
J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering
Copyright c© 1999 John Wiley & Sons, Inc.

NATURAL LANGUAGE UNDERSTANDING

Introduction

While reading this sentence, remarkably you are shaping an understanding of what I mean it to say, and
you will probably succeed. Your achievement and success in understanding is most impressive. The speaker’s
task is much simpler—to generate an utterance that conveys a presumably preexisting thought. Your task
as listener is to decide what the speaker must have been thinking in order to motivate his utterance in the
particular context in which he uttered it. In general, understanding a natural language is simply miraculous.

In this article, we explain some of the major problems inherent in automating natural language un-
derstanding by computer, from the need to understand the domain of discourse for both understanding and
answering questions to the need to engage in user modeling for correct interpretation and generation of natural
language. We examine several uses to which automated natural language understanding has been put. De-
signing a general question-answering system may be the most difficult. The casual use of language with which
humans engage—filling in missing information, making plausible and other subtle inferences, disambiguating
equivocal language, etc.—is difficult, and a general question answerer must match this feat of human language
interpretation and appropriate language generation.

By contrast, a natural language interface (NLI), say, to a relational database, is simpler to comprehend.
Although one ultimately encounters similar problems to the unconstrained natural language understanding
problem, the domain of discourse, and thereby the context, is highly constrained to the “world” posited by the
database schema. General analysis of language phenomena and much of the ambiguity inherent in natural
language understanding is limited.

One initial motive for understanding language by computer was machine translation, that is, the use of
computers to translate one natural language into another. The long history of machine translation has yielded
no fundamental breakthroughs, but progress has been impressive nonetheless, and use of machine translation
systems is growing.

More recently, and with the growing popularity and use of the Internet, natural language processing
techniques have been used for information retrieval and text categorization. In these approaches, reliance
on knowledge bases and grammars is replaced by large corpora, often Internet-based, from which requisite
knowledge is extracted. We will only categorize them briefly in this article, since current efforts are yielding
results almost daily.

The rest of this article will be organized as follows. In the next section we enunciate a number of concerns
that will have to be taken into account to process and understand natural language by computer. We illustrate
these concerns using numerous examples and show how important it is to incorporate knowledge of the domain,
knowledge of the user, and knowledge of discourse structure into an automated system.

In the section after, we discuss the need for machine translation systems, and what such systems amount
to. We do so by examining past and current machine translation efforts and explaining the major categories of
machine translation systems.

1

2 NATURAL LANGUAGE UNDERSTANDING

We then describe the general approach to constructing sophisticated NLIs to (relational) databases. A
major practical issue of importance is the desirability of making, LIs portable. We address many portability
aspects. There are a number of ways in which a NLI can be made portable, the most important of which is to
promote easy attachment to databases representing different domains, that is, portability between applications.
A closely related aspect is portability within different versions of the same database; the NLI must adapt easily
when the content and structure of the database change. This type of portability has received little attention
to date. Another important portability aspect is the ability to connect the NLI to different types of database
management systems. Equally important is the ability to transport the NLI interface to different types of
computers. Finally, the ease with which a NLI can be ported from one language to another (e.g., from English
to French) can also be considered important. Language portability bears an obvious connection with machine
translation.

A subsequent section reviews some material of more historical interest, describing the early goals of
question-answering systems and their approaches and shortcomings. This review is followed by a exposition of
some current efforts to utilize natural language techniques in less demanding enterprises such as information
retrieval and text summarization. Included in this exposition is a brief introduction of empirical, corpus-based
approaches to natural language processing.

Throughout the exposition of this article we will use numerous examples and provide some detail of one
natural language interface system, SystemX, built in the late 1980s and used by a large Canadian cable com-
pany to provide better customer service. SystemX utilized many ideas from earlier systems but also embodied
several modern theories, one of which is an evolving theory of parsing.

We conclude the article with a summary of ideas from natural language understanding by computer
literature and provide an extensive set of references.

Understanding Natural Language

Contemporary methods for automated natural language processing depend, to a large extent, on the use to
which each application of the processing is to be put. Consider the following excerpt from Erle Stanley Gardner’s
The Case of the Demure Defendant (1):

“Cross-examine,” Hamilton Burger snapped at Perry Mason.
Mason said, “Mr. Dayton, when you described your occupation you gave it as that of a police expert technician.
Is that correct?”
“Yes sir.”
“What is an expert technician?”
“Well, I have studied extensively on certain fields of science that are frequently called upon in the science of

criminology.”
“That is what you meant by an expert technician?”
“Yes sir.”
“Now what is a police expert technician?”
“Well that means that . . . well, it all means the same thing.”
“What means the same thing?”
“An expert technician.”
“An expert technician is the same as a police expert technician?”
“Well I am in the employ of the police department.”

NATURAL LANGUAGE UNDERSTANDING 3

“Oh the police employ you as an expert witness, do they?”
“Yes sir, . . . I mean no, sir. I am an expert investigator, not an expert witness.”
“You are testifying now as an expert witness are you not?”
“Yes sir.”
“Then what did you mean by saying you were an expert technician but not an expert witness?”
“I am employed as a technician but not as a witness.”
“You draw a monthly salary?”
“Yes.”
“And you are being paid for your time while you are on the stand as an expert witness?”
“Well, I’m paid for being a technician.”
“Then you won’t accept any pay for being a witness?”
“I can’t divide my salary.”
“So you are being paid?”
“Of course—as part of my employment.”
“And are you now employed by the police?”
“Yes.”
“And are you an expert witness?”
“Yes.”
“Then you are now being employed as an expert witness.”
“I guess so. Have it your own way.”
“When you described yourself as a police expert technician that means your testimony is always called by

the police. Isn’t that so?”
“No, sir.”
“Who else calls you?”
“Well, I . . . I could be called by either party.”
“How many times have you been on the witness stand?”
“Oh, I don’t know. I couldn’t begin to tell you.”
“Dozens of times?”
“Yes.”
“Hundreds of times?”
“Probably.”
“Have you ever been called by the defense as a defense witness?”
“I have not been directly subpoenaed by the defense. No, sir.”
“So that you have always testified for the police, for the prosecution?”
“Yes, sir. That’s my business.”
“That was what I was trying to bring out,” Mason said

Imagine, if you will, the processing required to emulate the part of Mr. Dayton. Mr. Dayton needs to
understand the subtleties of noun phrases such as “police expert technician,” in order to answer Mr. Ma-
son’s questions. Understanding such phrases is particularly troublesome to automate, since “police,” “expert,”
and “technician” are all normally nouns. Generalizing semantic considerations for such constructions has
proven evasive to date. The compositional approach to natural language understanding favored by the logic

4 NATURAL LANGUAGE UNDERSTANDING

grammarians becomes combinatorially explosive, and many researchers have opted to represent noun–noun
constructions as single lexical entries instead, thus constraining the computation required to disambiguate
such constructions, and circumventing an annoying semantics problem. When the domain of discourse is well
specified and the number of such phrases is small, this approach works adequately. But is this covert procedure
generally practical? Consider the noun–noun phrase “western region outage log” employed by telecommuni-
cations service personnel. Would the designer of a system designed to automatically process language of this
nature resort to separate lexical entries for “eastern region outage log,” “southern region outage log,” “northern
region outage log,” “northeastern region outage log,” . . ., “western district outage log,” . . ., “western prefecture
outage log,” . . ., “western region service log,” . . ., “western region outage record,” . . .?

Imagine further the processing required by our automated language understanding system to emulate
the part of Perry Mason. Not only must the subtleties of language understanding realized by Mr. Dayton be
mastered, but also the reasoning capabilities of Mr. Mason and the extraction of relevant and salient features
of the conversation must be identified in order to generate the appropriate next question. Actually, Mr. Mason’s
task is much simpler than Mr. Dayton’s—to generate an utterance that conveys a presumably preexisting
thought. Mr. Dayton’s task as listener is to decide what Mr. Mason must have been thinking in order to
motivate his utterance in the particular context in which he uttered it.

Speculating only on this abbreviated introduction, it would appear that the automation of ordinary natural
language capabilities using computers is a formidable task indeed. To provide some focus to this discussion, let
us assume that you are trying to obtain academic advice from an automated system. Many existing systems
explore dialog and representation issues that arise in this domain (2,3,4,5). Thus considerable background
exists to draw upon in the academic domain.

Complexities arise in building natural language capabilities, consider the sentence:

The interpretation of this query would seem straightforward. The sentence structure is simple: almost
any parser would easily be able to recognize the subject “I,” the main verb “want,” and the object “marks,”
modified by the prepositional phrase “in CS110.” It would not be difficult to map the word “marks” onto the
corresponding database attribute, and to require that only marks in the course Computing Science 110 be
accessed. A list of these marks could easily be produced and returned to the user. Most natural language front
ends could handle this without undue difficulty.

However, there are many assumptions underlying this interpretation that may, in fact, not correspond to
what the user intended. The first problem which must be resolved is how to even recognize [2-1] as a question.
Its surface form is declarative, not interrogative. Presumably recognizing the underlying request speech act
is not too difficult for current systems, since almost any input of this nature is likely to be a request. We
are interested, however, in the next generation of natural language systems, where it is possible to imagine
the user informing the system of his/her desires (“I want to change all marks of 49% to 50%,” “I want to add
something to what I just told you,” etc.). Moreover, other phraseologies are more problematic (for example, “Can
you give me the marks in CS110?” where a yes–no answer is inappropriate). The development of computational
models that satisfactorily explain how to recognize the underlying user intention despite the surface form of
the natural language has begun (6).

Recognizing the underlying speech act(s) is just one item which must be inferred about the user. The
system has to have some idea of what the user wants to do with the marks in order to figure out what exactly
to present to him/her. For example, it is unlikely that anybody wants just the marks; presumably, names and
student numbers should accompany them. Moreover, if the user is the registrar, who wants to mail the marks
out to the students, it would be a good idea to include addresses with the names. If the user is the university
statistician, it may be sufficient to give the distribution of the marks, rather than the list of students and their

NATURAL LANGUAGE UNDERSTANDING 5

marks. Certain types of users may not be even be allowed access to the marks (for example, another CS 110
student).

There are many other unspecified aspects of [2-1] that must be clarified if an appropriate response is to
be given. Does the user want the marks for all sections of CS 110, or just one section? If just one section, might
it be possible to infer which section without asking the user (for example, Prof. Smith would want the marks of
his own section)? Does the user want the marks for last year’s CS 110 course? Next year’s? The course currently
underway? If s/he wants the marks of the course currently in progress, should the system hold the request in
abeyance and respond at the end of the term when the course is done? How about holding the request if the
marks are for next year’s course? Once the course and the section are determined, the system still has to figure
out whether all marks are required, or just final examination marks, or the final grade for each student. The
system must also decide what to do about the request if it is somehow inappropriate. For example, CS 110 may
not have been offered, or there may not be any course named CS 110, or the marks may not have been assigned
as yet.

One possible route to sorting out ambiguities like these is to force the user to use a formal language where
the ambiguities do not occur, although it is still possible for some types of ambiguity to arise—the multiple
access path problem (7). Learning and remembering the formal language is awkward if the database is to be
accessed by computer-naive users. Another possible route is to engage the user in an (extended) clarification
dialog as suggested early on by Codd et al. (8). The problem with this approach is that the user is forced to
spend inordinate amounts of effort simply to make a simple query understandable to an inflexible computer
system. This type of engagement is unlikely to impress naive computer users, and would militate against the
usefulness of the natural language system. The only alternative left is to make the natural language system
behave much more like a human, who would use knowledge of the user and of the subject to accurately infer
answers to most of the questions raised above (see Ref. 9 for an in depth discussion).

Domain Knowledge Is Reqred to Interpret Queries. There are many places where it is necessary
to use domain knowledge in order to interpret the queries. The place where the need for domain knowledge
is most evident is in resolving references made in the input query. A particular reference problem that arises
in NLIs to databases is the problem of anaphoric references, especially pronoun references. For example, the
following sequence of sentences could easily arise in the academic advice domain:

A natural language system would have to resolve the pronouns it in [2-3] as referring to the concept
represented by the report in [2-2], and them in [2-5] as referring to the students in [2-4]. Note that the reference
is actually to the answer produced by the system to the user’s queries, rather than to the concept in the query
itself. A nonpronominal anaphoric reference which must be resolved is that report in [2-5] refers to the report
produced in response to [2-2]. Many other kinds of anaphoric references are possible, some of them much more
subtle than these, such as the so-called forward references (see Ref. 10 for examples).

Another place where the need for domain knowledge is evident is in discovering and resolving ambiguities
which arise in the interpretation of a query. Ellipsis frequently occurs during database access, especially given
the tediousness of typing questions rather than verbalizing them. Ellipsis can often be handled by syntactic
mechanisms. Tracking the focus of attention of the user as he/she asks a series of questions is sometimes

6 NATURAL LANGUAGE UNDERSTANDING

important in natural language database interfaces, as the following sequence of queries illustrates:

To answer query [2-6], the system must search through the set of all students. In sentence [2-7] the focus
is narrowed to the set of students who had an honors average last year. Query [2-8] also assumes a focus set
of students with an honors average last year. Note how differently [2-8] would be interpreted if it were asked
after [2-6] without the intervention of [2-7] to change the focus set.

Domain Knowledge Is Required to Answer Queries. Domain knowledge is also required to answer
queries. One category of queries that requires domain knowledge beyond data consists of questions asking about
things that reflect general rules that apply in the domain, rather than things that happen to be accidentally
true of the current data. Even with such general rules, sometimes it is not possible to respond definitively “yes”
or “no.” Knowledge of any realistically large domain (the kind that might really benefit by being automated)
will not be complete. Facts will be missing, errors will occur in the data, some rules simply will not be known,
and some topics not covered.

There are several kinds of ignorance a system can have. One kind arises when the system has not got all
of the facts. Consider the following example:

The system may be able to look back and see that no students have failed CS 882 according to its records,
but it might also realize that its records only go back three years. Thus, in accordance with the principle of
giving the user as much information about its limits as possible, the system should respond with something
like “Not according to my records, but they only go back three years” rather than with “No” or “I don’t know.”
It is important that the system be able to encode knowledge about what it knows and does not know.

A related issue is to keep track of exceptions to general rules. For example, to answer the query

the system may find a general rule (∀x)(professor(x) ⇒ has-PhD(x)), which would allow it to respond “Yes.”
Such universal rules are fine in theory, but in knowledge bases representing real world domains, there are
bound to be exceptions. Some of these exceptions will represent special cases; others may represent errors in
the data. In either case, the system must discover these exceptions and produce an extensive response based
on them; for example, “All professors do except Professor Jones.” It may even be useful to try to explain why
the exception exists in order to help the user understand the subtleties of the general rule. Thus, an answer
like “All professors do except Professor Jones. She was hired before the requirement that all professors have
Ph.D. degrees came into effect” might be more appropriate. A system good at producing such explanations may
help the user distinguish special case exceptions from exceptions that are errors in data.

Another place where a knowledge base may be needed rather than simply a database in order to answer
a query successfully is in the area of summary response generation. Instead of a long enumerative response to
the query “Which courses may a computer science student take in addition to the courses in his or her major?”
(for example, “Classics 100, Classics 101, Biology 110, . . .”), a summarized version of the response (for example,
“Other courses in Arts and Science”) would be more appropriate. It is fairly easy to imagine how this might be
done without recourse to anything beyond a relational database. In this case the database could be searched for

NATURAL LANGUAGE UNDERSTANDING 7

all courses taken by computer science students, and then the faculty that offers any noncomputer courses read.
If the entry for the faculty attribute for each such course is “Arts and Science,” then the summary response can
be given.

Other considerations requiring domain knowledge to answer queries include hidden time dependencies
(for example, “Is Professor Jones available for advising?” may require a monitored response such as “No;
shall I tell you when he is?”; answers related to hypothetical queries (for example, “If I gave Mark an 85% what
would the class average be?”); references to system-generated concepts (for example, the concept “members of the
graduate faculty” may be a system-generated concept, subsequently referenced, which answers the query “Who
is capable of supervising graduate students?”) practical considerations regarding updates; requests concerning
the database structure (for example, “Who is teaching which courses this fall?”); and the generation of extended
responses.

Modeling the User Is Important as Well. The need for domain knowledge in order to interpret queries
and generate responses is unquestionable. In fact, many of the queries used as examples thus far demand that
the system be able to infer the intentions of the user in order to interpret what the user is asking for, and
hence to produce an appropriate response. Domain knowledge is not enough; we also need to be able to model
the user.

This point is fairly obvious. For example, the database community has recognized for some time the
need for different user views corresponding to different kinds of users. These user views allow the database
management system to restrict the kinds of access available to a given class of users. Similar use should be
made of user models. Moreover, a user model would be helpful in disambiguating the user’s utterances in
several ways: it would restrict the number of possible interpretations of the user’s query; it would generally
cut down on the combinatorics involved in accessing the knowledge base; and it would make it far easier to
decide how to phrase the response for a class of users (for example, managers may need summary responses,
clerks extensional information, etc.).

Grice 11 elaborates four basic tenets of the cooperative principle which a speaker should obey: (i) the
maxim of quantity: be as informative as required, but no more so; (ii) the maxim of quality: do not make a
contribution that one believes to be false or for which adequate evidence is lacking; (iii) the maxim of relation: be
relevant; and (iv) the maxim of maer: avoid obscurity of expression, avoid ambiguity, be brief. Grice formulated
these principles for human discourse. Much of the recent work investigating natural language dialog and in
particular natural language question answering has elaborated firm computational underpinnings to Grice’s
maxims. Directly or indirectly Grice’s maxims are of central importance to current research in natural language
understanding (5, 6).

One of the most obvious places the need for user modeling arises is in recognizing presuppositions the user
has implied, and correcting any false presuppositions if necessary. Kaplan’s CO-OP system (12) was among
the first to demonstrate that such presupposition correction was a serious necessity even in the supposedly
constrained world of practical natural language understanding. To illustrate, consider the query

There is a presupposition in [2-11] that undergraduates are allowed to take CS 859. Clearly, the user
believes this presupposition, or s/he wouldn’t have asked the question in this fashion. An answer of “None,”
therefore, does nothing to correct this presupposition in the mind of the user in case it is false. The system,
therefore, violates the maxim of quality outlined above. A much better answer would be “Undergraduates are
not allowed to take Cmpt. 859.”

The standard procedure for handling presuppositions divides into two steps: first it is necessary to find
the presuppositions, and then it is necessary to recognize any that are false so that they can be corrected. It is
important in correcting the false presuppositions that other false presuppositions be not set up (for example,
if CS 859 were not offered, the answer above would still contain a false presupposition). Thus, an answer-

8 NATURAL LANGUAGE UNDERSTANDING

generation–presupposition-correction cycle must be carried out before producing the response. Alternative
methods whereby the presuppositions of the answer, rather than those of the question, are computed would
allow the system to behave more reliably when confronted with presuppositions that it cannot prove true or
false in the database.

