologies can produce effective visual
serving for robotics in a changing work cell. Recent research
indicates that tracking facilitates motion estimation.
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