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PATTERN RECOGNITION

Pattern recognition (PR) concerns the description or classifi-
cation (recognition) of measurements. PR is an important,
useful, and rapidly developing technology which is not one
technique, but rather a broad body of often loosely related
knowledge and techniques. PR may be characterized as an
information reduction, information mapping, or information
labeling process. Historically, the two major approaches to
pattern recognition are statistical (or decision theoretic),
hereafter denoted StatPR, and syntactic (or structural), here-
after denoted SyntPR. Recently, the emerging technology of
neural networks has provided another alternative, neural
pattern recognition, hereafter denoted NeurPR. NeurPR is es-
pecially well suited for ‘‘black box’’ implementation of PR algo-
rithms. Since no single technology is always the optimum so-
lution for a given PR problem, all three are often considered
in the quest for a solution.

The structure of a generic pattern recognition system is
shown in Fig. 1. Note that it consists of a sensor or set of
sensors, a feature extraction mechanism (algorithm), and a
classification or description algorithm (depending upon the
approach). In addition, usually some data which has already
been classified or described is assumed available in order to
train the system (the so-called training set).

PATTERNS AND FEATURES

Pattern recognition, naturally, is based upon patterns. A pat-
tern can be as basic as a set of measurements or observations,
perhaps represented in vector notation. Features are any ex-
tracted measurement used. Examples of low-level features
are signal intensities. Features may be symbolic, numeric, or
both. An example of a symbolic feature is color; an example
of a numerical feature is weight (measured in pounds). Fea-
tures may also result from applying a feature extraction algo-
rithm or operator to the input data. Additionally, features
may be higher-level entities, for example, geometric descrip-
tors of either an image region or a 3-D object appearing in the
image. For example, in image analysis applications (1), aspect
ratio and Euler number are higher level geometric features
extracted from image regions. Significant computational ef-
fort may be required in feature extraction and the extracted
features may contain errors or noise. Features may be repre-
sented by continuous, discrete, or discrete-binary variables
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Figure 1. Generic pattern recognition system elements [from (2) Copyright 1992. Reprinted by
permission of John Wiley & Sons.]

Binary features may be used to represent the presence or ab- space, classification errors occur. An example of this is shown
in Fig. 2.sence of a particular attribute. The interrelated problems of

feature selection and feature extraction must be addressed at
Example of Feature Extraction. Consider the design of a sys-the outset of any PR system design.

tem to identify two types of machine parts. One part, which isStatistical pattern recognition is explored in depth in nu-
denoted a shim, is typically dark and has no surface intensitymerous books. Good references are (2–10).
variation or texture. Another part, denoted a machine bolt, is
predominantly bright, and has considerable surface intensity

The Feature Vector and Feature Space variation. For illustration, only texture and brightness are
used as features, thus yielding a 2-D feature space and fea-Feature vectors are typically used in StatPR and NeurPR. It
ture vector. We also assume these features are extracted fromis often useful to develop a geometrical viewpoint of features
suitable measurements. Other possible features, such asin these cases. Features are arranged in a d-dimensional fea-
shape, weight, and so on, may be used. The problem, as for-ture vector, denoted x, which yields a multidimensional fea-
mulated, is challenging since these features are only typical

ture space. If each feature is an unconstrained real number, of each part type. There exist cases of shims which are bright
the feature space is Rd. In other cases, for example those in- and textured and bolts which are dark and have little texture,
volving artificial neural networks, it is convenient to restrict although they are atypical, that is, they do not occur often.
feature space to a subspace of Rd. Specifically, if individual More important, when features overlap, perfect classification
neuron outputs and network inputs are restricted to the is not possible. Therefore, classification error, characterized
range [0,1], for a d-dimensional feature vector the feature via the probability P(error), indicates the likelihood of an in-
space is a unit volume hypercube in Rd. correct classification or decision. In this example, element xi,

Classification of feature vectors may be accomplished by i � 1, 2, is a feature, where x1 is measured or computed
partitioning feature space into regions for each class. Large brightness and x2 is measured or computed texture. Further-
feature vector dimensionality often occurs unless the data are more, wi is a class, or a state of nature, where w1 is taken to
preprocessed. For example, in image processing applications,
it is impractical to directly use all the pixel intensities in an
image as a feature vector since a 512 � 512 pixel image yields
a 262,144 � 1 feature vector.