False-presupposition correction needs domain knowledge in order to determine if a presupposition is
consistent or not with the current data. Developing automatic procedures that generate concept hierarchies
to help respond appropriately to null database responses resulting from false user presuppositions would be
useful (13). For example, depending on which part of the query “What grade did John receive in Math 101?”
resulted in the null response (grade not yet posted, Math 101 not a course or not offered, John not a student,
etc.), an appropriate response is generated (“Grades have not yet been posted. Would you like me to inform you
when they are?” etc.).

Recognizing the implication of multiple user goals, keeping track of user’s knowledge, answering “why”
questions, and making scalar implicatures all demand some degree of user modeling and extended database
knowledge. For example, “Is Smedley a student?” is a question that could straightforwardly be answered “Yes,”
but more informatively “Yes. A graduate student.” This extended response is an example of a scalar implicature,
an inference (not necessarily based on logic) that can be made based on some scale. In this case, “graduate
student” is a subtype of “student” and thus is a higher value on a scale (“higher,” rather than “lower,” because
the truth of the subtype semantically entails the truth of the type)The scalar implicature is to augment the
answer with a reference to the higher value.

Thus the need for knowledge to access information is clear. We need knowledge of the domain to both
interpret queries and to answer queries, and we must allow for user knowledge in this process as well.
Investigations of the problems we mention are taking place and solutions are being incrementally integrated in
successive prototype natural language database systems. For example, a problem that has incorporated results
is the generation of appropriate responses to null database answers resulting from false user presuppositions
(mentioned above) (14, 15).

Without resorting to a sophisticated and wholly integrated knowledge-based system (which will be nec-
essary in the longer term), systems have been constructed to access information in ordinary language that
are better than the limited number of earlier products that were built [for example, Hendrix et al.’s NLI (16);
English Wizard, based on the earlier INTELLECT system (17); SystemX (18), based in part on aspects of TQA
(19)] or under development [for example, NLAISE (20)]. An appendix to this article provides a list of some
commercially available natural language systems, and a critique of English Wizard.

In the next section, we consider the problem of translating from one natural language into another,
surveying the major approaches taken and commenting on each approach. We discuss briefly the emerging
new paradigms for machine translation and provide numerous examples throughout our discussion.

Machine Translation

Why Machine Translation?. Exchanges between countries in trade, technologies, politics, telecommu-
nications, and so on continue to grow very rapidly. Language plays a significant role in communication between
nations, and in order to understand what is communicated, a person needs to understand the language used.
It is at this point that machine translation becomes paramount: to translate the communication from one
language into another language. The need for translation is increasing as exchanges become more globalized.
However, the need for translation from one language into another does not exist only internationally, but
also within a country that uses more than one language, e.g., Canada (English–French), the United States
(English–Spanish).

In countries where multiple official languages are used, translation is particularly necessary to enable
people to express themselves in the way that they wish and obtain the type of information they desire. Being

NATURAL LANGUAGE UNDERSTANDING 9

able to express oneself in one’s own language and to receive information that directly affects an individual
in the same medium is very important, because the loss of a language often involves the disappearance of a
distinctive culture, a way of thinking; that loss should matter to everyone.

It seems that successful machine translation (MT) becomes a social and political necessity for modern
societies that do not wish to impose a common language on their members. With the increasing benefits of MT,
further research on MT will prove to be useful and valuable for any community.

What is Machine Translation?. MT is one of the practical applications of natural language under-
standing research. MT is defined in several ways: (1) systems that perform a syntactic analysis of a source
text and then generate a target language rendering thereof, with the intent of preserving and reconstituting
its semantic and stylistic elements, are described as Machine translation systems (21); (2) MT is the name for
computerized systems responsible for the production of translations from one natural language into another,
with or without human assistance (22); and (3) MT is the transfer of meaning from one natural (human)
language to another with the aid of a computer (23).

However, all definitions lead to the same conclusion, which is that MT attempts to translate from one
language to another (or others in multilingual system) with a computer. The term MT is used to refer to
a fully automatic machine translation system. When a computer collaborates with a human in some fashion
during the translation process, the system is referred to as machine-aided translation (MAT) or computer-aided
translation (CAT). MAT can be classified into two categories: (1) machine-aided human translation (MAHT), in
which the human performs the translation with assistance from a machine, e.g., consulting on-line or automatic
dictionaries or terminological databases, using multilingual word processors; and (2) human-aided machine
translation (HAMT), in which the machine performs the translation and consults a human user at many stages
to complete the process, e.g., asking a user to make a choice in case of lexical ambiguity.

History of Machine Translation. The details of history of MT can be found in many books (22, 24,
25). A brief chronology follows:

Petr Smirnov-Troyanskii (a Russian) envisaged the three stages of mechanical translation: First, analyze
input words in the source language (SL), to get their base forms and syntactic functions. Next, transform
sequences of those base forms and syntactic functions into equivalent sequences in the target language
(TL). Then convert this output into the normal form in the TL.

A word-by-word French-to-Spanish program was implemented by Booth and Ritchens as reported in (26).
Warren Weaver (Rockefeller Foundation) and Andrew D. Booth (a British crystallographer) discussed the

possibility of using computers for translation. This was the first discussion of MT. Weaver brought the
idea of MT to general notice and suggested some techniques for developing MT systems, e.g., wartime
cryptography techniques, statistic analysis, Shannon’s information theory, and exploration of the under-
lying logic and universal features of language. MT research began at a number of research institutions
in the United States.

Yehoshua Bar-Hillel (MIT) convened the first MT conference, outlining the future research in MT.
Georgetown University’s Leon Dostert collaborated with IBM on an MT project, demonstrating an MT

system that translated from Russian into English. It is regarded as the first generation of MT. The
journal Machine Translation was founded.

MT projects were initiated elsewhere in the world. Many approaches were adopted in developing MT sys-
tems, for example: the empirical trial-and-error approach, the statistics-based approach with an imme-
diate working system as the goal, brute-force techniques, the direct approach, and early versions of the
interlingual and the transfer approachs.

MT progress was first reviewed by Bar-Hillel, with his conclusions as follows:

10 NATURAL LANGUAGE UNDERSTANDING

Fig. 1. Direct MT.

• The fully automatic, high quality translation was not really attainable in the near future so that a less
ambitious goal is definitely indicated.

• The empirical approach which stressed statistical and distributional analyses of texts seemed somewhat
wasteful in practice and not sufficiently justified in theory.

Erwin Reifler pointed out some obstacles to MT having to do with the interaction between syntax and
semantic

The government sponsors of MT in the United States formed the Automatic Language Processing Advisory
Committee (ALPAC) to provide directed technical assistance as well as contribute independent observation
in MT (27). MT research was initiated in Japan.

An ALPAC report concluded that MT was slower and less accurate than human translation, and twice as
expensive. The report also stated that “there is no immediate of predictable prospect of useful MT.” This
report brought a virtual end to MT research in the United States for over a decade and damaged the
public perception of MT for many years afterward. MT research was initiated in Canada and Western
Europe.

MT research projects revived in the United States.
The beginnings of AI-oriented research on MT (27).
The Commission of the European Communities (CEC) purchased the Systran system for development of

translating systems for languages of the community (29).
The first multilingual MT, Eurotra Project, was developed. This system aimed at translating back and

forth between nine languages: Danish, Dutch, English, French, German, Greek, Italian, Portuguese, and
Spanish. The first public MT system Météo, developed by university of Montreal, for translating weather
reports from English to French was used. It was one of the most successful MT systems.

The first commercial system, Automated Language Processing System (ALPS), was developed.
A number of MT research projects took place in Asia. Speech translation began in Great Britain and Japan.

A number of commercial MT systems began.

Machine Translation Methodologies. The MT methodologies used for developing MT systems can be
classified into three different categories: the three classic strategies, the nonlinguistic information strategies,
and the hybrid strategies.

Three Classic Strategies. The first of the three classic strategies (Fig. 1), Direct MT, is a word-to-word
replacement approach, replacing a SL word with a TL word. The accuracy of the translation is based entirely
thbilingual dictionary. The following examples, the translations of Russian (SL) into English (TL) and the
correct translation (CT), show the poor translation accuracy of this approach. (These examples were taken
from Ref. 22.)

NATURAL LANGUAGE UNDERSTANDING 11

Fig. 2. Interlingual MT.

Example:

My trebuem mira.
We require world.
We want peace.

Example:

On dopisal stranitsu i otlozˇil rucˇku v storonu.
It wrote a page and put off a knob to the side.
He finished writing the page and laid his pen aside.

This approach was adopted by most MT systems in the first generation of MT, for example, the Georgetown
system of Garvin in 1967 (23). The translation accuracy of this approach is limited because the linguistic
analysis of the SL is inadequate. However, it is still convincing in certain circumstances. In addition, traces of
the direct approach are found in indirect approaches such as those of Météo (22), Systran (22), and GRMT (31).

To generate more accurate translations, the second approach, interlingual MT (Fig. 2) was proposed. The
treatment of linguistic information became more sophisticated in this approach. The interlingual approach
uses an interlingua (IL) as an intermediate representation between SL and TL, analyzing SL and mapping
it to a language-independent representation form, then generating the TL from this IL without looking back
at SL. Evidently, the accuracy of this approach is based on the IL. A number of interlingual systems were
developed for example, ATLAS of Fujitsu (32), PIVOT of NEC (33), Rosetta of Phillips (34), KANT (35), and
CICC (36).

Since the analysis and generation modules are totally independent of each other, the interlingual approach
is attractive for multilingual lingual MT systems. The all-ways translation between n languages requires n
analysis and n generation modules, whereas the direct approach requires n (n−1) translation modules. The
other advantage of interlingual approach is its extendibility.

The interlingua must capture all necessary information of the analyzed SL so that the generator can
produce an accurate translation result. However, defining neutral concepts for different languages is rather a
chimera. Some of difficulties in defining neutral concepts are as follows:

12 NATURAL LANGUAGE UNDERSTANDING

Fig. 3. Transfer MT.

• The scopes and concept classification of each language are different for example, the concept of culture, the
concept of the supernatural world, and the concept of unit.

• A single concept is one language can be mapped into many concepts in another language.
• More than one concept can be mapped into one concept in another language.
• Some concepts do not exist in some languages.

Because of these difficulties, a compromise between the direct approach and the interlingual approach
led to the third approach, transfer MT (Fig. 3). The transfer approach involves transferring the linguistic
information of the SL to the TL; analyzing the SL, representing it with a machine-readable form, and mapping
this form to a machine-readable form of TL; and then generating the TL. The accuracy of this approach depends
mostly on the transfer module.

Unlike the intermediate representation in the interlingual system, the intermediate representation in the
transfer approach strongly depends on the language pair. Therefore, the all-ways translation of n languages
requires n analysis, n generation, and n(n − 1) transfer modules. It is clear that the transfer approach is not
attractive for a multilingual MT system. However, it is still preferred to the interlingual approach among MT
researchers because of the difficulties in defining the neutral concepts as mentioned earlier and because the
intermediate representation of the transfer approach depends on language pairs, so the analysis and generation
processes are less complicated than in the interlingual approach. The complexity of the analysis and generation
modules in a transfer system is much reduced because the intermediate representations involved are still
language-dependent. Some examples of MT systems that are based on transfer approach are Eurotra (22),
Susy (22), and METAL (22).

In more general terms we can say that in the direct approach information is in dictionaries, phrases, and
words, in the transfer approach it is in grammars, lexicons, and transfer rules, and in the interlingual approach
it is in interlingual representations and lexicons.

Nonlinguistic Information Strategies. Different languages require different amounts of information to
be expressed. The spanish word “Ilegó” means either “he arrived” or “she arrived,” but in order to translate
it into English, we have to choose “he” or “she” on the basis of context and background knowledge. Japanese
and Thai have “polite” markers. To translate from English to these languages, the “polite” marker need to be
added, based on the knowledge of culture. This observation has led to the nonlinguistic information strategies.
Such strategies have recently become popular, in example-based MT (37), statistical strategies (38), and so on.

In example-based MT (EBMT, Fig. 4), there are three main steps: establish the bilingual corpus, retrieve
the best match, and produce the translation. The first step is to collect a number of translation pairs (for
example, English–French) in parallel, to produce what is called the bilingual corpus. Next, one maps the input

NATURAL LANGUAGE UNDERSTANDING 13

Fig. 4. Example-based MT.

sentence to an example in the collected corpus. If the entire input sentence can be matched, then it will be
translated to the translation pair of that matched example. If not, then it takes two steps to translate such a
sentence: finding the closest mapping and recombining the matched segments.

The first step is to look for the closest example. If it is found, the system will use the translation pair as a
template and replace the SL word with the TL word. All matched segments will be translated and recombined
to constitute the translation of the input sentence. The measure of similarity between a sentence segment and
a set of examples can be based on both appearance and content. However, the system will have to determine
the best match for each segment if there are more than one match. This selection can be done by using the
clustering method (39). EBMT requires a large collection of translation (pair) examples to produce an accurate
output. One advantage of EBMT is that the translations come with scores, which are measures of similarity to
known examples. These scores could be useful to a posteditor.

Statistics-based MT tries to do away with formulating linguistic knowledge, but applies statistical tech-
niques instead. This method requires a corpus that consists of aligned translated text. Alignment is established
by a technique widely used in speech recognition. The translation technique is to calculate the probabilities
that any one word in thSL corresponds to various words in the TL. In other words, the translation technique
is to regard the occurrence of the TL as conditioned by the occurrence of the SL.

One sample system of this approach has been designed by an IBM research group. The researcher had
access the three million sentence pairs from the Canadian (English–French) Hansard. Two sets of probabilities
are calculated. First, for each individual English word, the probabilities of its correspondences to a set of French
words; for example (22), the word “the” corresponds to

“le” with probability 0.610
“la” with probability 0.178
“l”’ with probability 0.083
“les” with probability 0.023
“ce” with probability 0.013
“il” with probability 0.012

Second, the probabilities that two, one, or zero French words correspond to a single English word; for
example, the word “the” corresponds to

two French words with probability 0.004
one French word with probability 0.871
no French word with probability 0.124

14 NATURAL LANGUAGE UNDERSTANDING

Therefore, the translation of “the” is most likely to be “le.”
This approach, while interesting, requires for producing an accurate translation a very large corpus,

which is difficult to compute and use, In addition, there is no linguistic information. Further details of the
statistics approach can be found in Refs. 24, 38).

Many other approaches to MT have been (or are being) sought. In the neural-net-based (connectionist-
based) approach the network is trained to identify the sense of words or to learn from past mistakes and from
correction by humans (post-editors). Still other work has taken constraint-based (CB), lexicalist-based (LB),
rule-based (etc.) considerations into account. Many attempts at MT today employ the intralingual or transfer
approaches or some combination of the nonlinguistic approaches mentioned above.

Each MT approach needs a dictionary, either bilingual or monolingual. The dictionary has an effect
on translation accuracy. An MT system with a perfect dictionary has a better chance of producing a better
translation. A perfect dictionary means one containing a large number of words with complete information for
each. One way to develop such a dictionary is by manual coding, but that is difficult, tedious, and error-prone.
At this point, machine learning (ML) research can be used to facilitate this task. For example, the system can
learn to guess the meaning and other information for an unknown word and add that learned word to the
dictionary.

Fthermore, the translation task is not simple. To translate the SL sentence, the input sentence is analyzed
in terms of morphology, syntax, semantics, and pragmatics, and then the target language is generated from
the analyzed sentence. Again, in the generation process, the pragmatics, semantics, syntax, and morphology
of the TL will be considered. If the system receives the same input sentence that was translated before, it will
repeat the same process, which wastes time and other resources. However, if there is a collection of translated
sentences (so-called translation memory), once the system receives new input, it will check with the collection
first to see if the same sentence occurs there. That way, the translated sentence can be obtained easily without
performing any analysis. If there is no exact same sentence, it can still be translated based on an example that
has the same structure, by using example-based machine translation.

Hybrid Strategies. Knowledge-based machine translation (KBMT) (40) is based on the interlingual ap-
proach and an attempt to use Al techniques (reasoning—induction and abduction) in interpreting the SL text
by reference to world knowledge, not only a knowledge of language. The meaning representation should be
(merely) sufficient for translation to a number of languages, rather than sufficient for total understanding.

One advantage of this approach is in solving some ambiguity problems. However, there are some disad-
vantages: abductive or inductive reasoning is expensive, even on small domains, and building the knowledge
representation is time-consuming.

Generate-and-repair machine translation (GRMT) (31) begins by generating the translation candidate
(TC) for the SL by quick and dirty MT (QDMT). Next, GRMT evaluates the accuracy of that TC during the
second phase, translation candidate evaluation. If necessary, GRMT repairs the inaccurate TC in the repair-
and-literate phase.

GRMT integrates the best features of each previous approach. The process is simple, as in the direct
approach. However, GRMT utilizes linguistic information to produce an accurate translation, like the transfer
approach. GRMT also treats the SL and TL separately for easy management in multilingual MT systems, like
the interlingual approach.

Knowledge Required, and Problems Inherent, in Machine Translation. Two types of primary
knowledge are required for machine translation systems: language knowledge and world knowledge.

Language knowledge is required to produce a sensible translation output and is embodied in the dictionary
and the grammar. The lexicon is needed for relating the words in the SL to the words in the TL language with
the same meaning. However, word information alone is inadequate for translation because languages differ in
structure—grammars are required.

World knowledge is required to solve ambiguity problems on various levels. For example, in the sentences

NATURAL LANGUAGE UNDERSTANDING 15

The two teams were trained by the same coach.
The coach was heading for the station.
The boy followed the man with the camcorder.

“coach” can denote either a vehicle or a person. For the first sentence, the coach denotes a person, as
indicated by world knowledge (34). For the second sentence, it requires the context to solve the ambiguity
problem. Both show the lexical ambiguity problem, while the third shows the structural ambiguity problem:
it is not clear whether the camcorder was handled by the boy or the man. This ambiguity also can be solved
using context. World knowledge is normally formalized by means of semantic features, logic, and so on.

Major problems face the designer of a MT system. Perhaps the most crucial one is how to represent a large
amount of world knowledge. Another problem could be referred to as the linguistic problem: how to interpret
the SL statement. Other major problem areas in the design of a multilingual MT system include:

• Portability (discussed in the next section):
• Linguistic knowledge must be encoded in a special-purpose formalism and be clearly independent of any

programs that actually use such knowledge.
• A single grammar must be usable by both analysis and generation algorithms, for bidirectionality.
• Linguistic purity must be preserved: the content of a monolingual grammar of any language in an MT

system must not be influenced by the other languages in the system.
• Acquisition of linguistic knowledge can be helped by machine learning and statistical techniques.
• Ambiguity is always a problem.
• Robustness refers to how the MT system responds to unexpected phenomena.