Feature vectors are somewhat inadequate or at least cum-
bersome when it is necessary to represent relations between
pattern components. Often, classification, recognition, or de-
scription of a pattern is desired which is invariant to some
(known) pattern changes or deviation from the ‘‘ideal’’ case.
These deviations may be due to a variety of causes, including
noise. In many cases a set of patterns from the same class
may exhibit wide variations from a single exemplar of the
class. For example, humans are able to recognize (that is,
classify) printed or handwritten characters with widely vary-
ing font sizes and orientations. Although the exact mecha-
nism which facilitates this capability is unknown, it appears
that the matching strongly involves structural analysis of
each character.
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Feature Vector Overlap. Since feature vectors obtained from Figure 2. Example of feature vector overlap, leading to classifica-
tion error.exemplars of two different classes may overlap in feature
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be shim and w2 is bolt. Feature vector overlap may occur in Commonly, weighted distance measures are used. An exam-
ple isthis example. If the underlying class is w1 (shims), we expect

typical measurements of x1 and x2 (brightness and texture re-
spectively) to be small, whereas if the object under observa- d2

w(xxx,yyy) = (xxx − yyy)T R(xxx − yyy) = ‖xxx − yyy‖2
R

tion is from class w2 (bolts) we expect the values of x1 and x2

This implements upon a weighted inner product or weightedto be, on the average, large (or at least larger than those of
R-norm. The matrix R is often required to be positive definitew1). Of particular importance is the region where values of
and symmetric. When x and y are binary, measures such asthe features overlap. In this area errors in classification are
the Hamming distance are useful.likely. A more general cost or risk measure may be associated

with a classification strategy.
Training

Pattern Classification A set of typical patterns, where typical attributes or the class
or structure of each is known, forms a database. This data-Classification is the assignment of input data into one or more
base is called the training set and denoted H. In a generalof c prespecified classes based upon extraction of significant
sense, the training set provides significant information onfeatures or attributes and the processing and/or analysis of
how to associate input data with output decisions (i.e., classi-these attributes. It is common to resort to probabilistic or
fications or structural descriptions). Training is often associ-grammatical models in classification.
ated (or loosely equated) with learning. The training set isRecognition is the ability to classify. Often we formulate
used to enable the system learn relevant information, suchPR problems with a (c � 1)st class, corresponding to the un-
as statistical parameters, natural groupings, key features, orclassifiable, do not know, or cannot decide class.
underlying structure. In SyntPR, training samples are usedDescription is an alternative to classification where a
to learn or infer grammars.structural description of the input pattern is desired. It is

common to resort to linguistic or structural models in descrip-
Supervised and Unsupervised Classificationtion. A pattern class is a set of patterns (hopefully sharing

some common attributes) known to originate from the same Training uses representative (and usually labeled) samples of
types of patterns to be encountered in the actual application.source. The key in many PR applications is to identify suit-
The training set is denoted H or Hi, where the subscript de-able attributes (e.g., features) and form a good measure of
notes a training set for a specific pattern class. In some cases,similarity and an associated matching process.
the training set for class wi contains examples of patterns inPreprocessing is the filtering or transforming of the raw
wi (positive exemplars) as well as examples of patterns not ininput data to aid computational feasibility and feature extrac-
wi (negative exemplars).tion and minimize noise.

In this context, supervised learning or training assumes aNoise is a concept originating in communications theory.
labeled (with respect to pattern class) set, whereas in unsu-In PR, the concept is generalized to represent a number of
pervised learning the elements of H do not have class labelsnonideal circumstances.
and the system must determine natural partitions of the sam-
ple data.Pattern Matching

For example, consider the application of pattern recogni-
tion to image segmentation, the classification of image pixelsMuch of StatPR, SyntPR, and NeurPR is based upon the con-
into groupings which represent some higher entity or infor-cept of pattern similarity. For example, if a pattern, x, is very
mation in the images. Unfortunately, it is rare to have eithersimilar to other patterns known to belong to class w1, we
a statistical model or a training set to aid in this grouping.would intuitively tend to classify x as belonging in w1. Quanti-
Therefore, so-called unsupervised learning techniques are of-fying similarity by developing suitable similarity measures, is
ten applied.often quite difficult. Universally applicable similarity mea-