Some Contemporary Machine Translation Research Projects. MT research is a recognized field
with a worldwide community of researchers, primarily in Europe, North America, and Asia. Some contemporary
MT research projects around the world include:

GAZELLE. GAZELLE has been developed by the research group at the Information Sciences Institute,
University of Southern California, to translate Japanese, Arabic, and Spanish texts into English. These pro-
grams operate over unrestricted newspaper text. The group is investigating the use of large-scale semantic rep-
resentations and methods for automatically gathering linguistic knowledge inductively (statistically) from large
on line text collections. GAZELLE is also deployed in a prototype translating copy machine that converts paper
documents from one language to another. See http://www.isi.edu/natural-language/projects/GAZELLE.html.

KANT. The KANT project, part of the Center for Machine Translation (CMT) at Carnegie-Mellon Univer-
sity (CMU), was founded in 1989 for the research and development of large-scale, practical translation systems
for technical documentation. KANT uses a controlled vocabulary and grammar for each source language, and
explicit yet focused semantic models for each technical domain, to achieve very high accuracy in translation.
Designed for multilingual document production, KANT has been applied to the domains of electric power utility
management and heavy-equipment techni- cal documentation. See http://www.lti.cs.cmu.edu/Research/Kant.

SPANAM and ENGSPAN. SPANAM and ENGSPAN are fully automatic MT systems, developed and
maintained by computational linguists, translators, and systems programmers at Pan American Health Orga-
nization (PAHO) in Washington. The translation unit has used SPANAM (Spanish to English) and ENGSPAN
(English to Spanish) to process over 25 million words since 1980. Staff and free-lance translators postedit
the raw output to produce high-quality translations with a 30% to 50% gain in productivity. The system is
installed on a local area network at PAHO Headquarters and is used regularly by staff in the technical and
administrative units. The software is also installed in a number of PAHO field offices and has been licensed to
public and nonprofit institutions in the United States, Latin America, and Spain. See http://www.paho.org/.

16 NATURAL LANGUAGE UNDERSTANDING

Verbmobil. Vermobil, the speech MT system, has been developed under the sponsorship of the Federal
Ministry for Education, Science, Research and Technology (BMBF), Germany, since 1993. The Verbmobil
system recognizes spoken language and translates it into spoken English. The first fully integrated system,
called the Verbmobil Demonstrator, was unveiled to the public in 1995 by Dr. Juergen Ruettgers, the German
Federal Minister for Research. The Verbmobil Demonstrator recognizes spoken German input within the
context of appointment negotiation (vocabulary 1292 words), analyzes and translates it, and finally utters
the English translion. The Verbmobil research prototype (vocabulary 2500 words), to be introduced in 1996
towards the end of the first phase, additionally recognizes Japanese input and translates it into English. See
http://www.dfki.uni-sb.de/verbmobil/VM.English.Mail.30.10.96.html.

Some Contemporary Commercial Machine Translation Projects. A number of translation soft-
ware packages are available in the marketplace. Some of them are available for free translation online. Most
packages are able to translate documents, Web pages, electronic mail, newsgroups, and even chat. Some of
them are configured to be compatible with most Windows applications, including the leading office suites,
email packages, Web browsers, and groupware packages. A sample of such programs is given below:

We consider SYSTRAN in some greater detail. As a system with over 30 years, experience in building
translation software products, it cannot be overlooked. SYSTRAN, founded in 1968, develops and markets
the leading MT technology, and provides a full range of automatic translation software products and services.
SYSTRAN MT systems run on many different platforms, including Windows 95 and 98, NT, Linux, HP UX,
Sun Solaris, Sun OS, and DEC Unix. To date, 16 language pairs are commercially available. In late 1997,
SYSTRAN cooperated with AltaVista’s Translation Service and pushed MT awareness to the forefront of the
Internet community by offering any Internet user free real-time translations of Web content (BABELFISH).

The methodology used in SYSTRAN is generally characterized as based on the transfer approach. SYS-
TRAN translates sentence by sentence, concentrates on individual words and their dictionary data, then on
parsing of the sentence unit, followed by the translation of the parsed sentence.

SYSTRAN architecture comprises dictionaries, systems software, and linguistic software. Details can be
found at http://www.systransoft.com. A short summary is given below:

• Dictionaries The system traditionally employs three distinct, but interconnected types of dictionaries of all
languages. The stem dictionary contains words in a root form with codes to indicate inflectional patterns,
part of speech, syntactic behavior, semantic properties, and TL meanings together with codes needed for
the target word generation. The expression dictionary is the dictionary of multiple-word expressions. The
customer specific dictionary allows a user to add terms that were not found in the main dictionaries. This
dictionary is available in PC Windows format.

• System Software The system software includes the general programs for handling input, the user interface,
and dictionary look up procedures. It also controls the flow of linguistic modules and creates final formatted
output.

• Linguistic Software The linguistic software includes a parser, TL translation modules, and a synthesis
module. SYSTRAN’s parser is composed of procedural modules that analyze the sentences in terms of
both syntactic and semantic relationships. TL translation modules contain algorithms for constructing a
translation. Translation information is derived for transfer and synthesis modules. The transfer component
performs situation-specific restructuring, depending on the degree of difference between source and target
languages. The synthesis module is to generate the TL strings that correspond to the information provided
by all previous modules. The synthesis modules contain algorithms for creating specialized TL constructs,
such as negation, questions, verbs with complete morphology, and articles.

It is clear that MT systems have been developing throughout the world and the expansion of MT actity
has occurred around the world. For example, in Japan, “A rough guess would indicate that 800 to 900 people
are presently engaged in research and development of MT systems (quoted from Ref. 29). MT works best if the

NATURAL LANGUAGE UNDERSTANDING 17

subject matter is specific or restricted. The results are even better when the original text is straightforward
and devoid of ambiguities.

Evaluation. As an MT user, the first thing that you should be concerned with is your translation
requirements; this concern includes the size of the translation task, the text type of the material, and its form.
The time needed in updating the dictionary and preparing the input is a second concern. System performance
(speed) is also a concern, as are the translation quality and the time required for postediting of the translation.
The final concern is cost. The MT developer must take into account suitability to the user’s needs. This includes
the best and the most economical way to comply with the user’s translation requirements, the facilities that
must be provided, and the extendibility desired. MT researchers are normally concerned with particular types
of errors connected with the specific linguistic matter. These concerns lead to strategies for evaluating the
translation process to meet translation requirements.

To evaluate the translation quality, the most common aspects that must be addressed are:

• Intelligibility. The ease with which a reader can understand the translation
• Accuracy. The extent to which the translation conveys the same meaning as the original
• Style. The extent to which the translation uses language appropriate to its content and intention (22)

We now turn our attention to another major venue for natural language processing research—that of
natural language access to databases.

Natural Language Interfaces to Databases

Many natural language problems arise when constructing NLIs to a database. For a more elegant system that
would access knowledge in a knowledge base, rather than simply data in a database, additional problems arise.
Such an elegant system would be truly sophisticated and useful to decision makers. For example, if a system
responded to the question “Is model R2D2 for sale?” with “Yes, in limited quantities and by special order,”
more appropriate information would be available to the interrogator (assuming some user modeling) upon
which to base decisions. Automatic methods for including knowledge of the domain, knowledge of the user, and
knowledge of discourse structure in the NLI must be considered, as mentioned earlier.

The widespread use of databases by nonexpert users has made the development of sophisticated NLIs
increasingly important and desirable, if not essential. In this section we describe some of issues surrounding
the construction of NLIs to databases in greater detail by discussing SystemX, a NLI that translates English
into the de facto standard relational database language SQL (41). We provide a thumbnail sketch of SystemX’s
evolution, including a discussion of its advantages, which include its portability and the ability to handle
arbitrarily quantified queries and to learn the meanings of new words.

For many years the Natural Language Group at Simon Fraser University has been engaged in a long-term
project entitled “Assessing Information with Ordinary Language,” which has found its realization in several
versions of SystemX. The initial SystemX NLI prototypes (English-to-SQL translation systems) were designed
modularly utilizing proven technology (42), for-example, extended augmented transition network grammars
(ATNs). The design of the interface thus served as an umbrella project for new ideas and technologies to be
incorporated (41) as a testbed for various techniques espoused by our graduate students and visitors (3, 4,
15, 20, 43), and for experimenting with nonstandard or not yet completely specified theories (44, 45). We now
present a thumbnail sketch of how this initial version of SystemX was constructed.

A Thumbnail Sketch of the Early SystemX. SystemX consists of a set of modules that creates a
canonical query representation and a set of modules that translates this query representation into a (logical)
form and then into SQL. The canonical query representation reflects the join path implicit in the query, any

18 NATURAL LANGUAGE UNDERSTANDING

Fig. 5. A highly simplified graphical representation of SystemX.

predicates (such as greaterthan) that are to be applied against database values, and any operations (such as
average) that are to generate values from the database, as well as quantifiers and their scope.

The lexicon, parser, and semantic interpreter construct the canonical query representation. Figure 5
portrays a simplified SystemX. Each module is independent and replaceable, provided that replacements
accept input and provide output of the appropriate sort.

The lexicon consists of syntactic and semantic dictionaries. The analyzer contains a set of morphological
rules that define the set of inflectional endings and permit inferences about the grammatical category of strings,
and a set of respelling rules that describe how strings are to be transformed after inflectional endings have been
removed. The morphological analyzer substantially reduces the amount of storage required for the syntactic
dictionary, since only the root form of a word need be stored. Moreover, since the rules do not require a root
dictionary to check against, the analyzer is used to generate new lexical entries, querying the user when an
inflectional ending is used by more than one grammatical category and automatically updating the lexicon
when a new word is unambiguously analyzed.

The semantic dictionary is divided into two parts: a domain-independent lexicon of predicates, operations,
quantifiers, and so on, which are portable from application to application, and an application-dependent lexicon.
The latter is largely generated automatically from the database schema. Customization is limited to a synonym
dictionary. Further reducing storage requirements is a preprocessor, which examines queries for strings whose
lexical representation, both syntactic and semantic, is defined by their form. These include proper names,
standard code names and numbers, and so on. These strings are not represented in the lexicon, but are defined
automatically when encountered.

NATURAL LANGUAGE UNDERSTANDING 19

SystemX’s parser is a top-down breadth-first parser. Grammar rules are complied into Lisp code, which
is compiled and applied to the input query by an interpreter. The set of grammar rules to be applied against
any input string is determined by the intersection of the set of possible rules that will parse a candidate node
and the set of rules triggered by the grammatical category of the first word in the input stream as well as
the rules triggered by that word itself. Thus, unlike many top-down parsers, our parser will parse sentence
fragments. With many parsers, particularly top-down parsers, the same input string will be parsed many times
as the parser seeks the correct path to the end of the sentence. In our parser, when selected nodes are parsed,
the resulting parse tree is placed in memory. Before an input string is parsed, this memory is first checked.
If the input string has been previously parsed by the same rule, the parse tree is retrieved from the memory,
resulting in significantly reduced parse times.

It is possible for a grammar rule to invoke the semantic interpreter to choose among competing parses.
This flexibility enables the parser to reject syntactically possible but semantically anomalous trees at the
source of the anomaly, instead of maintaining competing parses and rejecting anomalous trees after parsing
is completed. Grammar rules may be assigned a rank relative to other that parse the same node, so that
the order in which they are applied to a string is controlled. This ordering ensures that rules most likely to
succeed are attempted first. A set of semantic interpretation rules is associated with each grammar rule; these
rules are complied into compiled Lisp code. When the semantic interpreter is presented with a parse tree, it
retrieves from the tree the name of the grammar rule that produced the tree. This name provides access to the
appropriate set of translation rules.

Translation rules consist of three constituents. A set of transformation rules create an underlying form
from the parse tree. Different underlying forms may have the same parse trees; parse trees of the same
structure may have different underlying forms depending on their semantic content. The second set of rules
are peculiar to the application. The final set of rules take the underlying form, perhaps augmented by the
domain-specific rules, and pass them in the appropriate order to the appropriate functions, which create the
canonical query representations. These functions are assisted by a set of hand-coded selectional restrictions,
which block possible joins, and a small set of frames that describe the encoded database world, for example,
“students take courses from professors.”

Underlying the semantic interpreter is Pathfinder, which generates join paths given a set of two or more
column names. Since terms are treated as values in the database, the semantic representation of an expression
of two or more terms or expressions is the join path between them. The task of the semantic interpreter is to
pass the column names represented by the terms in an expression to this system and build up a representation
using the join path, which it returns. Since there may be more than one possible join path involving a given
set of attributes, Pathfinder must solve a much-studied problem, the multiple-access-path problem (MAPP) (7,
46). Hall (42, 47) addressed this part of our prototype system. Treating semantic interpretation in this way
results in a very flexible system, which requires little customization. An improved approach can be found in
Refs. 48 and 49, in which a heuristic is developed that gives the same outcome in schemas designed by different
database administrators.

Prior to semantic interpretation, information from the semantic dictionary is attached to terms that form
the leaves of the parse tree. This information specifies the names of the database relations and attributes
to which the terms correspond. The interpretation of the tree then proceeds in a bottom-up fashion from the
leaves. The interpretation of a nonterminal node often requires establishing the relationship between attributes
corresponding to the heads of the branches of the subtree rooted at that node. In other words, the access path
to the database relation corresponding to the subtree must be found. Consider the NA node in the left main
branch of Fig. 6, which shows a parse tree in which the triangles indicate that information not relevant to our
discussion has been deleted from the tree. Interpretation of this node requires derivation of the relationship
between math and students.

Since a given set of attributes may belong to different database relations derived by different access paths,
interpreting this nonterminal node requires a MAPP solution. The semantic translation rules responsible for

20 NATURAL LANGUAGE UNDERSTANDING

Fig. 6. A parse tree for “Which math students are taking CMPT205?”

interpreting this type of node employ Pathfinder to generate a best guess of the correct relation, which is
assumed to be the relation containing the most cohesive relationship between the given set of attributes and
is derived using a semantic model derived from the database scheme.

The modules that translate the canonical form to logical form and thence to SQL successively convert
canonical forms containing any combination of unirsal quantifiers, existential quantifiers, and negation opera-
tors into complex SQL expressions that experienced SQL programmers would have great difficulty in compos-
ing. Routines in the translator perform some optimizations on the access paths specified in the canonical form
so the SQL expression will more efficiently retrieve the data from the database.

Advantages of Early SystemX. For practicality, it is desirable to make NLIs portable. Many authors
have written about portable NLIs (12,50,51,52,53,54,55). The most important portability issue is to promote
easy attachment to databases representing different domains, that is, portability between applications. Closely
related is portability within versions of the same database. Another important portability aspect is to connect
the NLI to different types of database management systems. Also important is the ability to transport the NLI
to different types of computers.

Two main approaches make NLIs portable between applications. One approach modularizes the system so
that domain-specific modules can be exchanged; this approach is emphasized by Datalog (55). Another approach
provides interface software for a database administrator or skilled user to furnish required domain-specific
information; this approach is taken by TEAM (54). These systems require nontrivial human intervention,
resulting in loss of portability.

We focus on portability among different databases. SystemX minimizes the amount of knowledge that
humans must provide by optimizing the knowledge that the system can discover for itself by analyzing the
database. The ultimate semantic interpretation of many natural language queries to relational databases
consists of access paths through the logical structure of the database. Pathfinder automatically generates most
of the access paths required to interpret the natural language input, thus reducing the effort required to build
the semantic lexicon.

Much information to be learned is linguistic. The system must learn all of the words that users employ to
refer to objects and relationships in the new database. The interface must also have knowledge of the contents
and structure of the database. Most queries involve database navigation: values in different tables must be
extracted and compared. The NLI must construct the navigation path though the database that will answer
the query. In commercially available systems, this path must be created by experts before the system can be

NATURAL LANGUAGE UNDERSTANDING 21

used. Consider a simple query, In which room is math344 held? with SystemX’s SQL translation:

To translate this query most systems would require knowledge that the word room referred to the attribute
room#, that math344 was a noun that referred to the attribute cname, and that the database navigation
proceeds from the offering relation through the class relation to the schedule relation. In contrast, SystemX
requires only knowledge that room refers to room# and that course names consist of four characters and three
digits. All other information (grammatical categories, and semantics of new words, and navigation paths)
required to answer the query is generated by the system as required. New words are learned by the interaction
of modules, which assign grammatical and meaning representations to a new word on the basis of its context.

This ability to learn considerably reduces the amount of information that must be created initially for
each new database. Our approach departs from that of commercially available systems, which require ex-
tensive customization before they can operate, and avoids interruptions to update the knowledge base when
users present them with new words. Because of this learning ability, SystemX requires a short, largely au-
tomated customization period. More importantly, it can often assess database-dependent information such as
the meanings of new words and navigation paths for itself as they are required.

SystemX is able to handle a greater range of quantifiers, such as every and only, than all other natural
language interface systems. Quantifiers are problematic in part because SQL is not able to express queries
involving quantification in an obvious fashion. The example query Has every cmpt major taken at least 3 math
courses? combines the problem of quantification with those of data organization and calculation:

The SQL query may translated as “The answer is no if there is a student who is a computer science major
and it is not the case that student is a member of the set of students who have taken at least three math
courses.”

22 NATURAL LANGUAGE UNDERSTANDING

The highly modular architecture of SystemX permits the solution of many problems by simply adding
more rules to the rulebase. Datalog can correctly interpret the query, What is the average of the salaries of the
magers?, but not the similar query What is the salary of the managers?. Datalog’s solution required modification
of the representation scheme and a new module for handling the new representations. This situation could be
handled in SystemX by someone without such expert knowledge.

Semantics may also be customized by creating selectional restrictions and frames. As part of our proposal
and our invitation to discuss design specifications, we are examining how to provide SystemX with the capability
to automatically generate its required frames.

More complete reports of SystemX have appeared (41, 42).
The New SystemX. At Rogers Cablesystems Ltd., executive vice president for customer service Ted

Hotzak enters the following into his computer terminal: Give me the Western region outage log for June.
Within seconds SystemX presents him with a neat table (or graph) of the data retrieved from the relational
database. Ted could have said What’s the outage log for the Western region for June?, or Tell me the June
regional outage log for the West, or Find the Western outages for June.”, or the like. SystemX can tell that
whichever version Ted uses, he means the same thing. Such flexibility in parsing (applying the logical rules
of grammar to determine meaning) is nontrivial. SystemX’s parsing techniques will be described below. After
parsing, another part of SystemX reformulates the question in SQL, and data are extracted for presentation
from Roger’s large central database.

The nontrivial problem described in the preceding paragraph is but one of a large number of very difficult
problems of understanding natural language by computer, as discussed earlier. General analysis of language
phenomena and much of the ambiguity inherent in unconstrained natural language understanding is limited,
but complexities arise when building natural language capabilities into database interfaces. Without resorting
to a sophisticated and wholly integrated knowledge-based system, which will be necessary in the longer term,
we can construct systems to access information in ordinary language that are superior to the limited number
of such products currently available. SystemX is one such advanced prototype. Although the original prototype
SystemX functioned well, particularly in delivering in delivering fast parse times, its ad hoc design made
extension to sophisticated linguistic constructions difficult. Thus we replaced the parser.