Two unsupervised learning approaches which embodysures which enable good classification are both desirable and
more general measures of feature vector similarity and do notelusive.
require H are known as hierarchical clustering and parti-Measures of similarity (or dissimilarity) using feature vec-
tional clustering. A set of feature vectors is sequentially parti-tors are commonly used. Distance is one measure of vector
tioned (or merged) on the basis of dissimilarity (or similarity).similarity. The Euclidean distance between vectors x and y is
Thus, given only a similarity measure, we either aggregategiven by
feature vectors into a single class or sequentially subdivide
feature vector partitions. A neural network-based example of
unsupervised learning is the Kohonen self-organizing feature
maps (SOFMs).

d(xxx,yyy) = ‖xxx − yyy‖ =
√

(xxx − yyy)T (xxx − yyy)

= +
√

d∑
i=1

(xi − yi)
2

STATISTICAL PATTERN RECOGNITION (StatPR)

A related and more general metric is
Statistical Analysis

StatPR is used to develop statistically-based decision or clas-
sification strategies, which form classifiers and attempts to
integrate all available problem information, such as measure-

dp(xxx,yyy) =
(

d∑
i=1

|xi − yi|p

)1/p
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ments and a priori probabilities. Decision rules may be formu- Decision Regions and Discriminant Functions
lated in several interrelated ways. A measure of expected

A classifier partitions feature space into class-labeled decision
classification error or risk may be formulated, and a decision

regions. In order to use decision regions for a possible and
rule is then developed which minimizes this measure. The

unique class assignment, these regions must cover Rd and be
Bayesian approach involves converting an a priori class prob-

disjoint (nonoverlapping). An exception to the last constraint
ability P(wi) into a measurement-conditioned (a posteriori)

is the notion of fuzzy sets. The border of each decision region
probability P(wi�x). This leads to a partitioning of Rd, and may

is a decision boundary. With this viewpoint, classification of
be implemented via discriminant functions.

feature vector x becomes quite simple: we determine the deci-
sion region (in Rd) into which x falls, and assign x to this

Bayesian Decision Theory class. Although the classification strategy is straightforward,
the determination of decision regions is a challenge. It isIn the Bayesian approach, the extracted features x, are mod-
sometimes convenient, yet not always necessary (or possible),eled as a realization of a (continuous) random vector, X. The
to visualize decision regions and boundaries. Moreover, com-case of discrete r.v.s is treated similarly, but with probabili-
putational and geometric aspects of certain decision bound-ties, as opposed to density functions for characterization of
aries (e.g., linear classifiers which generate hyperplanar deci-x. Suppose the class conditioned probability density functions
sion boundaries) are noteworthy.for feature vector x, that is p(x�wi) where i � 1, c are avail-

A number of classifiers are based upon discriminant func-able. This may be the result of training or learning. Assume
tions. In the c-class case, discriminant functions, denotedthat something is known about the a priori (i.e., before mea-
gi(x), i � 1, 2, . . . c, are used to partition Rd using the deci-surement) likelihood of the occurrence of class w1 or w2, spe-
sion rule: Assign x to class wm (region Rm), where gm(x) �cifically assume the a priori probabilities P(wi), i � 1, c are
gi(x) � i � 1, 2, . . . c and i � m. The case where gk(x) �known. For example, in the shim-bolt example above, if we
gl(x) defines a decision boundary.know that on a given day we inspect four times as many

Linear Separability. If a linear decision boundary (hyperpla-shims as bolts, then P(w1) � 0.8 and P(w2) � 0.2. In the ab-
nar decision boundary) exists that correctly classifies all thesence of this information, an often reasonable assumption is
training samples in H for a c � 2 class problem, the samplesthat P(wi) � 1/c, that is, the a priori probabilities of the states
are said to be linearly separable. This hyperplane, denotedof nature are equal.
Hij, is defined by parameters w and wo in a linear constraint
of the form

Using Bayes’s Theorem. Bayes’s theorem is used to enable
a solution to the classification problem which uses available g(xxx) = wwwTxxx − wo = 0 (1)
feature and training data. The a priori estimate of the proba-
bility of a certain class is converted to the a posteriori, or g(x) separates Rd into positive and negative regions Rp and
measurement conditioned, probability of a state of nature via: Rn, where

P(wi|xxx) = [p(xxx|wi )P(wi)]
p(xxx) g(xxx) = wwwTxxx − wo =




> 0 if xxx ∈ Rp

0 if xxx ∈ Hi j

< 0 if xxx ∈ Rn

(2)

where

Problems which are not linearly separable are sometimes re-
ferred to as nonlinearly separable or topologically complex.p(xxx) =

∑
i

p(xxx|wi )

From a pattern recognition viewpoint, the computational
advantages (both in implementation and training) and ease of

An intuitive classification strategy is that a given realization visualization of linear classifiers account for their popularity.
or sample vector, x, is classified by choosing the state of na- Seminal works include Refs. 11, 12, and 13.
ture, wi, for which P(wi�x) is largest. Notice the quantity p(x) Using the Bayesian approach, one choice of discriminant
is common to all class-conditional probabilities, therefore it function is gi(x) � P(wi�x). In the case of equal a priori proba-
represents a scaling factor which may be eliminated. Thus, in bilities and class-conditioned Gaussian density functions, Ref.
our shim-bolt example, the decision or classification algorithm 2 shows that the decision boundaries are hyperplanes.
is:

Training in Statistical Pattern Recognition. One of the prob-
lems not addressed in the previous section is determination
of the parameters for the class-conditioned probability densitychoose

{
w1 if p(xxx|w1)P(w1) > p(xxx|w2)P(w2)

w2 if p(xxx|w2)P(w2) > p(xxx|w1)P(w1) functions. A labeled set of training samples, that is, sets of
labeled feature vectors with known class, are often used. This
training set is denoted H. In the case of Gaussian probabilityNote also that any monotonically nondecreasing function of

P(wi�x) may be used for this test (see discriminant functions, distribution function (pdf) models, it is only necessary to esti-
mate �i and �i for each class. Large-dimension feature vec-next). The significance of this approach is that both a priori

information [P(wi)] and measurement-related information tors, and consequently density functions, lead to situations
wherein this approach is impractical. For example, in an im-[p(x�wi)] are combined in the decision procedure. If P(w1) �

P(w2), for example, this information may be explicitly incorpo- age processing application if we use the gray level measure-
ments directly as features, an image with 100 � 100 pixelrated in the decision process.
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spatial resolution yields a 1000 � 1 feature vector, and re- Minimizing the conditional risk, R(�(x)�x) thus minimizes the
expected risk. The lower bound on R(�(x)) is often referred toquires estimation of a 1000 � 1000 covariance matrix. This is

seldom practical. as the Bayes risk. In order to minimize R(�(x)) for c � 2, since
only two choices or classifications (�1 or �2) are possible, the
decision rule is formulated as:Nearest Neighbor Classification

An alternative, which is related to the minimum distance
classification approach, is the use of a nonparametric tech- R(α1|xxx)

α2
�
α1

R(α2|xxx)

nique known as nearest neighbor classification. We illustrate
the concept of a 1-nearest neighbor classification rule (1- This may be expanded into
NNR) first. Given a feature vector, x, we determine the vector
in H which is closest (in terms of some distance measure) to
x, and denote this vector x�. x is classified by assigning it to λ11P(w1|xxx) + λ12P(w2|xxx)

α2
�
α1

λ21P(w1|xxx) + λ22P(w2|xxx)

the class corresponding to x�. A variation is the k-NNR, where
the k samples in H which are nearest to x are determined, or
and the class of x is based upon some measure of the labels
of these samples (e.g., a voting scheme may be employed).
This approach, although conceptually and computationally (λ11 − λ21)p(xxx|w1)P(w1)

α2
�
α1

(λ22 − λ12)p(xxx|w2)P(w2)

straightforward, may be shown to have a greater error rate
than the minimum distance classifier. However, the concept When 	11 � 	22 � 0 (there is no cost or risk in a correct classi-
of classification based upon nearness, or similarity, of fea- fication) and (	11 � 	21) 
 0, this may be rewritten as:
tures is significant.