Head-Driven Phrase Structure Grammars—the Choice for the SystemX Grammar. As a grammar
formalism we chose the head-driven phrase structure grammar (HPSG) (44, 45), which uses unification (56)
as its primary control mechanism. The HPSG expresses grammatical knowledge in the lexicon rather than
in rules. Our current implementation of the HPSG (57) contains only seven grammar rules. Extending the
coverage of the grammar consists in building the lexicon, not in adding more rules.

Many contemporary linguistic theories, including lexical functional grammars (LFGs), situation seman-
tics, generalized phrase structure grammars (GPSGs) government-binding (GB) theory, systemic grammar,
and so on, have all been implemented within unification-based frameworks. A consequence of this embodiment
within a unification-based formalism is the development of a expressive and formally precise lingua franca.
Thus, many of the constructs and hypotheses of HPSG are borrowed or adapted from elsewhere.

HPSG is an information-based theory of natural language syntax and semantics. It was developed by
synthesizing a number of theories mentioned above. In these theories syntactic features are classified as head
features, binding features, and the subcategorization feature; thus HPSG uses several principles of universal
grammar, three principles of which are (from Ref. 44):

Head Feature Principle. This principle is similar to the head feature convention (HFC) of GPSG. It states
that the head features (e.g., part of speech, case of nouns, inflection form of verbs) of a phrasal sign are
shared with its head daughter; thus the case of a noun phrase (NP) is determined by the case of its head
noun, and the inflectional form of a verb phrase (VP) is determined by its head verb.

NATURAL LANGUAGE UNDERSTANDING 23

Binding Inheritance Principle. Binding features encode syntactic dependencies of signs such as the presence
of gaps, relative pronouns, and interrogative elements. The binding principle is similar to the foot feature
principle (FFP) of GPSG. Information about syntactic dependencies is transmitted upward through the
constituent structure of signs until the dependency in question can be bound or discharged.

Subcategorization Principle. This principle is a generalization of the argument cancellation employed in
categorial grammar. Subcategorization is described by a subcategorization feature (SUBCAT). SUBCAT’s
value is simply a list of the kinds of signs with which the sign in question must combine to become
saturated. This principle states that in any phrasal sign, each complement daughter must satisfy a
member of the head daughter’s SUBCAT list, and that the SUBCAT list of the mother must consist of
those elements on the head daughter’s SUBCAT list that remain to be satisfied. For example, the SUBCAT
value of the past-tense intransitive verb walked is the list 〈NP[NOM]〉, since walked must combine with
a single NP in the nominative case (the subject) to become saturated; the past-tense transitive verb liked
has the SUBCAT value 〈(NP[ACC], NP[NOM]〉, since liked requires both an accusative-case NP (the direct
object) and a nominative-case NP (the subject).

HPSG theory borrows the notion of deep grammatical relation from categorial grammar. Rather than
consider the surface order of argument structure like many linguistic theories, or even the semantic argument
order, HPSG embodies a hierarchical theory of grammatical relations. HPSG orders according to those signs
that satisfy (unify with) the elements, respectively, of the verb’s SUBCAT list. Thus HPSG employs an order-
free notion of semantic role similar, to the one employed by situation semantics. Since words (lexical signs) in
HPSG are highly structured, in view of the principles mentioned above, the flow (sharing) of information is
constrained between lexical signs and the phrasal signs they head (“projections”—the projection principle of
GB theories). HPSG principles are explicitly formulated, and thus their implementations are more likely to be
faithful to theory. There is less work for language-specific rules of grammar. In Pollard and Sag 44 only four
highly schematic HPSG rules accounted for a substantial fragment of English. One rule, informally written as

subsumes a number of conventional phrase structure rules, such as those below:

In the HPSG rule, one possibility is that the English phrase is a saturated sign [SUBCAT 〈〉] (with 〈 〉
denoting the empty list) and has for its constituents that a phrasal head (H[LEX -]) and a single complement
(C). Another HPSG rule, informally expressed, is

This rule states that another option for English phrases is to be a sign that subcategorizes for exactly one
complement [SUBCAT 〈[]〉] with “〈[〉]〉” standing for any list of length one, and whose daughters are a lexical
head (H[LEX +]) and any number of complement daughters. This rule subsumes a number of conventional

24 NATURAL LANGUAGE UNDERSTANDING

Fig. 7. Same phrase structure rule for lexical signs.

phrase structure rules, such as those below:

HPSG rules determine constituency only; this follows GPSG theory, where generalizations about relative
order of constituents are factored out of phrase structure rules and expressed in independent language-specific
linear precedence (LP) constraints. Unlike GPSGs, some LP constraints may refer not only to syntactic cate-
gories but also to their grammatical relations. An example of a hierarchical LP constraint is

Roughly interpreted, this constraint says that in English any complement with major feature (part of
speech) other than V (that is, any complement whose head is not a verb) must linearly precede its more oblique
complement sisters. There are many consequents of this constraint; for example, direct objects precede second
objects.

Additional lexicalization of linguistic information and further simplification of the grammar are achieved
in HPSG by lexical rules (similar to those of LFG). Lexical rules operate upon lexical signs of a given input
class, systematically affecting their phonology, semantics, and syntax to produce lexical signs of a certain output
class. For example, English passivization uses the lexical rule (stated informally) below:

The input word, a base-form verb (V[BSE]) with phonological form φ that subcategorizes at least for a
subject NP and a direct object NP (SUBCAT 〈 . . ., NP, NP〉) is mapped to a passive-form verb (V[PAS]) with
phonological form passive(φ), where passive is a morphological operation that systematically produces the
regular passive morphology. The example below illustrates the effect of the lexical rule given above:

Phrases headed by lexical signs like these can now be produced from the same phrase structure rule, e.g.,
[SUBCAT 〈[]〉] → H[LEX +], C∗, as indicated in Fig. 7.

NATURAL LANGUAGE UNDERSTANDING 25

HPSG is not a theory of syntax. Researchers into GB, GPSG, and LFG have focused on syntax, relying
mainly on a Montague-style system of model-theoretic interpretation. In contrast, HPSG theory inextricably
intertwines syntax and semantics. Syntactic and semantic aspects of grammar are built up in an integrated way
from the start. Thus HPSG is closer in spirit to situation semantics, and this closeness is reflected in the choice
of ontological categories in terms of which the semantic contents of signs are analyzed: individuals, relations,
roles, situations, and circumstances. The semantic content of a simple declarative sentence is a circumstance, a
situation-theoretic object composed of individuals playing roles in a relation. This formulation is a more precise
account of the earlier conceptual dependency theory and preference semantics formalisms of the early 1970s,
based in part on Fillmore’s case grammars (58). Thus, the semantic content of the sentence John admires Jane
is [an attribute–value matrix (AVM)] as follows:

The semantic content of sentences, and of phrases generally, is determined by various pieces of syntactic
and semantic information associated with their constituents, in conjunction with universal linguistic principles
(and contextual factors). In the example above, John and Jane are part of the semantic contents of the subject
NP John and the direct object NP Jane. The relation ADMIRE and the assignment of the ADMIRER and
ADMIREE roles to the subject and direct object come from the head verb admires, which has the form

Note that the lexical sign consists of phonological, syntactic, and semantic information. The crucial
assignment of semantic roles to grammatical relations is mediated by the SUBCAT feature. i and j are variables
in the semantic sense of classical mathematical analysis. The specification “NPi” demands a noun phrase whose
variable is to be identified (unified) with the filler of the ADMIREE role. The subcategorization principle ensures
that the variables j and i are then unified with John and Jane. Finally the semantic content of the sentence now
follows by an additional universal semantic principle, which requires that the semantic content of a phrase be
unified with that of its head daughter. Whereas Montague-style semantics are determined by syntax-directed
model-theoretic interpretation, in HPSG theory the semantic content of a sentence’s lexical constituents “falls
out” by virtue of the general linguistic constraints, which require that information pieces associated with signs
be unified with other pieces.

These few paragraphs are intended only as the shortest of introductions to HPSG formalisms. Other
linguistic aspects, such as agreement, interpretation of “understood subjects,” gaps, and analysis of reflexive
and nonreflexive pronouns, are generally treated in a manner consistent with unifying principles just described.

Considering the new SystemX, representations as described are built as queries are parsed. As words and
phrases are combined into larger phrases, the representations associated with each constituent are combined.
In simple cases, the process by which they are combined is unification. For example, in the phrase

the representation of “outages” contributes an AVM that specifies a table and a set of columns from that
table. The representation of “June” contributes a matrix that specifies a column and its value (the database
representation of “June”). The representation of “June” does not specify a table, because many of the tables

26 NATURAL LANGUAGE UNDERSTANDING

in the domain contain the column represented by “June.” The preposition “for” does not have a database
representation. Consequently, the representation of “for June,” that is, the unification of the representations
of “for” and “June,” is the representation of “June.” The representation of the entire phrase in [4-1] is created
by unifying the constituents “outages” and “for June.” The effect of this is to supply a value for the column
representing dates in the table represented by “outages.”

The example in [4-1] illustrates cases in which adjunct modifiers further specify restrictions on a particular
table in the database. Of course, in a relational database this is not sufficient, as it is often necessary to build up
virtual relations by joins on different tables. For example, in the database developed for Rogers Cablesystems
locations are represented by numeric codes. As is the case for dates, location codes appear in many tables in
the database. However, the description of each code resides in a table that is joined with any table containing
a location code. Thus, in the phrase

the term “Vancouver” contributes an AVM representing a column in the table containing descriptions of lo-
cations. Notice that because the AVM representing “Vancouver” specifies a table, it cannot unify with that
representing “outages,” the AVM for which also specifies a table, one different from that specified by “Vancou-
ver.” Instead, the representation of the phrase will contain two tables, the join between them being represented
by identical variables in the columns on which they are joined. The column on which tables are joined is
determined dynamically by the module Pathfinder described in Ref. 47. This facility determines for any set
of columns the minimal path through the database that will join the set into a virtual relation. This module
eliminates the need for customizing joins.

Frequently in natural language processing (NLP) systems, researchers encounter problems in determining
the meaning of complex constituents. In many cases, the meaning of a complex phrase cannot be viewed as a
simple composition of the meaning of its parts. One such example from the Rogers Cable Systems database
domain is the phrase “trouble call ratio.” When one asks for the “trouble call ratio,” one is interested in
information from a specific database table. However, when asking for the “trouble call ratio total,” not only is
one interested in a different table, but one is interested in different columns as well. Furthermore, a join is
not necessary either. In this case, the simple unification of the AVMs associated with each of the constituents
will not be able to produce the kind of information structure that we need. The operation of unification, by
definition, incorporates all of the information of the initial structures—it never throws information away.

In arriving at a solution to this problem, we notice that the information from the AVM for “trouble call
ratio” that is used in the AVM for “trouble call ratio total” is limited to one column specification. Within HPSG,
it is possible for a word like “total” to examine the AVM that it is to be combined with (in our case, the AVM for
“trouble call ratio”) and extract specific information. Based on this examination, it can then determine what
the AVM for the complex phrase should look like. So the AVM associated with the complex phrase “trouble call
ratio total” can be obtained from the AVM for “total.” The AVM for “trouble call ratio” thus does not play a
direct role in determining the AVM for the complex phrase; it contributes only information that “total” selects
from it.

Cases like this, where one distinguished constituent selects information from its neighboring constituents
and then imposes its own AVM for that of the complex phrase, are handled by introducing a feature into the
AVM that states that it has priority over another AVM in unification. When two constituents with priority are
to be combined, then no single constituent is assumed to have priority, and the usual unification is attempted.
There is a related mechanism, similar to the priority mechanism, by which an AVM can be specified to contain
default information. Thus, when a default AVM is unified with some other AVM, it is the information from the
other AVM that is used. Essentially, specifying an AVM as default is equivalent to saying that any AVM that
it is combined with is given priority.

NATURAL LANGUAGE UNDERSTANDING 27

Fig. 8. Schema diagram for NSERC Grants Information System.

This interpretation differs from default unification and overriding as usually discussed in unification-
based formalisms (59). Default unification merges part of one AVM with another in such a way that incom-
patibilities between different AVMs are avoided; default unification never fails. When we specify an AVM as
having priority, it overrides all of the information from the other AVM. Other mechanisms are used to extract
the relevant information from the overridden AVM. In cases where both AVMs are specified as having priority,
unification may fail. These examples of compositionality, as in “Vancouver outages,” and noncompositionality,
as in “trouble call ratio total,” are prevalent in the database for Rogers Cablesystems. They serve as illustra-
tion that the principles of natural language interface design must be sufficiently robust to handle accidental
properties of the database schema.

We now turn to some examples of SystemX in action.
Examples of the New SystemX. We were privileged to receive the Grants Information System (NGIS)

of the Natural Sciences and Engineering Research Council (NSERC) of Canada as a testbed for our experi-
ments. Since the NGIS was implemented as a self-contained dBase system, we reproduced its database on both
the Oracle and Sybase relational database systems, preserving the relations inherent in the original imple-
mentation, and ran tests on them with SystemX. Our experiments demonstrated that our system showed great
promise for providing users of the NGIS and similar systems with valuable capabilities for ad hoc querying
that they currently lack.

The NSERC Grants Information System. The NGIS is a software package consisting of a database of
information about grants that are awarded by NSERC, and a menu-based interface to that database. It is
intended to be used by individuals in “universities, government agencies and industry . . . to search for grants
that are of particular interest.” In addition to the detail about individual grants, the system provides summary
statistics and reports.

The central table in the database is made up of rows, each of which describes an award by NSERC to
a researcher. (“Award” is used here in the sense of a particular installment of a particular grant.) The values
constituting each row (i.e., the columns constituting the table) specify the different properties of the award,
including the name of the recipient, the amount of the award, and so on. In the schema diagram in Fig. 8, nodes
representing the properties of awards are represented by nodes linked to the “Award” node.

There are a number of subsidiary tables, which record details about some of the properties of awards (e.g.,
the province of the organization in which the recipient is to carry out the research). Most subsidiary tables are

28 NATURAL LANGUAGE UNDERSTANDING

used simply to associate (English and French) phrases describing the entity to a code denoting a particular
entity. In the schema diagram, tables are specified by rectangular nodes.

The Interface. The interface to the NGIS is menu-based. Using the menus, users may search for sets of
awards or may request certain summary reports. Searches may be based on any one of the properties of awards
alone, or on a combination selected from a given subset of the properties (i.e., on one or more of university,
department, grant type, committee, and area of application). The interface automatically provides summary
statistics (e.g., total amount, average amount) for the award set forming the result of a given search. Searches
retrieve all awards that have user-specified values for each of the properties on which the search is based.
Users may specify a set or range of values for some properties (e.g., for discipline), but are limited to a single
value for most properties. This limitation forces users who wish to associate data describing different sets of
awards, (e.g., to bring together information describing awards in two universities) to conduct separate searches
for each set and make the association manually.

There are six different summary reports available. They categorize awards based on a particular property
(e.g., committee) and give a table of summary statistics measuring these categories of awards for a user-specified
grant type and university. Some reports include a bar chart illustrating one statistical measure. For example,
one report provides a table detailing the number, total amount, and average amount of awards for each major
area of application for a given grant type and university. In addition, a bar chart shows the percentage of
money awarded by area to the university for the specified type of grant. The system limits users to making
comparisons with one university for a single grant type in a single query. In addition, these reports take a long
time to generate. Thus, a user who wishes to see summary data for only two or three of the areas of application,
for example, must wait until the statistics have been generated for all areas and pick out the statistics in which
(s)he is interested from the resulting report.

The Need for Ad Hoc Querying. While the NGIS is largely successful in providing the “easy and
effective” access that its designers intended, it is still somewhat limited in that access to certain information
(particularly information involving the comparison of data involving different elements of the same domain)
requires a significant investment of time and effort on the part of the users. A NLI to the database could provide
ready access to this kind of information to sophisticated users who desire it. In other words, the NGIS is limited
in its usability by the lack of ability to query the database in an ad hoc manner. While the menu-based interface
does permit access to all of the data contained in the database in one form or another, it places much of the
burden on the user to derive the information (s)he is seeking. For example, suppose a user wishes to know the
answer to the following question: “What types of grants were received by SFU Computing Science?”

The best way to access this information via the existing interface is to request a search on University
(“SFU”) and Department (“Computing Science”) and then page through set of awards that are returned, one at
a time, noting the different grant types represented. If an ad hoc query capability were available, the system
could return immediately the simple list the user desires. (See example below.) There are many examples of
this type of situation, such as “Which universities won major equipment grants?” or “Which departments won
grants for research into expert systems?”

Not only is the NGIS user required to put time and effort into extracting information from the response,
but also (s)he is forced to wait while the system retrieves, calculates, and formats the noise that obscures it
from immediate view.

As noted, the system requires users who wish to compare information about different categories to access
the information related to each category separately and make the comparison manually. For example, to learn
whether the CS Department at SFU was awarded more operating grant funds than was the CS Department
at UVic, the user would need to conduct two separate searches, record the results and make the comparison.
Again, this query is typical of many that a considerable number of users would likely wish to submit.

The version of the NGIS we used contains data from a single year only. Undoubtedly these problems will
be compounded when data from multiple years are present, since users will wish to make comparisons over
time. One useful way to present data across time is to make a trend of the type provided by our natural language

NATURAL LANGUAGE UNDERSTANDING 29

inteface to users of the RIAS executive information system (for Rogers Cablesystems). Research indicates that
executives and others frequently access data in a top-down fashion, first examining high-level summaries
before “drilling down” to the more detailed level. Adding the capability to graphically display historical trends
will allow NGIS users to quickly access the information they require.

Experiments with the Natural Language Interface.

30 NATURAL LANGUAGE UNDERSTANDING

With a slightly modified interface module we have the following (conceptually simpler) example:

System Design. SystemX, outlined graphically in Fig. 9, is implemented on a Sun SPARCstation
running SunOS, OpenWindows, Sicstus Prolog, and Common Lisp. The interface accepts queries from the
user (on the right side of Fig. 9) specified wholly or partly in English. Requests for tabular displays of data are
completely specified in natural language. When requesting graphic displays, users specify, in natural language,
the statistic to be graphed and specify the graph parameters by selecting items from system-generated menus.

NATURAL LANGUAGE UNDERSTANDING 31

Fig. 9. Overview of SystemX.

Natural language is translated into a semantic representation and is converted into a logical form (LF) and
finally to SQL by an HPSG chart parser (60, 61) as illustrated in Fig. 10.

Data are retrieved from the database and displayed in the format (table or graphed trend) specified by
the user in the query. The “Display Tables” or “Graph Trends” routine passes the logical form received from
the parser as SQL to the database and returns the table(s) or graph to the user. The interface is customized
to a given application via the creation of the parser’s lexicon and an application-dependent knowledge base
(ADKB) containing information about the target database. The ADKB is constructed with information extracted
automatically from the data dictionary (DD) of the database as well as with information supplied by individuals
familiar with the domain.

The parser (Fig. 10) uses a grammar of four rules and a lexicon of approximately 500 words, acronyms,
abbreviations, and common misspellings (such as “eastern”). The lexicon is organized as a multiple inheritance
hierarchy of classes called lexical types (adopting the terminology of Ref. 12). An inheritance mechanism
operates on the lexicon to produce an expanded lexicon of entries, which is then used by the parser (processing is
done offline, before parsing is attempted). The parser can handle most of the sentences and sentence fragments
from the second corpus described above, including the compound nouns listed.

SystemX permits the user to generate printed copy. This functionality is currently accessed by a menu
interface (see the sub-subsection “Experments with Natural Language Interfaces” above). The user has the
choice of inputting his trend request using English, using menus (canned trends), or using combination of
English and menu responses. The various input modalities are provided as a convenience to users. Canned
trends display data that are predictably desired on a reasonably frequent basis. They may be accessed with a
minimum of keystrokes. The canned trends are those available through the first eight menu items in the trend
menu in Fig. 11, which illustrates the new SystemX.

32 NATURAL LANGUAGE UNDERSTANDING

Fig. 10. The SystemX parser.

Fig. 11. An example of the latest incarnation of SystemX.

Field Test, Evaluation Methods, and Main Findings. Real-world user interface evaluation is currently
an active area of research (62). We prepared a real-world field test using both formative and summative evalu-
ation methods (63). Formative evaluation provides information about how to refine and improve the design of a
system; summative evaluation provides information to assess the system’s impact, usability, and effectiveness.
Qualitative (formative) and quantitative (summative) measures were therefore required. Minimally intrusive
evaluation methods were employed, including logging, on-line commenting, questionnaire/interviewing, and
videotaping. The user’s interactions with the system were automatically logged in a file and timestamped.
An on-line commenting facility accepted and stored typed, time stamped comments. The user was videotaped
using the system twice during the month-long field test. A follow-up interview was guided by a questionnaire.

Full results from our evaluation are presented in Ref. 64. The main findings are that 68% of requests for
data were partially or completely specified in natural language. The overall success rate for answering queries
(for tables) entirely in natural language, eliminating clearly unintended queries, was 82.1% (46 of 56 queries).
The success rate in parsing requests to display a trend, in which natural language was used to query for a
base statistic, eliminating unintended queries, was 95.2% (139 of 146 queries). Note, however, that although a
request to display a trend may have been successfully parsed, it was not always possible to display a graph.
This is because the requested statistic sometimes referred to several data, and GnuPlot, the graphing package
used, could only graph one item of data.

NATURAL LANGUAGE UNDERSTANDING 33

Even including unintended queries, our success rate for answering queries entirely in natural language,
69.7% (46 of 66 queries) compares favorably with the 65.1% of queries successfully answered by the TQA NLI,
while on field trial (65) a percentage Petrick reported as “consistent with but slightly smaller than that of
such other investigators” such as Refs. 66,67,68. The 95.2% success rate with partial natural language queries
for a base statistic only, and the popularity of this form of querying with the Rogers executives [of the 219
requests that used natural language (NL), including unintended queries, 153 (69.8%) were partial NL queries;
this popularity may be due in part to the user’s preference for requesting data in graphical form rather than
tables], suggests that natural language may well be very useful for filling in parts of queries (perhaps as a form
to be completed), as well as whole queries.

Petrick (65) notes that “extreme care should be exercised in interpreting any such overall numbers,
however, and even more care must be exercised in comparing numbers from different studies.” We agree that
care must be taken in interpreting results. Only one Rogers Cablevision executive was involved in the field
test. Nonetheless, the results from the evaluation have been used to improve SystemX, especially its interface,
in ways we likely would not have anticipated without input from real-world users.

Having examined two of the major goals of natural language understanding at some length, let us
turn our attention to a major goal, that of question-answering systems. We consider their approaches and
shortcomings and the current efforts to utilize natural language techniques in a less demanding enterprise
such as information retrieval and text summarization.

Question Answering, Information Retrieval, and Text Summarization

Question-Answering Systems. But while we are confined to books, though the most select and classic,
and read only particular written languages, which are themselves but dialects and provincial, we are in danger
of forgetting the language which all things and events speak without metaphor, which alone is copious and
standard. Much is published but little printed. The rays which stream through the shutter will be no longer
remembered when the shutter is wholly removed. No method or discipline can supersede the necessity of being
forever on the alert. What is a course of history or philosophy, or poetry, no matter how well selected, or the
best society, or the most admirable routine of life, compared with the discipline of looking at what is always to
be seen? Will you be a reader, a student merely, or a seer? Read you fate, see what is before you, and walk on
into futurity.

Henry David Thoreau, Walden
Early Question-Answering Systems. Interest began to grow in the late 1950s in natural language

question-answering systems. These designs contemplated machines that engage in conversation rather than
machines that generate sentences in response to pictures, retrieve documents, or convert English into logical
calculi.

It has been well recognized that most statements can be transformed into questions through the use
of intonation, the question mark, and the rearrangement of the subject and the verb. Often clues such as
the words “who,” “why”, end “what”, also provide delineations between questions and declarative statements.
While linguistic differences between questions and declarations are well known, logical differences are not. A
number of the earlier question-answering systems dealt with logical differences by adopting the point of view
that a question is a special subclass of assertions whose propositional truth or falsity can be determined.

Most early question-answering systems made use of a dictionary as well as a small predetermined domain
of discourse, and the Conversation Machine of Green, Berkeley, and Gotlaeb (69) is no exception. For that
machine, the domain in which conversation is carried out is the weather. Their purpose in choosing such a
conversational topic was to exploit Turing’s notions of machine thinking.

Meaning, experience, and the environment were considered by the Conversion Machine. Environment was
defined as the day’s weather; experience was the knowledge of weather types that characterized various parts

34 NATURAL LANGUAGE UNDERSTANDING

of the year. The dictionary represented meaning, where words were stored along with their meanings. Words
were classified as ordinary (snow, rain, hail, etc.), time (today, yesterday, etc.), and operator (change, stop, etc.).
Meanings of the words were stored as attribute–value pairs. For example, the attribute of a time-classified
word is a type of time (calendar or relative), and the associated value is a code for the amount. Operator words
have attributes of functions to be accomplished and values of the degree to which the associated functions are
to be executed. For example, the functions of change and stop are the same, but the degree code for stop is
greater than for change. Ordinary words are coded similarly to operator words.

The meaning of a declaration or assertion is represented by the set of codes for the constituent words.
Words not in the dictionary are considered meaningless and are assigned a zero code. Each word is found via
table lookup, and coding is assigned by its attribute–value pair. The Conversation Machine then compares this
“meaning” with its own store of coded declarations and selects an appropriate response frame from its storage
in which there are blanks to be filled in with words from the original declaration or from experience.

An example from Ref. 66 is the sentence “I do not enjoy rain during July.” The words “not” and “enjoy”
yield the word “dislike,” which is meaningful to the conversation machine. The set of words {dislike, rain, July}
gives the resultant meaning to the sentence. July is associated with heat and blue skies, however. This gives
rise to an essential disagreement, and the conversation machine chooses a reply on this basis, such as “Well,
we don’t usually have rainy weather in July, so you will probably not be disappointed.”

The conversation machine limits syntactic analysis to only a few constructions and the problem of selecting
the right response. Its principle of coding words, however, based on the attribute–value pair, has been used in
subsequent and to a degree in current question-answering systems.

The BASEBALL program of Green et al. 70 is an expert on answering certain kinds of queries about
baseball facts and figures from a stylized baseball yearbook stored in computer memory. The program consists
of two parts. The linguistic part reads input, syntactically analyzes it, and determines what information is given
about the data being requested. The processor part searches through the data for the appropriate information,
processes it, and prints the answer. Questions are limited to single independent clauses. Logical connectives
such as “and,” “not,” and “or” are prohibited, as are constructions implying the relations highest, most and so
on.

The concept of a specification list (spec list) is fundamental to the operation of BASEBALL. The spec list
represents in formation in the question in the form of attribute—value pairs. The spec list is generated by the
linguistic part of the program and governs the processor part. The spec list for the question “Where did the
Red Sox play on July 7?” is {Place =?; Team = Red-Sox; Month = July}.

Dictionary definitions are also stored as attribute–value pairs and are used to generate the spec list.
Separate dictionaries are kept for words and idioms. Meanings of words may take several forms. They may
have main or derived attributes and also may designate a subroutine that will be executed by the content
analysis. Some words (“the,” “did,” “play”) have no meaning attached. Data are represented as a hierarchical
list structure. Any one path through the data, however, must contain all the facts for a single game.

The program includes linguistic routines with input, dictionary lookup, syntactic analysis, and content
analysis routines, while the processor includes the processor and responder routines. Syntactic analysis is
based on the parts of speech (stored in the dictionary along with the attribute–value pairs), which are syntactic
categories assigned to words for use by the syntax routine. Fourteen parts of speech and ambiguity markers
are used. Ambiguities are resolved by looking at adjoining words and resolving through context. The noun
phrases and the prepositional and adverbial phrases are next located and bracketed. For example,

The verb is then checked to see whether it is active or passive, and the subject and object located.
Content analysis uses the results of the syntax analysis along with the dictionary to set up the spec

list for the processing routine. Subroutines attached to the meanings of words or idioms are executed. These

NATURAL LANGUAGE UNDERSTANDING 35

subroutines deal with either the meaning of the word itself or another word whose meaning is somehow affected
by the present word. Attribute–value pairs then may be consolidated as necessary. For example, “Team =?”
and “Team(winning) = (blank)” are collapsed into “Team(winning) =?”

The processor determines, using the specification list, what part of the stored data is relevant for an-
swering the input question. Output from the processor is the answer in the form of a list structure. The main
task of the processor is, given a spec list, to find a match on each path of the given data structure for all the
attribute–value pairs of the spec list. Matching is not always simple. Derived attributes are computed before
values are matched. The output becomes the found list; no attempt is made to print grammatical English
sentences.

“Infential Memory as the Basis of Machines Which Understand Natural Language” is the title of Lindsay’s
(71) work in which he describes SAD SAM. This program uses a subset of English (known as Basic English,
it is limited to simple constructions and a vocabulary of around 1700 words) and answers questions about
family kinship relations by making inferences. Two list structures are constructed in memory for SAD SAM.
The first is similar to high school English diagrams, and the second is the family tree. The implementation
consists of the sentence-parsing program and the semantic analysis program. The parsing program utilizes
phrase structure grammar rules as outlined by Chomsky 72.

While it is clear that in general different sequences of rewriting rules produce different sentences, it is
also clear that they may produce the same sentences. SAD SAM makes two assumptions:

• It is assumed that almost all sentences encountered in actual text may be parsed by a procedure that works
from left to right, making decisions about the disposition of earlier phrases without considering the entire
sentence (in a limited sense this idea is employed by Winograd 73 for Lindsay it reduces the number of
rewriting rule combinations which must be searched).

• It is assumed that a very limited amount of memory is available to remember intermediate results during
the parsing of even extremely long sentences. This severely restricts the complexity of sentences that will
be handled.

• The parser of a sentence associatively organizes memory into a structure reflecting interrelations among
words in the sentence. How the inferential machinery works in parsing is best shown by example (71):

The first word is “the.” Now I need to find a nounlike word. The second word is “very,” so now I need an
adjective or adverb. The third word is “big,” which is the adjective I needed, so combine these two words into
the structure “very big.” Now I need a nounlike word. The fourth word is “man,” which is the noun I needed.
Now all words are combined into the structure “(the ((very) big)) man.” But now we have a subject, so look for
a verb. The fifth word is “bit” which can act as the verb, so create the structure “((the ((very) big)) man) bit.”
Now another nounlike structure could serve as object. The sixth word is “the,” so save it to modify a nounlike
word; now we have two things saved, both looking for a nounlike word. The final word is “dog” which will serve
both needed functions. We now have the complete sentence,

After the sentence is parsed, the semantic analyzer considers the meanings of the words. The parse tree
is used not as a syntactic entity alone, but also to relate words. Subject–object combinations linked by a form
of the verb “to be” are marked as equivalent, and their modifiers grouped together. SAD SAM next searches for
any of the eight allowable kinship relations—father, mother, brother, sister, offspring, married, brother-in-law,
and sister-in-law. Any proper name possessive adjective found modifying one of these words is paired with
all others associated with the same occurrence of the relation word. From the elementary relations found, a
family tree is constructed in an associative manner. The family tree, or trees, continue to grow as additional
information is input, as shown:

Family Unit 1

Family Unit 3

36 NATURAL LANGUAGE UNDERSTANDING

Family Unit 2
HUSBAND = A
HUSBAND = E
HUSBAND = C
WIFE = B
WIFE = F
WIFE = D
OFFSPRING = Husband,
OFFSPRING = ?
OFFSPRING = Wife,

Family Unit 3
HUSBAND’S PARENTS = ?
HUSBAND’S PARENTS = Family Unit 1
HUSBAND’S PARENTS = ?
WIFE’S PARENTS = ?
WIFE’S PARENTS = Family Unit 2
WIFE’S PARENTS = ?

The diagram shows the structure storing definite implications implicity; however SAD SAM also stores
possible implications explicitly to solve the problem of connotative meaning. The offspring of family unit 1
might include the wife of family unit 4 or the like; this is stored explicitly, an example of an implication. At
the very least, SAD SAM deals with the problem of English comprehension and understanding through the
construction of data structures from input text and then extracts semantic implications from them.

A number of other early works must be mentioned here, if only in passing, since they are at least
historically are important.

The DEACON (Direct English Access and CONtrol) breadboard, written by F. B. Thompson of General
Electric along with J. A. Craig, is a data-based question answerer that is part of a man–machine communication
system. It uses a list-structured data base.

NAMER is a system that was developed by R. F. Simmons and D. Londe of the Systems Development
Corporation. It is a graphical data-based system that generates natural language sentences from line drawings
displayed on a matrix. Pattern recognition aspects of NAMER were derived from Vossler and Uhr’s work.

Cheatham and Warshall 74 developed a retrieval language called QUERY. In their work they describe
a grammar and a procedure for translating requests formulated in English-like prose into a program for
searching a well-structured database.

Bohnert (75) designed project LOGOS. Its objective is the approximation of the logic of English grammar,
and it resulted in LAMB (Language for an Automated Marriage Bureau).

Kirsch (76) has tent support to the notion of inference making (71) with the Picture Language Machine.
Simmons, Klein, and McConlogue (77) developed a system named PROTOSYNTHEX that attempts to answer
questions from an encyclopedia.

The Automatic Language Analyzer (ALA) came from Indiana University. F. W. Householder, J. Lyons, and
J. P. Thorne were responsible for progress on this rather complicated language analysis system. The ALA was
designed to handle the breadth and complexity of language found in a book on astronomy. It is a text-based
system that translates English to intermediate forms.

NATURAL LANGUAGE UNDERSTANDING 37

The General Inquirer of P. J. Stone, R. F. Bales, J. Z. Namerwirth, and D. M. Ogilvie is another text-based
system useful for analyzing the content of text. The most interesting features of the General Inquirer include
its dictionary and thesaurus operation.

Many sophistications have been added to question-answering systems since these early systems were
devised. The complexity of the Protosynthex programs stand out, along with the inherent elegance of Lindsay’s
inferential SAD SAM program, as truly significant in this early period of question-answering development.
Though it is true that the other systems mentioned contributed a great deal to the understanding of natural
language as we know it today, the two systems cited above stand a cut above the rest. The far-reaching
implications of Lindsay’s system seem to have influenced the direction of work today.

The Next Family of Question-Answering Systems. The question-answering systems described in this
section are characterized by the problem of representation of knowledge, however acquired, and by the related
problem of breaking through the formality and narrowness of the older systems. Heuristic search efficiency
remains a problem but serves more as a constraint.

The development of a computer system that “understands,” has certain cognitive abilities, and exhibits
some humanlike conversational behavior is realized in SIR (Semantic Information Retrieval) of Raphael (78).
SIR is a prototype of an “understanding” machine demonstrating how conversational and deductive abilities
can be obtained through the use of a suitable model. The following facts and assumptions are basic to SIR:

• Understanding can be demonstrated by dialog.
• The most important prerequisite for the ability to understand is a suitable internal representation.
• A machine that understands must be able to recognize logical implications as to which facts are relevant

to a particular question.

SIR is semantic in the sense that the actual information extracted from text and stored by the program
is intended to approximate the linguistic “semantic content” or “meaning” of the material, and the computer
representation of information used in SIR is derived from the “semantic” model structures of formal mathe-
matical logic. Raphael is concerned with what he terms descriptive semantics, an empirical search for rules
governing truth and meaningfulness of sentences in natural language, rather than pure semantics, dealing
with properties of artificially constructed formal systems with respect to rules for sentence formation.

SIR uses a data structure called a model of an entity x, with the following properties: (1) certain features
of the model correspond in some well-defined way to x; (2) changes in the model represent changes in x in
some well-defined way; and (3) there is some distinct advantage to studying the model rather than x. Here x
may represent a wide class of entities, such as objects, English statements, or mathematical concepts. The SIR
model is dynamic and semantic, and is the collection of data to which the SIR programs can refer in the course
of question answering. The model consists of words associated with each other through particular relations. A
descriptor list represents associations, is a sequence of a pair of elements, and is associated with a particular
object (similarly to the attribute–value pairs used before). The formalization of the model used by SIR is that
of a limited relational calculus, and it takes advantage of the property list feature in Lisp.

Since SIR communicates interactively and uses a relational model, it is faced with the problem of ex-
tracting relational information from natural language text. SIR is primarily concerned with the ability of a
computer to store and utilize relational information in order to produce intelligent behavior; therefore it avoids
the complexity of syntactic analysis (necessary for NLP) by limiting itself to a small number of fixed formats
for sentences. SIR is limited to about 20 simple sentence formats. The following sample conversation from SIR
illustrates its deductive capabilities, and also shows Raphael’s model testing a sentence for consistency before

38 NATURAL LANGUAGE UNDERSTANDING

accepting it for data:

STUDENT, a system devised by D. Bobrow (79), accepts a restricted subset of English that expressed
a wide variety of algebra problems. Programmed in Lisp, STUDENT is based on a relational model that
utilizes an expandable store of general knowledge to build a model of a situation. The method of discourse
analysis is formal, depending only on the occurrence of morphemes as distinguishable elements, and not on the
analyst’s knowledge of the particular meaning of each morpheme. Bobrow assumes that a listener understands

NATURAL LANGUAGE UNDERSTANDING 39

a discourse by transforming it into an equivalent sequence of kernel sentences, that is, sentences that one can
understand directly.

The model used by Bobrow satisfies the following properties that he believes must be contained in all
models: (1) a set of n objects, {O}; (2) a set of n functions, {F}, a function being a mapping from ordered sets of
n objects, called arguments of Fi, into the set of objects; (3) a set of n relations, {R}, a relation being a special
type of object in the model consisting of a unique identifier and an ordered set of n conditions for the relation;
(4) a set of propositions, {P}, being either elementary or complex, that is, either a label associated with some
relation and an ordered set of n objects satisfying the relation, or logical combination’s of elementary relations;
and (5) a set of semantic deductive rules, that is, rules giving procedures for adding new propositions to the
model based on the propositions now in the model.