General Decision Rules. We formulate a loss function, cost
p(xxx|w1)

p(xxx|w2)

α2
�
α1

(λ22 − λ12)

(λ11 − λ21)

P(w2)

P(w1)
function, or risk function, denoted 	ij, as the cost or risk of
choosing class wi when class wj is the true class. For example, This form yields a classifier based upon a likelihood ratio
in the c � 2 (w1 or w2) case, there are four values of 	ij, that test (LRT).
is, 	11, 	12, 	21, 	22. 	11, and 	22 are the costs (or perhaps re- For c classes, with the loss function:
wards for a correct decision) whereas 	12 and 	21 are the costs
of a classification error. It is desirable to measure or estimate
overall classification risk. To do this, the decision rule, cost λi j =

{
0 i = j

1 i �= jfunctions, the observations, and x are used. A decision or clas-
sification to choose class wi is denoted �i. A decision rule is a

all errors are equally costly. The conditional risk of decisionmapping of the observed feature vector, x, into an �i through
�i is:a decision rule �(x):

α(xxx) → {α1, α2 . . . αc}

Since

R(α(xxx) → αi) =
c∑

j=1

λi jP(wj|xxx)

=
∑
j �=1

P(wj |xxx) = 1 − P(wi|xxx)

P(αi ∩ wj ) = P(αi|wj )P(wj )

To minimize the conditional risk, the decision rule is there-
an overall risk measure for the c � 2 case is fore to choose the �i which maximizes P(wi�x), that is, the wi

for which P(wi�x) is largest. This is intuitively appealing.
Since P(wi�x) is the a posteriori probability, this results in the
maximum a posteriori probability (MAP) classifier, which

R = λ11P(α1|w1)P(w1) + λ21P(α2|w1)P(w1)

+ λ12P(α1|w2)P(w2) + λ22P(α2|w2)P(w2)

may be formulated as:
Of course, the P(�i�wj) terms depend upon the chosen map-
ping �(x) � �i, which in turn depends upon x. Thus, a mea- P(wi|xxx)

αi
> P(wj |xxx) ∀ j �= i

sure of conditional risk associated with a c � 2 class decision
rule is: As before, Bayes’s rule is used to reformulate these tests in

terms of class-conditioned density functions and a priori prob-
abilities.R(α(xxx) → α1) = R(α1|xxx) = λ11P(w1|xxx) + λ12P(w2|xxx)

For general formulations of risk (through 	ij), the resulting
for �1 and decision rule is:

R(α(xxx) → α2) = R(α2|xxx) = λ21P(w1|xxx) + λ22P(w2|xxx) R(αi|xxx)
αi
< R(α j |xxx) ∀i �= j

for �2. For a c class decision problem, the expected risk is
Clusteringgiven by an application of the total probability theorem:

In some cases, a training set, H, is not available for a PR
problem. Instead, an unlabeled set of typical features, de-R(α(xxx)) = ∫

R(α(xxx)|xxx)p(xxx)dddx
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noted Hu is available. For each sample, x � Hu, the class ori-
gin or label is unknown. Desirable attributes of Hu are that
the cardinality of Hu is large, all classes are represented in
Hu, and subsets of Hu may be formed into natural groupings
or clusters. Each cluster most likely (or hopefully) corre-
sponds to an underlying pattern class.

Clustering is a popular approach in unsupervised learning
(14). Clustering applications in image analysis, for example,
include (15) and (16). Iterative algorithms involving cluster
splitting and merging in image analysis are shown in Ref. 1.

Unsupervised learning approaches attempt to develop a
representation for the given sample data, after which a classi-
fier is designed. In this context, clustering may be conceptual-
ized as ‘‘how do I build my fences?’’ Thus, in unsupervised
learning, the objective is to define the classes. A number of
intuitive and practical approaches exist to this problem. For

–10.

–10.

–5.

5. x1

x2

5.

10.

10.
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example, a self-consistent procedure is:
Figure 3. Example of the trajectories of the class means in the c-
means algorithm [from (2) Copyright 1992. Reprinted by permission1. Convert a set of unlabeled samples, Hu into a tentative
of John Wiley & Sons.]training set, HT.