STUDENT operates as follows: It is asked to solve a particular problem. We assume that all necessary
global information has been stored previously. STUDENT will now transform the English input statement of
this problem into expressions in its limited deductive model, and through appropriate deductive procedures
attempt to find a solution. More specifically, STUDENT finds the kernel of sentences of the input discourse
and transforms this sequence of kernels into a set of simulataneous equations, keeping a list of the answers
required, a list of the units involved in the problem (e.g. dollars, pounds), and a list of all the variables (simple
names) in the equations. Then STUDENT invokes the SOLVE program to solve this set of equations for the
desired unknowns. If a solution is found, STUDENT prints the values of the unknowns requested in a fixed
format, substituting in “(variable IS value)” the appropriate phrases for variable and value. If a solution cannot
be found, various heuristics are used to identify the variables (i.e., find two slightly different phrases that refer
to the same object in the model). If two variables, A and B, are identified, the equation A = B is added to the set
of equations. In addition, the store of global information is searched to find any equations that may be useful
in finding the solution to this problem. STUDENT prints out any assumptions it makes about the identity of
the two variables, and also any equations that it retrieves because it thinks they may be relevant. If the use
of global equations or of equations from identifications leads to a solution, the answers are printed out in the
format described above.

Let us follow through an example solved by STUDENT:

The first step in the transformation is to make all mandatory substitutions:

40 NATURAL LANGUAGE UNDERSTANDING

Words are then tagged by their function:

Using two inverse syntactic transformations, the problem statement is resolved into simple kernel sen-
tences:

The transformations from simple kernel sentences to equations uses three levels of precedence for opera-
tors, represented by (OP), (OP1), and (OP2). Finally the (list form of) equations shown below are solved:

In some cases, whenever necessary information is missing from the store of information, or variables which
name the same object cannot be identified by the heuristics of the program, STUDENT turns to the questioner
for help; for example: (DO YOU KNOW ANY MORE RELATIONSHIPS BETWEEN THESE VARIABLES).

NATURAL LANGUAGE UNDERSTANDING 41

Although the system is limited in some ways, it is sufficiently versatile to solve a large number of high
school algebra word problems. It significantly contributes to language processing in its heuristic approach to
syntactic analysis, the use of background information, and its direct approach.

C. Green (80) shows how a question-answering system can be constructed using first-order logic as its
language and a resolution-type theorem prover as its deductive mechanism in a program called QA3. This
work is a follow-up of an earlier program reported by Raphael.

Chamiak (81) generalized and expanded techniques used by Bobrow in CARPS, a program that solves
calculus word problems. He also uses a heuristic approach to the analysis of English sentences using pattern-
operation rules for both syntactic and semantic operators. Charniak concludes however that an incremental
left to right parse would be more efficient than pattern-operation rules that syntactically analyze the input
text.

Early question-answering systems were not only handicapped by lack of adequate linguistic models but
also were often written in low-level languages. Significant progress was made in the systems described in this
section. Developments in high-level languages progressed, and syntactic processing became well understood.
For certain well-defined subsets of English, operational semantic analysis progressed satisfactorily.

Significant weaknesses were still prominent, however, Systems were experimental in nature, small, and
memory-bound. Inductive (inference) procedures had not been incorporated. Complexity grew out of bounds
when systems tried to enlarge their vocabularies. The promise for practical question answerers was in the
future.

The Boom of the Seventies. The importance of effective task representations in the design of programs
intended to exhibit sophisticated behavior manifested itself in the systems and techniques developed for
language comprehension in the 1970s. This is not to imply that the problems are solved or even that the
approaches are correct, but that indeed some progress was made.

Kaplan 82 described the operation of an augmented recursive transition network parser and demonstrated
the natural way in which perceptual strategies based on the results of psycholinguistic experimentation could
be represented in the transition network notation. Kaplan did not propose a transition network model as a
complete and sufficient representation of all aspects of language behavior, but aimed rather at simulating the
syntactic analysis component of performance. The semantic and cognitive interpretation were ignored.

Kaplan concluded that the formal model based on transformational grammars was not intended to give
accurate accounts of the psychological processes involved in the human use of language. Despite this, psycholin-
guists have used transformational theory because it provided the most intricate and compelling explanation
at that time of basic linguistic intuitions.

The heart of the augmented recursive transition network is the familiar finite-state grammar consisting
of a finite set of nodes (states) connected by labeled directed arcs representing allowable transitions. By adding
a recursive control mechanism to the basic strategy, Kaplan avoided a well-known inadequacy of finite state
grammars, in expressing statements about hierarchical structure. All states are given names, which are allowed
as labels on arcs as well. When an arc with a state name is encountered and control is transferred to that
labeled state, the name of the state at the head of the arc is saved on top of a pushdown store. When a final
state is reached in this new part of the grammar, the stack is popped and a sentence is then accepted only
if a final state, the end of an input string, and an empty stack are all reached concurrently. This finite state
transition network with recursion is still inadequate for natural language (consider immediate constituent
grammars with discontinuous constituents or cross-serial dependencies). Permitting sequences of actions and
conditions on arcs provides additional resolution to give the network the generative power of a Turing machine.
Actions provide facilities for building tree structures, while conditions furnish more sensitive controls on the
admissibility of transitions.

Humans use a small number of perceptual strategies to process sentences. These strategies account in
part for the perceptual complexity of sentences. They can be naturally represented in transition network gram-
mars. Validation of transition network models depends on the correlation between experimentally observed

42 NATURAL LANGUAGE UNDERSTANDING

complexity and complexity measured in the transition network. The complexity of a sentence analyzed by a
transition network is proportional to the number of transitions made or attempted during its analysis. Per-
ceptual strategies, however, express generalizations that are not necessarily always true. Thus the strategies
serve as heuristic guidelines to the listener and do not directly reflect his or her abstract appreciation of the
structure of the language.

Concluding, Kaplan remarks that the augmented recursive transition network described is a natural
medium for expressing and explaining a wide variety of facts about the psychological processes of sentence
comprehension. One important issue not discussed is the role and representation of semantic information in
sentence production.

Truly the most spectacular system put together at that time was that of Winograd 73. Incorporation
of the concepts of human syntactic, semantic, and problem-solving abilities as well as their interactions in
understanding natural language has been achieved by Winograd as by no one else to date. Believing that a
computer should, as humans do, take advantage of available knowledge in solving problems and comprehending
dialog, Winograd gave his system a detailed model of a particular domain. Knowledge is represented in the
system procedurally and factually, as opposed to traditional methods (lists of patterns or rules), which adds
flexibility, since syntax, semantics, and inferences may now be represented thus. Winograd had three goals
in mind when he designed his system: (1) the practical desire to have a usable language-understanding
system; (2) the attainment of better understanding of what language is and how it is put together; and (3) the
understanding of intelligence and how to make it amenable to computers.

The system was written in Lisp and was organized as shown in Fig. 12. MONITOR is a small Lisp program
that calls the basic parts of the system. INPUT accepts normal English input, performs morphemic analysis,
modifying the dictionary definitions accordingly, and returns a string of words with their definitions to be used
as input to GRAMMAR, the main coordinator of the language understanding process. GRAMMAR handles
noun clauses, noun groups, prepositional groups, and so on, and is written in PROGRAMMAR. SEMANTICS is
a collection of Lisp programs that work with GRAMMAR to interpret sentences. ANSWER contls the response
of the system, and also remembers discourse for future reference. PROGRAMMAR is a parsing system that
interprets grammars written in the form of programs. DICTIONARY consists of two parts: a set of syntactic
features associated with each word, and a semantic definition for each word. SEMANTIC FEATURES is a
network of property lists used for the initial phase of semantic analysis. BLOCKS is a collection of PLANNER
theorems that contain the system’s knowledge about the properties of a particular world. MOVER is a set of
display routines that simulate the behavior of SHRDLU (the “robot” and the environment. PLANNER is a
deductive system used at all stages of analysis. DATA consists of facts about the current scene in the form of
PLANNER assertions describing objects.

SHRDLU’s vocabulary consists of a few hundred words relevant to the robot’s world. Within this narrow
framework, the system’s capacity for engaging in intelligible discourse is remarkable. SHRDLU accepts virtu-
ally any reasonable imperative or interrogative sentences (including “why . . .,” “how . . .,” “what . . .,” “where . . .,”
and “when . . .” questions, as well as questions requiring a yes or no answer), and some declarative sentences
(including simple word definitions and e user’s “likes” and “dislikes”). SHRDLU’s capacity for using context to
aid syntactic and semantic analysis extends not only to words within the same sentence, but to other sentences
and to the entire discourse, enabling comprehension of such sentences as “Why did you do it?”

Design features included:

• Systemic Grammar.Winograd felt that traditional syntactic analysis using formal grammars was inappro-
priate for finding meaning-related structural units in utterances. He chose instead to work with systemic
grammar, a nonformal grammar proposed by Halliday. In this grammar the only syntactic types are the
clause, the noun group, the verb group, the adjective group, the preposition group, and 18 word types. A
group may contain a large number of words and may be modified by a variety of syntactic features. For
example, a noun group might have the features DET, DEF, OBJ, PREPOBJ, NS, indicating that it contains

NATURAL LANGUAGE UNDERSTANDING 43

Fig. 12. A System written in Lisp by Winograd.

a determiner that is definite, that it serves as object of a preposition, and that its number is singular.
Essentially syntactic analysis consists of attaching features to syntactic units (or deleting them) and using
constraints on how these features may combine to steer the search for additional units and features. The
constraints are expressed by AND–OR trees of permissible feature combinations for each syntactic type
(these trees are not actually stored anywhere—they are built into the parsing programs). A group of mu-
tually exclusive features is called a system; hence the term systemic grammar. The parse trees in systemic
grammar thus have few but complex nodes. The parsing is strictly top-down. That is, instead of first group-
ing words into noun groups (NGs) and verb groups (VGs), then seeking to form preposition groups, clauses,
and higher-level noun groups (NGs) and verb groups (VGs), we start by looking for a top-level clause; this
means invoking the CLAUSE program, which then looks for its constituents (basically a NG and a VG),
and so on; eventually we are looking at a particular word, expecting it to be of a particular type; if it is not,
something else is tried (as will be seen, failure is program-controlled). Whenever a new unit is successfully
parsed, a new node is put on the parse tree. Failure may lead to deletions of nodes. Concurrently with the
formation of the syntactic structure, parts of a semantic structure are formed. As soon as the main part of
any NG (i.e., a NG minus its qualifying clauses or preposition groups) has been parsed an object semantic
structure (OSS) is built for it; such OSSs generally describe physical entities of some sort. The partial
structure is later expanded to include the qualifiers. First, however, as soon as any relative clause or prepo-
sition group has been parsed, a relation semantic structure (RSS) is formed, using knowledge about the
kinds of semantic subjects and objects particular verbs and prepositions require. RSSs describe events or
relations between things or events. Finally, a RSS is formed for the complete clause (sentence) on the basis
of the main verb (plus its modifiers) and the top-level NGs, or rather their OSSs. This final RSS is not yet
the desired PLANNER program, which is the end product of the syntactic and semantic analysis process.
However, it contains all the places required in that program, for example, all the THGOAL statements.

• Procedural Embedding As already indicated, syntactic units are defined by programs that look for them. The
language PROGRAMMAR is used to write these procedural definitions. Thus syntactic knowledge has been
procedurally embedded. In addition, the meaning structure for an input utterance is a PLANNER program.
Knowledge about the “world” consists of the PLANNER database and theorem base. The database, which
describes the current state or hypothetical states of the simulated toy world, is the only nonprocedural
part of SHRDLU’s knowledge. It properly corresponds to the subsystem called the “knowledge base” in our
general schema. The theorems, which express know-how about the world and SHRDLU’s relation to it,
belong with the “routines to carry out the intent of an utterance”; they participate in the execution of the
PLANNER program, which is the end product of semantic analysis.

44 NATURAL LANGUAGE UNDERSTANDING

• Heterarchy As has already been seen, semantic analysis begins before syntactic analysis has been com-
pleted. In fact, the semantic routines are called by the syntactic routines. The importance of this is that
semantic incongruitles found early in the parsing process can quickly redirect false starts. For example, at
one point in the parsing of “the wicked support injustice,” an attempt would be made to parse “the wicked
support” as a NG. This would quickly be rejected by the semantic noun group specialist SMNG1 (invoked by
the NG), which notes that the semantic definition of “wicked” has the marker “animate,” while “support,”
as a noun, has the marker “inanimate” (say). Winograd also states that inference routines may be called
during the parsing process, presumably to deal with problematical sentences such as “I saw the Grand
Canyon flying to New York.”

• PROGRAMMAR. The parsing language PROGRAMMAR is discussed in some detail below, since it is the
tool that enabled Winograd to put Halliday’s very complex grammar into usable form.

Winograd’s program endorses the procedural meaning representation for knowledge. In this way factual
and heuristic information are combined to promote more efficient (w.r.t. processing time) use of the factual
information. Nevertheless, the visual suggestiveness inherent in network-oriented representations, which leads
to efficient processing algorithms, is lost. More importantly, the procedural embedding of knowledge runs into
difficulties when contexts shift. Different heuristics and processing methods are then appropriate. Winograd’s
system combines many fascinating techniques to produce spectacular results. In his system, semantic analysis
takes place before syntactic processing is complete. If semantic analysis fails for the structure built thus far, a
backtrack mechanism allows the parsing to be redirected along more promising lines. This was the first true
integration of syntactic and semantic analyses with good results.

PROGRAMMAR, a language for writing grammars, was developed in order to put systemic grammar
into a usable form. Winograd found systemic grammar more amenable to finding meaning-related structural
units in natural language than the traditional syntactic use of formal grammars (e.g., phrase structure and
transformational grammars). Systemic grammar is a nonformal grammar that produces parse trees with few,
but complex, nodes.

Criticisms leveled at Winograd’s system include the following. His semantics are tied to the simple
referential blocks world, without a method to make them extensible to any general real-world situation.
Winograd’s system would be unable to decide correctly between alternative word meanings in any given context.
It is difficult to set up new “microworlds” in which understanding would take place, even if one were so inclined.
The use of MICROPLANNER as a deductive mechanism can be criticized because of MICROPLANNER’s use
of blind backtracking to handle errors (note that no better working implementation of a deductive system was
available then). Finally, the use of procedures as meaning representations is acceptable in some cases but
awkward in many cases where a “static” representation would be sufficient.

While Winograd is very much a “heuristic programmer,” Schank (83) saw himself as doing cognitive
simulation, that is, modeling the mind in some sense. Thus, he is more interested in constructing a viable
theory of language processing and meaning representation than in building high-performance programs. He
has, however, built paraphrase programs embodying his theories.

Schank’s basic contentions are:

• The central problem is to discover how meaning should be represented internally. The problem of translating
from English to appropriate meaning representations cannot be posed until this has been done.

• Many of the ideas that seem to be conveyed by an utterance are actually inferred by the listener. Thus an
essential part of a theory of language processing must be a theory of how such discourse inferences are
made.

• We should seek simple conceptual building blocks from which to construct meaning representations. We
should not assume that there is a one-to-one correspondence between these building blocks and English
words. In particular, reasoning about actions would be phenomenally complex if we used as many action

NATURAL LANGUAGE UNDERSTANDING 45

primitives as there are English verbs. Schank proposes 14 primitive building blocks for expressing everyday
actions.

• A guiding principle in the semantic analysis of language should be that two utterances of identical
meaning—however different they may be in structure—should be mapped into identical meaning rep-
resentations. The fact that most ideas can in fact be expressed in many ways, of widely varying syntactic
structure, indicates that syntactic analysis is of little value in extracting the meaning of an utterance.
Instead, knowing the kinds of semantic structures we are looking for, we should seek “fillers” for the “slots”
in the semantic structures.

Schank’s conceptual dependency theory is the basis of a system developed over about six years, culminating
in the MARGIE system (84). It is a system rich in semantic representation, designed to provide a representation
of meaning in terms of which paraphrase, inference, and MT could be carried out. Schank has succeeded to
some extent with the first of these two aims. MARGIE operates in two modes: the paraphrase mode and the
inference mode. Following is a sample output from those two modes:Inference mode:

Paraphrase mode:

Schank uses a graphical notation consisting of items from four conceptual categories to represent meaning
structures. These categories are picture producers (PP), picture aiders (PA), action aiders (AA), and actions
(ACTs), and they correspond closely to nouns, adjectives, adverbs, and verbs, respectively.

The smallest structural unit that Schank deals with is the conceptualization: a graphical structure that
links together conceptual categories using a variety of symbols, conceptual tense markers conceptual cases
[analogous to and certainly influenced by the linguistic case structure of Fillmore (58)], and primitive actions.
Schank uses four cases that serve as subgraphs in conceptualizations. These cases include the objective case,
which relates an objective PP to an ACT; the recipient case, which relates a donor PP and a recipient PP to an
ACT; the directive case, which relates direction (to or from) to an ACT; and the instrumental case, which links
conceptualizations instrumental to an ACT to a conceptualization containing the ACT. In addition to conceptual
cases, Schank makes use of only fourteen primitive actions through which he expresses all other actions. These

46 NATURAL LANGUAGE UNDERSTANDING

primitive actions are PROPEL, MOVE, INGEST, EXPEL, GRASP, PTRANS, MTRANS, ATRANS, SMELL,
LOOK-AT, LISTEN-TO, CONC, and MBUILD. Forgoing further discussion of Schank’s system, we remark that
it can be considered as one of the very few natural language processing systems that may fall into the category
of understanding systems.

The final system we discuss might also fall into this category: Wilks’s (85) preference semantics system.
Wilks’s system, like Schank’s, has a uniform representation in terms of structures of primitives for representing
the meaning content of natural language. Unlike Schank, Wilks has concentrated on MT, from English to
French, of small input paragraphs, and he has reported reasonably good translation. His system does not
operate in paraphrase or inference modes. It makes use of formulas, one for each meaning (sense) of a word.
These formulas are based on the (binary)ecomposition trees developed by Lakoff 86. The formula is a tree
structure of semantic primitives interpreted formally using dependency relations. A typical formula, for the
action of drinking, is as follows:

The rightmost element is called the head. Template structures that actually represent sentences are built
up as networks of formulas. These templates always contain an agent node, an action node, and an object node,
and may include other nodes, which may depend on these three formulas. Formulas dictate how other places
in the template should be filled. Thus “drink” would prefer a FLOW STUFF as object and an ANIM as subject.
“Prefer” is the correct word to use, since if either a non-ANIM subject or a non-FLOW STUFF object is the only
choice available, the utterance will still be understood (metaphorically). The template finally established for a
fragment of text is the one in which most formulas have their preferences satisfied. This very simple device is
able to do most of the work of a syntax and word sense ambiguity-resolving program.

After the agent–action–object templates have been set up locally for fragments of input text, Wilks’s system
attempts to tie these templates together to provide an overall meaning structure for the input. To accomplish
this, Wilks makes use of paraplates attached to formulas for English prepositions. These paraplates range
across two (not necessarily contiguous) templates. Thus far the structure of mutually connected templates
comprises a semantic block in this basic mode. Whenever sentences cannot be successfully resolved into a
semantic block in the basic mode, Wilks employs another mode, the extended mode, which makes use of
commonsense inference rules, attempting, by a simple strategy, to construct the shortest possible chain of rule-
linked template forms from previous text containing one of its possible referents. This chain then represents
the solution to the ambiguity problem. After constructing a semantic block, French generation proceeds by
“unwrapping” the block. There is no deepening of the representation by the generation routines.

The conceptual dependency approach of Schank and the preference semantics approach of Wilks exem-
plify what we believe to be the correct approach to representing the conceptual content of natural language
utterances in terms of meaning structures. Specific criticisms of these approaches have been given elsewhere
(87). Nevertheless, these two related approaches have the following desirable features regarding knowledge
representation. The meaning structures corresponding to natural language utterances are formed according to
simple structural rules. Powerful heuristic criteria, based on the central role of verbs and on preferred semantic
categories for the subjects and objects of verbs, take on a “slot and filler” nature. Syntax is deemphasized in
favor of meaning analysis. Paraphrase relations are made clearer. Similarity relations are made clearer. Infer-
ences that are true of various classes of verbs can be treated as coming from the individual (primitive) ACTs.
The inferences come from ACTs and states rather than from words. And finally, the organization in memory
is simplified because much information need not be duplicated. The primitive ACTs provide focal points under
which information is organized.

NATURAL LANGUAGE UNDERSTANDING 47

We now turn our attention forward about 20 years to the activities that are claiming significant current
interest.

Empirical, Corpus-Based Approaches to NaturalLanguage Processing. Information retrieval
systems have been around for as long as natural systems. Contemporary information retrieval systems have
moved to a vector space model in which every list of words in both the document and the query is treated
as a vector in an n-dimensional space (n being the number of symbols in the document collection). Thus a
three-word query such as “water meter cover” would be treated as a vector with a value of 1 for these three
terms and a value of 0 for all other terms. Documents are then found by comparing this vector with all others in
the collection and reporting ones that match or are close. This more contemporary method exhibits flexibility,
since documents are ranked by their distance to the query.

The use of NLP in information retrieval is still novel, but already some natural language tools are
appearing in information retrieval applications (morphological analyzers, word sense disambiguators, etc.).
NLP has proven successful in text categorization, summarization, and extracting data from text. Since the
categories are fixed, text categorization appears a better candidate for NLP techniques than information
retrieval, where categories are not fixed.

Perhaps due to the tremendous interest in the WWW, there has been a revival of empirical and non-
linguistic methods of NLP. Essentially these methods use machine learning techniques to extract linguistic
knowledge automatically from natural language corpora for NLP applications. All of the efforts described in
the previous section required the system designer to encode requisite knowledge manually (albeit Winograd’s
system could deduce new knowledge once a core of facts was predefined). The reliance on manual encoding of
domain knowledge gave rise to the term knowledge engineering. This made these earlier systems quite brittle:
they simply did not function well outside of the domain of discourse for which they were designed.

Prior to the influence Chomsky (72) exerted on linguistics, arguing that language was largely innate
and could not be learned simply from data (natural language corpora), there was significant activity in the
use of primarily statistical methods to determine the structure of languages. Such distributional information
permitted clustering of words and phrases from which much could be learned about a language.

In the late 1980s, owing in part to the success of statistical methods applied to speech understanding,
researchers in natural language understanding began to use similar methods, initially to recover original data
from noisy data, then to perform part-of-speech tagging (useful as preprocessing for parsing systems) and
thence parsing, speech synthesis, intelligent information retrieval, and MT. Conferences have sprung up as a
mechanism for researchers to exchange ideas, and repositories have been developed on methods, corpora, and
so on for researchers to share. An excellent overview article on empirical NLP was written recently by Brill
and Mooney (88). More recently, other facets of NLP cessing have been approached by empirical, corpus-based
learning methods, including semantic analysis (i.e., word sense disambiguation and semantic parsing), see Ng
and Zelle (89) for an overview.

In addition to providing an excellent overview, those authors discuss CHILL, Zelle’s 90 empirical NLP
system. CHILL takes as input a set of training instances consisting of sentences paired with the desired queries.
The output is a shift–reduce parser in Prolog that maps sentences into queries. CHILL was demonstrated on a
US geograph, database encoded as a set of facts in Prolog. The query language is a logical form that is directly
executable by a query interpreter, which subsequently receives appropriate answers from the database. For
example, for the query “show me the morning flights from Boston to Denver,” CHILL produces a parser which
turn the sentence into the logical form

This form is directly interpretable in Prolog, and the general operators are directly inferable from the
representations themselves.

48 NATURAL LANGUAGE UNDERSTANDING

Another interesting modern question-answering system is Hammond’s FAQFinder program (91, 92).
According to Hammond’s Web page, FAQFinder is an automated question-answering system that uses the files
of “frequently asked questions” (FAQs) associated with many Usenet newsgroups. These files are compendiums
of the accumulated wisdom of the newsgroup on topics that are of frequent interest. FAQFinder will take a
user’s query on any topic, attempt to find the FAQ file most likely to yield an answer, search within that file
for similar questions, and return the corresponding answers.

Unlike artificial intelligence question-answering systems that focus on the generation of new answers,
FAQFinder retrieves existing answers found in FAQ files. Unlike information retrieval approaches that rely on
a purely lexical metric of similarity between query and document, FAQFinder uses a semantic knowledge base
(WordNet) to improve its ability to match question and answer. FAQFinder is based on four assumptions about
FAQ files: (1) all of the information in a FAQ file is organized in question–answer (Q&A) format; (2) all of the
information needed to determine the relevance of a Q&A pair can be found within that pair; (3) the question
part of the Q&A pair is the most relevant for determining the match to a user’s question; and (4) broad, shallow
knowledge of language is sufficient for question matching. Essentially these assumptions lead to a case-based
solution (view) of the FAQ retrieval problem.

Hammond’s system is available on the WWW, and an example of using this extremely fast system follows.
From an input configuration, shown in Fig. 13 with the input question “I want to schedule a trip to Japan.”
output in Fig. 14 was generated.

FAQFinder has demonstrated that when there is an existing collection of questions and answers, as found
in the FAQ files, then question answering can be reduced to matching new questions against Q&A pairs. The
authors rightly claim that this task is simpler than that of natural language understanding, but, as Figs. 13
and 14 illustrate, caution is nonetheless important in interpreting results.

Summary and Conclusions. Natural language understanding by computer is an important goal,
and many uses of this technology have already been put to the test. In this article we have considered a
number of concerns that must be confronted in the design of a sophisticated NLI, in building a machine
translation system, and in constructing sophisticated question-answering systems. We argued the necessity
of incorporating knowledge of the dain, knowledge of the user, and knowledge of discourse structure into the
natural language system, and indicated many research efforts that investigate problems deriving from this
necessity. Particular attention in the paper has been devoted to issues that arise when trying to represent
these diverse kinds of knowledge.

Has research into these many concerns progressed to the point where it will actually be possible to
begin to build the “ideal” natural language system? As knowledge representation ideas become more precisely
formulated, such an evolution is happening. Work in the 1970s and 1980s took knowledge representation far
from its ad hoc beginnings. General knowledge representation formalisms have been developed and honed.
Investigations into fundamental knowledge representation principles have proceeded.

Despite these developments, however, the ability to incorporate knowledge is still a major source of
difficulty confronting the designer of the ideal natural language system. There are a number of reasons for
this. First, little of the work on knowledge representation is explicitly aimed at natural language understanding,
and less yet at the problem of integrating knowledge into the interpretation processes. Second, much of the work
is highly theoretical, and will require substantial reforlation to be applied. Finally, knowledge representation
is a vast area of inquiry; current research has investigated only a relatively small subset of the potential issues
lying in wait. New empirical, corpus-based methods appear promising, but are as yet incomplete.

It appears that the ideal natural language system is still some way off, at least in its full splendor.
Nevertheless, the indicators are all positive. Almost every current research effort has dealt deeply with at
least one or two issues of relevance to constructing the ideal system. The union of all such research covers a
vast range of relevant issues. The next few years should see a distillation of the many techniques collectively
provided by current and future research, and the slow development of more comprehensive theories. The effect
on the sophistication of practical natural language systems will be incremental, but over the long run immense.

NATURAL LANGUAGE UNDERSTANDING 49

Fig. 13. FAQFinder screen with the input question “I want to schedule a trip to Japan.”

The ideal natural language system may not be available for some time, but as we move into the future, closer
and closer approximations to it should be.

Acknowledgments

The authors are members of the Institute for Robotics and Intelligent Systems (IRIS) and wish to acknowledge
the support of the Networks of Centres of Excellence Program of the Government of Canada and the Natural
Sciences and Engineering Research Council, as well as the participation of PRECARN Associates Inc. We are
grateful to Canadian Cable Labs Fund for their financial assistance.

Appendix: Some Commercial Natural language Interfaces

The following is a list of commercial (NLIs) that either are well known or have long development histories or
both. The final item in the list is not an NLI but an environment for constructing NLIs.

50 NATURAL LANGUAGE UNDERSTANDING

Fig. 14. FAQFinder screen with output for the input question “I want to schedule a trip to Japan.”

• Natural Language, from Natural Language Inc., Berkeley, CA (415-841-3500), runs on Rdb, ingres, Or-
acle, Sybase, Informix and Sharebase, and works on VAX/VMS and Windows platforms. Another NLI—
presumably an earlier one—is DataTalker, which “runs on Digital VAX, under VMS, ULTRIX and Berkeley
UNIX 4.2, Sun-3 and Sun-4 workstations under UNIX, and the IBM PC/AT (and compatibles) equipped
with a coprocessor board” (93, p. 5-14).

• Intellect, supplied by Al Corporation, Waltham, MA, is integrated within their knowledge-based system
(KBS) shell product KBMS and runs against a number of database management systems (DBMSs). Accord-
ing to Miller and Walker (93, p. 5–2), Intellect “runs in IBM mainframe environments under MVS/TSO,
VM/CMS and MVS/CICS.” Intellect is based on Larry Harris’s ROBOT system.

• Q&A from Symantec Corp., Cupertino, CA (408-253-9600), is based on the LIFER NLI developed by Gary
Hendrix et al. Q&A can import and export data from “Lotus 1-2-3, dBASE II and III, Symphony pfs:File,
IBM Filing Assistant and DIF and ASCII files” (93, p. 5-16). Q&A has an integrated word processor which
“will work with documents from Lotus 1-2-3, pfs:Write, IBM Writing Assistant, WordStar, and ASCII files”
(93). “Version 2.0 features include local area network support and tighter integration with Lotus 1-2-3.
Several magazine awards have been given to this version.” (93, p. 5-17).

• Parlance, from Bolt Beranek & Newman, Cambridge, MA (617-873-5412), is probably based on (and an
improvement of) the LUNAR and IRUS systems, also developed at BBN by William Woods et al.

• EasyTalk, developed by Intelligent Business Systems of New Haven, CT. For more on this system see Steve
Shwartz’s (1987) book Applied Natural Language Processing (94). IBS appears to be an offspring of Roger
Schank’s company Cognitive Systems, also of New Haven, CT.

• IBM SAA LanguageAccess, developed at IBM’s lab in Lidongo, Sweden, is written in Prolog, and permits
NL queries against a relational DBMS. Based on TQA and other former IBM NLIs, its status as a product
is unknown at this time. For more information, see Gregor Jonsson’s paper in the 1991 Data Engineering
conference (95).

• English Wizard, from Linguistic Technology Corporation, Acton, MA, is discussed in some depth below (96).
• ELFSoft has announced Access ELF, a shareware NLI for Microsoft Access.

NATURAL LANGUAGE UNDERSTANDING 51

• Language Craft, from the Carnegie Group, Pittsburgh, PA, is “an integrated open-architecture environment
for constructing natural language interfaces to databases, operating systems, expert systems and conven-
tional software applications. Language Craft combines a grammar building development environment
with a domain-independent natural language interpreter and run-time module. Features include: PLUME
run-time interpreter combining case–frame instantiation and pattern matching; Dialogue management for
handling fragmentary input and ambiguities; Grammar Writer’s Workbench containing a grammar editor,
grammar compiler, tracer and stepper to debug grammars; and Domain translator. Language Craft can be
adapted to a wide variety of applications. Users can develop their own domain-specific natural language
interfaces without specialized Al or linguistic expertise” (93, pp. 5-3, 5-4).

97 list the following companies as NLP (text and speech) software developers: Al Corporation, ApTech,
AT&T Bell Labs, ALPS, Battelle/NLQ, Bolt Beranek & Newman, Carnegie Group, Cognitive Systems, Dynamics
Research Corp, Dragon Systems, Excalibur Technologies Corp, Gachot-Systran, GSI Erli, IBM, Intelligent
Business Systems, Kurtzweil Applied Intelligence Inc., Lernout & Hauspie, Logos Corp., Natural Language
Inc., Reference Software, Siemens Nixdorf, Smart Comm, Speech Systems, Symantec Corp.

Critique of English Wizard. English Wizard is a commercially available NLI to databases. The version
reviewed, unless otherwise specified, is English Wizard 1.1.

The installation or setup time for NLIs is a major issue in their overall usability, as 98, creator of
English Wizard, acknowledges. Harris says that the dictionary construction process must be fully automated—
particularly in a personals computer setting where no technical support is available other than the user. Harris
regards setup/installation as much more important than system coverage, which he calls “fluency”:

Rather than trying to maximize fluency at all costs, taking the approach of maximizing fluency subject
to the constraint of fully automatic dictionary construction is necessary. Since automating the setup process
is an absolute requirement, the system must do the best it can, given this requirement. If the resulting level
of fluency is comparable to the earlier systems (such as Intellect, a natural language database query tool
introduced by Al Corp in 1981) without the setup time, then that would be sufficient.

English Wizard is installed from a dialog box called the Dictionary Construction Kit. No bugs were
encountered during installation of our own trial application, which had 14 tables, 135 columns, and 646
column values that we deemed useful to represent with lexical entries. The installation process requires some
manual intervention to decide which tables and columns to include. Lack of automatic join finding was a
hindrance to automatic dictionary building, because English Wizard makes a few joins but the installer must
manually create the majority of joins using the Link Editor. Once dictionary building is complete, the lexicon
must be customized to the database it works against in order to make it usable. The same process is used to
maintain the lexicon, that is, to add new vocabulary.

Users can review the configuration of the database: they can edit definitions of tables, columns, and values.
English Wizard’s root words are from its “root dictionary.” Ignored words are those that can be omitted from a
sentence without changing its meaning. Users can define their own ignored words, though the User Guide notes
that “words should only be ignored as a last resort.” English Wizard predefines 243 root or ignored words. Very
few have user-accessible definitions, except for some mathematical ones. The ignored words are: about, also, an,
at, cent, column, data, database, day, dollar, field, file, from, I, I’d, ignore, in, info, information, me, month, need,
our, quarter, record, row, table, than, the, there, too, us, want, we, week, will, wonder, year, you, your. English
Wizard predefines about 200 synonyms from its thesaurus. The NLI looks at the names of tables or columns or
any word users define, consults its thesaurus, and supplies a large number of (largely unhelpful) synonyms, e.g.,
“English” → britain, british, england, englishman, great britain, uk, united kingdom; and “offering” → gave,
giving, given, funding, handout, bestowal, appropriation. Predefined words and synonyms include US state
names and their two-letter abbreviations (e.g., “MA”), which we have deleted for our (Canadian) application.
Also predefined are “M” and “F” for male and female. Synonyms can be defined for tables, columns, values,
root words, formulas, and groups. Formulas are words that represent a calculation and can involve the use of

52 NATURAL LANGUAGE UNDERSTANDING

columns, constants, other formulas, and English Wizard’s built-in functions. For example, if the database stores
“Salary,” then “Monthly Salary” could be defined as “Salary/12”. Groups are words that represent a group of
columns, for example, “address” might be defined as the group of columns Street, City, State, and ZIP Code.

There are two phases to customizing a dictionary after the initial build. The first phase is to prune away
unwanted synonyms supplied by English Wizard. The second phase is to define new vocabulary. Items to
be pruned consist of strange pluralizations and singularizations of redefined words and synonyms, such as
“Arkansa” from “Arkansas” “Texa” from “Texas.” Users must specify irregular word infections, since English
Wizard cannot anticipate irregular word endings: all irregular inflections of words must also be defined sep-
arately as synonyms for the words. For example, “bough” should be defined as a synonym for “buy” Defining
new vocabulary consists in naming synonyms of predefined words and names of tables columns and column
values; specifying ignored words, groups, and requests; and assigning verbs as names of joins. Despite the User
Guide’s claim that users can specify their own ignored words, we were unable to and could only make a word
ignored by defining it as a synonym of another ignored word.

English Wizard has zero tolerance for lexical ambiguity. Three cases of its intolerance are as follows:

(1) A word can not be defined as both a column value and as something else, presumably because English
Wizard cannot distinguish between the two uses. For example, “French” is predefined but also is part of
various phrases that refer to column values.

(2) A word with a verb definition cannot also be given a noun definition. For example, “show” is predefined
with a verb definition, so one cannot create a noun definition for it as well.

(3) A word cannot be defined as both a column and table name, again presumably because English Wizard
cannot distinguish between the usages. For example, I wanted to name the column “Offering Type” as
“offering” but was told by English Wizard that The term “offering” is already defined. Column names
cannot conflict with table names or other columns in the same table.” So we are forced to define “offering”
to refer to the table, thereby forcing inclusion of theable in the querywhich can result in a significant
inefficiency. For example, if we ask for the restricted offerings, the OFFERING table does not need to be
consulted, yet if we define “offering” as referring to the table, then the table will be consulted in any case.

Problems were encountered when defining requests: a limit was encountered when trying to impose a
hierarchy on top of a set of database column values. We have used requests to (a) give names to groups of
column values, (b) request names of type (a) that refer to groups of column values and (c) request names of type
(b) that refer to groups of request names. However, in certain cases, English Wizard says that we are trying
to define an item in terms of itself. We were told by Mike Groch of Linguistic Technology that trying to define
such a request hits a limit that is in 1.1 beta but should be eliminated from the final 1.1.

In a first quick test drive of English Wizard 1.0, we found a number of problems. The system was frozen
by the query “the customers from bonn and washington state.” An SQL error state was caused by the query
“the employees who sell meat products.” The following phrases led to the failure of a built-in function: “in the
year of 1994” and “month of August.” The query “the employees who reside in bonn” was given an incorrect
interpretation in terms of a person with the last name Bonn (a person with last name Bonn is in the dictionary,
and there is no information that Bonn is a place, so presumably the system defaults to the only dictionary
entry for Bonn that it has). The following words were not in the dictionary: “made,” “Bonn,” “1994” (though
“August 1994” is O.K.), “first” as in “in the first quarter,” and “second” as in “in the second quarter.” The test
drive dictionary contained entries for “next April” and “next August.”

English Wizard has an attractive-looking interface, but it is not very usable in practice and could certainly
be improved. It would be nice to search on the definitions of words that represent column values. In this way, one
could select out particular types of definitions (to check for overlaps, etc.). The search facility in the Dictionary
Editor is limited and awkward to use. It is awkward to define requests using the Query Builder window. One

NATURAL LANGUAGE UNDERSTANDING 53

has to transfer Uncommon Words into Common Words, so that those words can be used in requests. [What are
(Un)Common Words? Is this the only difficulty?]

The verdict: Customization is a big stumbling block for practical use of NLIs. Presently, building a
dictionary map is hard, and creating lexical entries is hard because one has to decide whether a word properly
refers to a table, a column, or a link. Thus the usefulness of English Wizard is questionable for nontrivial
applications.

The main problem with the performance of English Wizard is its intolerance of lexical ambiguity. It will
allow database ambiguity (i.e., a column appearing in several different tables). Such ambiguity is handled by
presenting a window showing the different tables in which a column appears. This is again a reflection of its
primitive join-finding ability. In almost all cases the system should be able to figure such ambiguities out for
itself.

No bugs were found during installation. The process requires some manual intervention to decide which
tables and columns to include. Lack of automatic join finding was a hindrance to automatic dictionary building,
because the installer had to supply some joins manually. English Wizard makes a few joins, but the majority
of joins must be manually created using the Link Editor. According to a mailing from Linguistic Technology,
they have been surprised to find that customers want to hire consultants to help them set up English Wizard
in their environments. Linguistic Technology thought they were designing an end-user tool. They have now set
up a technical consulting program in which consultants are trained and accredited before being recommended
to customers.

The reason for the intolerance of ambiguity is fairly obvious: English Wizard provides no mechanism for
restricting the context of individual word usages, so any ambiguity has to be handled by presenting multiple
alternatives, which would prove very annoying in the presence of much lexical ambiguity.

English Wizard is really geared towards small databases. Due to limitations in dictionary size and in
join-finding capabilities, it is hard to make English Wizard work with large databases.

MultiList Translation System Languages
Cybertrans http://www.epiuse.co.za/translator/default.htm
GLOBALINKhttp://www.globalink.com/pages/product-pwtrans6.htmlInTransNet

http://www.intransnet.bc.ca/ intrans/intrae.htm
LOGOS http://www.logos-ca.com/ SYSTRAN http://www.systransoft.com/
Afrikaans–English, German–English, French–English, Portuguese–English, Spanish–English
French, German, Spanish, Italian, Portuguese, English, and more Japanese–English
English to German, French, Spanish, Italian, Japanese; German to English, French, Italian
French, German, Spanish, Portuguese, Italian, Japanese, Chinese, English, and more End-MultiLis

BIBLIOGRAPHY

1. E. S. Gardner The Case of the Demure Defendant, New York: Morrow Company, 1956.
2. J. Mylopoulos et al. TORUS: A step toward bridging the gap between databases and the casual user, Inf. Syst., 2: 49–64,

1976.
3. T. Strzalkowski ENGRA—yet another parser for English, TR83-10, LCCR, Burnaby, BC: Department of Computing

Science, Simon Fraser University, 1983.
4. R. Hadley SHADOW: A natural language query analyser, Comput. Math. 11 (5): 481–504, 1985.
5. B. Webber et al. Extended natural language database interactions, in N. Cercone, (ed.), Computational Linguistics,

London, Pergamon, 1983, pp. 233–244.
6. J. F. Allen C. R. Perrault Analyzing intention in utterances, Artif. Intell., 15 (3): 143–178, 1980.

54 NATURAL LANGUAGE UNDERSTANDING

7. J. Wald Problems in query inference, Ph.D. Thesis, Department of Computational Science, University of Saskatchewan,
Saskatoon, 1985.

8. E. F. Codd et al. RENDEZVOUS Version 1: An experimental English language query formulation system for casual
users of relational databases, Res. Rep. No. RJ2144, San Jose, CA: IBM Research Laboratory, 1978.

9. N. Cercone G. McCalla Accessing knowledge through natural language, invited chapter for M. Yovits 25th Anniversary
Issue Advances in Computers series, New York: Academic Press, 1986, pp. 1–99.

10. T. Strzalkowski N. Cercone A framework for computing extra sentential references, Comput. Intell., 2 (4): 159–180,
1988.

11. H. P. Grice Logic and conversation, in P. Cole, J. Morgan (ed.) Syntax and Semantics, New York: Academic Press, 1975.
12. S. J. Kaplan Designing a portable natural language database query system, ACM Trans. Database Syst., 9 (1): 1–19,

1984.
13. M. Kao N. Cercone, W. S. Luk Providing quality responses with natural language interfaces; The null value problem,

IEEE Trans. Softw. Eng., 14: 959–984, 1988.
14. W. Luk S. Kloster ELFS: English language from SQL, ACM Trans. Database Syst., 11 (4): 447–472, 1986.
15. M. Kao Turning null responses into quality responses, M.Sc. Thesis, School of Computing Science, Simon Fraser

University, Burnaby, BC, 1986.
16. G. Hendrix et al. Developing a natural language interface to complex data, ACM Trans. Database Syst., 3 (2): 105–147,

1978.
17. L. R. Harris Experiences with intellect: Artificial intelligence technology transfer, AI Mag., 5 (2): 43–55, 1984.
18. N. Cercone et al. SystemX and DBLean: Easily getting more from your relational database, Integ. Comput. Aided Eng.,

1 (4), F. Golshani (ed.) pp. 311–339, 1994.
19. S. Petrick Natural language database query systems, IBM Res. Rep. RC 10508, 1984.
20. G. Malingaham Natural language access to internet search engines, M.Sc. Thesis, Department of Computer Science,

University of Regina, Saskatchewan, 1997.
21. J. Newton (ed.) Computers in Translation, London: Routledge, 1992.
22. W. J. Hutchins H. L. Somers An Introduction to Machine Translation, London: Academic Press, 1992.
23. W. Goshawke I. D. K. Kelly, J. D. Wigg Computer Translation of Natural Language, Wilmslow, United Kingdom: SIGMA

Press, 1987.
24. D. J. Arnolds Machine Translation: An Introduction Guide, London: Blackwell-NCC, 1994.
25. J. Slocum Machine Translation System, Cambridge, UK: Cambridge University Press, 1988.
26. M. A. Covington Natural Language Processing for Prolog Programmers, Englewood CI: RRS, NJ: Prentice-Hall, 1994.
27. ALPAC Language Machines: Computers in Translation and Linguistics, A report by the Automatic Language Process-

ing Advisory Committee, Washington, DC: Division of Behavioral Sciences, National Academy of Sciences, National
Research Council, 1966.

28. Y. Wilks An Artificial Intelligence Approach to Machine Translation, Report CS-264, Computer Science Department,
Stanford University, 1972.

29. W. J. Hutchins Machine Translation: Past, Present, Future, Chichester, UK: Ellis Horwood, 1986.
30. W. J. Hutchin Recent Developments in Machine Translation: A Review of the Last Five Years In New Directions in

Machine Translation, Proc. Budapest, Foris Publications, 1988.
31. K. Naruedomkul N. Cercone Steps toward accurate machine translation, Proc. 7th Int. Conf. Theor. Methodol. Issues

Mach. Transl., Santa Fe, NM, 1997, pp. 63–75.
32. H. Uchida ATLAS-II: A machine translation system using conceptual structure as an interlingua, Proc. 2nd Mach.

Transl. Summit, Tokyo, 1989.
33. K. Muraki PIVOT: Two-phase machine translation system, Proc. 2nd Mach. Transl. Summit, Tokyo, 1989.
34. M. T. Rosetta Compositional Translation, Dordrecht, The Netherlands: Kluwer Academic Publishers, 1994.
35. T. Mitamura E. H. Nyberg 3rd I. G. Carbonell An efficient interlingua translation system for multi-lingual document

production, Proc. Mach. Transl. Summit III, Washington, DC, 1991.
36. Center of the International Cooperation for Computerization, Thai Basic Dictionary, Tech. Rep. 6-CICC-MT55, Tokyo:

Machine Translation System Laboratory, CICC, 1995.
37. D. Jones Analogical Natural Language Processing, London: UCL Press Limited, 1996.

NATURAL LANGUAGE UNDERSTANDING 55

38. P. F. Brown et al. Analysis, statistical transfer, and synthesis in machine translation, Proc. 4th Int. Conf. Theor. Methodol.
Issues Mach. Transl. Nat. Lang., Montreal, 1992, pp. 83–100.

39. L. Cranias, H. Papageorgiou, S. Piperidis A Matching Technique in Example-Based Machine Translation, The Compu-
tation and Language E-Print Archive, 1995. Available: http://xxx.lanl.gov/abs/cmp-lg/9508005

40. S. Nirenburg et al. Machine Translation: A Knowledge-Based Approach, San Mateo, CA: Morgan Kaufmann, 1992.
41. P. McFetridge et al. SystemX: A portable natural language interface, 7th Canadian Society for the Computational

Studies of Intelligence/ Société canadienne pour l’ étude de l’ intelligence par ordinateur (CSCSI/SCEIO), Edmonton,
Alberta, 1988, pp. 30–38.

42. N. Cercone et al. Natural language interfaces: Introducing SystemX, in T. Oren (ed.), Advances in Artificial Intelligence
in Software Engineering, Greenwich, CT: JAI Press, 1990, pp. 169– 250.

43. G. Hall Querying cyclic databases in natural language, M.Sc. Thesis, School of Computing Science, Simon Fraser
University, Burnaby, BC, 1986.

44. C. Pollard I. Sag Information-based Syntax and Semantics: Fundamentals, Stanford, CA: Center for the Study of
Language and Information, 1987.

45. C. Pollard I. Sag Head Driven Phrase Structure Grammar, Chicago: University of Chicago Press, 1994.
46. J. A. Wald P. G. Sorenson Resolving the query inference problem using Steiner trees, ACM Trans. Database Syst.

(ACM-TODS), 9 (3): 348–368, 1984.
47. G. Hall et al. A solution to the MAP problem in natural language interface construction, Int. Comput. Sci. Conf. ’88.

Hong Kong, 1988, pp. 351–359.
48. J. Johnson Semantic relatedness, Comput. Math. Appl., 29 (5): 51–64, 1995.
49. J. Johnson R. Rosenberg A measure of semantic relatedness for resolving ambiguities in natural language database

requests, Data Knowl. Eng., 7 (3): 201–225, 1992.
50. B. W. Ballard J. C. Lusth, N. L. Tinkham LDC-1: A transportable, knowledge-base natural language processor for office

environments, ACM Trans. Off. Inf. Syst., 3 (2): 1–25, 1985.
51. M. Bates R. Bobrow A. transportable natural language interface, Proc. 6th Annu. Inte. SIGIR Conf. Res. Dev. Inf. Ret.

ACM, 1983.
52. D. E. Johnson Design of a portable natural language interface grammar, Tech. Rep. 10767. Yorkton Heights, NY: IBM

Thomas J. Watson Research Laboratory, 1984.
53. J. A. Johnson R. S. Rosenberg A data managent strategy for transportable natural language interfaces, Int. J. Intell.

Syst., 10 (9): 771–808, 1995.
54. P. Martin et al. TEAM: An experimental transportable natural language interface, Database Eng., 8 (3): 10–22, 1985.
55. C. D. Hafner K. Godden Portability of syntax and semantics in datalog, ACM Trans. Off. Inf. Syst., 3 (2): 141–164, 1985.
56. S. Shieber An Introduction to Unification-Based Approaches to Grammar, Stanford, CA: Center for the Study of

Language and Information, 1986.
57. F. Popowich et al. Processing complex noun phrases in a natural language interface to a statistical database, Proc. 14th

Int. Conf. Comput. Linguistics, Nantes, France, pp. 46–52, 1992.
58. C. J. Filimore The case for case, in E. Bach and R. Harms (eds.), Universals in Linguistic Theory, New York: Holt,

Rinehart & Winston, 1968, pp. 1–88.
59. G. Bouma Feature structures and nonmonotonicity, Comput. Linguistics, 18 (2): 183–203, 1992.
60. P. McFetridge N. Cercone Installing an HPSG parser in a modular natural language interface, Computational Intelli-

gence III, Amsterdam: North Holland, 1991, pp. 169–178.
61. F. Popowich C. Vogel A logio-based implementation of head-driven phrase structure grammar, in C. Brown and G. Koch

(eds.), Natural Language Understanding and Logic Programming, III, Amsterdam: Elsevier, North Holland 1991, pp.
227–245.

62. R. Jeffries et al. User interface evaluation in the real world: A comparison of four techniques, ACM CHI ’91, Conference
on Human Factors in Computing Systems, New Orleans, LA, 1991, pp. 119–124.

63. E. Guba Y. Lincoln Fourth Generation Evaluation, Newbury Park, CA: Sage, 1989.
64. N. Cercone et al. The systemX natural language interface: Design, implementation and evaluation, Tech. Rep. CSS-IS

93-03, Burnaby, BC: Centre for Systems Science, Simon Fraser University, 1993.
65. S. Petrick Field testing the Transformational Question Answering (TQA) system, Proc. 19th Annu. Meet. Assoc. Comput.

Linguistics, Stanford, CA, 1981, pp. 35–36.

56 NATURAL LANGUAGE UNDERSTANDING

66. W. Woods An experimental parsing system for transition network grammars, in R. Rustin (ed.), Natural Language
Processing, New York: Algorithmics Press, 1973, pp. 112–154.

67. A. Biermann B. Ballard Toward natural language computation, Am. J. Comput. Linguistics,H 6 (2): 71–86, 1980.
68. R. Hershman R. Kelley, H. Miller User performance with a natural language system for command control, NPRDC TR

79-7, San Diego, CA: Navy Personnel Research & Development Center, 1979.
69. L. E. Green E. C. Berkeley, C. Gottleb Conversation with a computer, Comput. Autom., 8 (10): 9–11, 1959.
70. B. F. Green et al. BASEBALL: An automatic question-answerer, in E. A. Feigenbaum and J. Feldman (eds.), Computers

and Thought, New York: McGraw-Hill, 1963, pp. 207–216.
71. R. K. Lindsay Inferential memory as the basis of machines which understand natural language, in E. A. Feigenbaum

and J. Feldman (eds.), Computers and Thought, New York: McGraw-Hill, 1963, pp. 217–233.
72. N. Chomsky Aspects on the Theory of Syntax. Cambridge, MA: MIT Press, 1965.
73. T. Winograd Understanding Natural Language, New York: Academic Press, 1972.
74. T. E. Cheatham S. Warshall Translation of retrieval requests couched in a semi-formal English-like language, Coun.

ACM, 5 (1): 34–39, 1962.
75. H. G. Bohnert Research summary, Project LOGOS, Commun. ACM, July 1962.
76. R. A. Kirsch Computer interpretation of English text and picture patterns, IEEE Trans. Electron. Comput., 13 (4):

363–376, 1964.
77. R. F. Simmons S. Klein, K. L. McConlogue Maximum depth indexing for computer retrieval of English language data,

Am. Doc., 15 (3): 196–204, 1964.
78. B. Raphael SIR: A computer program for semantic information retrieval, in M. Minsky (ed.), Semantic Information

Processing, Cambridge, MA: MIT Press, 1968, pp. 33–145.
79. D. Bobrow Natural language input for a computer problem-solving system, in M. Minsky (ed.), Semantic Information

Processing, Cambridge, MA: MIT Press, 1968, pp. 146–226.
80. C. C. Green Theorem proving by resolution as a basic for question-answering systems, in B. Metzer and D. Michie

(eds.). Machine Intelligence Vol. 4, New York: American Elsevier, 1969, pp. 183–208.
81. E. Chamiak Computer solution of calculus word problems, Proc. Int. J. Conf. Artif. Intell., Bedford, MA: 1969, pp.

303–316.
82. R. M. Kaplan Augmented transition networks as psychological models of sentence Comprehension. Artif. Intell. J., 3:

77–100, 1972.
83. R. Schank Conceptual dependency: A theory of natural language understanding, Cogn. Psychol. 3: 552–631, 1972.
84. R. Sohank et al. Margie: Memory, analysis, response generation, and inference on English, Third International Joint

Conference on Artificial Intelligence. Stanford Research Institute, Menlo Park, CA: 1973, pp. 255–261.
85. Y. Wilks Preference semantics, Tech. Rep. AIM-206, Stanford Al Project, Stanford, CA: Stanford University, 1973.
86. G. Lakoff Linguistics and natural logic, in D. Davidson and G. Harman (eds.), Semantics of Natural Language, Boston:

Reidel, 1972, pp. 545–665.
87. L. Schubert N. Cerecone, R. Goebel The structure and organization of a semantic net for Comprehension and inference,

in N. Findler (ed.), Associative Networks: Representation and Use of Knowledge by Machine, New York: Academic Press,
1979, pp. 121–175.

88. E. Brill R. Mooney An overview of empirical natural language processing, AI Mag., 18 (4): 13–24, 1997.
89. H. Ng J. Zelle Corpus-based approaches to semantic interpretation in natural language processing, AI Mag., 18 (4):

45–64, 1997.
90. J. Zelle Using inductive: logic programming to automate the construction of natural language parsers, Ph.D. Thesis,

Department of Computer Science, University of Texas at Austin, 1995.
91. R. Burke et al. Question answering from frequently-asked question fites: Experiences with the FAQ finder system,

Techn. Rept. TR-97-05, Chicago: Department of Computer Science, University of Chicago, 1997.
92. K. Hammond R. Burke, K. Schmitt A case-based approach to knowledge navigation, in AAAI Workshop on Indexing

and Reuse in Multimedia Systems, American Association for Artificial Intelligence, 1994, pp. 46–57.
93. K. Miller C. Walker Natural Language and Voice Processing: An Assessment of Technology and Applications. Lilburn,

GA: Fairmont Press, 1990.
94. S. P. Shwartz Applied Natural Language Processing, Princeton, NJ: Petrocelli Books, 1987.
95. G. I. Jonsson (1991). The development of IBM SAA Language Access: An experience report, Proc. Suppl. 7th Int. Conf.

on Data Engineering, Kobe, Japan, April 8–12, 1991, Los Alamitos, CA: IEEE Computer Society Press, 1991, pp. 13–21.

NATURAL LANGUAGE UNDERSTANDING 57

96. L. R. Harris H. A. Harris, M. A. Groch English Wizard User’s Guide (Version 1.0), Linguistic Technology Corporation,
Acton, MA: 1995.

97. B. Engelien R. McBryde Natural Language Markets: Commercial Strategies London: Ovum Ltd. 1991.
98. L. R. Harris Natural language: A brightened outlook, AI Expert: The Hitchhiker’s Guide to Artificial Intelligence, San

Francisco: Freeman, 1995, pp. 43–50.

NICK CERCONE
University of Waterloo
KANLAYA NARUEDOMKUL
Mahidol University