2. Using HT, apply a supervised training procedure and
develop corresponding discriminant functions/decision

are considered. However, when the number of samples isregions.
large, hierarchical clustering may be inappropriate. In an ag-3. Use the results of step 2 on Hu, that is, reclassify Hu. If
glomerative procedure, two samples, once in the same class,the results are consistent with HT, stop, otherwise go to
remain in the same class throughout subsequent cluster1 and revise HT.
merging. This may lead to resulting data partitions being
suboptimal.This approach clusters data by observing similarity. There ex-

ist neural networks with this feature (see SELF-ORGANIZING
Clustering Criterion Functions. Developing appropriate simi-FEATURE MAPS). In many PR applications involving unsuper-

larity measures d(xi, xj) is paramount in clustering. For avised learning, features naturally fall into natural, easily ob-
given partition of Hu, denoted P, a measure of the goodness ofserved groups. In others, the grouping is unclear and very
the overall clustering is given by clustering criterion func-sensitive to the measure of similarity used. The c-means algo-
tion, J(P). Ifrithm (2) and its derivatives are one of the most popular ap-

proaches.
J(P1) < J(P2)The c-means algorithm:

P1 is a better partition than P2. Once a suitable J(P) is de-1. Choose the number of classes, c.
fined, the objective is to find Pm such that

2. Choose class means or exemplars, denoted �̂i, �̂2, . . .
�̂c. J(Pm) = Pmin(J(P))

3. Classify each of the unlabeled samples, xk in Hu.
in a computationally efficient manner. This is a problem in4. Recompute the estimates for �̂i, using the results of step
discrete optimization. One of the more popular clustering3.
metrics is the sum of squared error (SSE) criterion. Given ni5. If the �̂i, are consistent, stop, otherwise go to step 1, 2,
samples in Hi, with sample mean mi, whereor 3.

Notice the essence of this approach is to achieve a self-consis-
tent partitioning of the data. Choice of initial parameters [c

mmmi = 1
ni

∑
xxx j ∈Hi

xxxj

and �i(0)] is a challenging issue. This spawns an area of study
concerning cluster validity. the SSE criterion, JSSE is defined as

An Example of the c-Means Algorithm. Figure 3 shows exam-
ples of the c-means algorithm for the c � 2 class case on a set
of unlabeled data. The trajectory of the �i, as a function of JSSE(P) =

c∑
i=1

∑
xxx j ∈Hi

‖xxx − mmmi‖2

iteration is shown.

JSSE thus indicates the total variance for a given partition. ForIterative and Hierarchical Clustering. Clustering may be
example, cluster-swapping approaches are a variant on theachieved through a number of alternative strategies, includ-
c-means iterative algorithm which implement a good clustering iterative and hierarchical approaches. Hierarchical strate-
reorganization strategy, where good meansgies may further be subdivided into agglomerative (merging

of clusters) or devisive (splitting of clusters). Hierarchical
strategies have the property that not all partitions of the data JSSE(Pk+1) ≤ JSSE(Pk)
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For illustration, our reorganization strategy is restricted to of a set of features. Instead, the interrelationships or inter-
connections of features yield important structural informa-the movement of a single vector, xj from Hi to Hj, denoted

H �
xj Hj. The revised clusters in Pk�1 are denoted Hi and Hj. It tion, which facilitates structural description or classification.

is possible to show Hi �
xk Hj decreases JSSE(Pk) if This is the basis of syntactic (or structural) pattern recogni-

tion. Figure 4 shows the general strategy.
In using SyntPR approaches, it is necessary to quantify

and extract structural information and determine the struc-

(
nj

nj + 1

)
‖xxxj − mmmj‖2 <

(
ni

ni − 1

)
‖xxxj − mmmi‖2

tural similarity of patterns. One syntactic approach is to re-
late the structure of patterns with the syntax of a formally

Hierarchical Clustering. Consider a hierarchical clustering defined language, in order to capitalize on the vast body of
procedure in which clusters are merged so as to produce the knowledge related to pattern (sentence) generation and anal-
smallest increase in the sum-of-squared error at each step. ysis (parsing). Syntactic pattern recognition approaches are
The ith cluster or partition, denoted Hi, contains ni samples presented in Refs. 2, 19, 20, 21, 22, and 23. A unified view of
with sample mean mi. The smallest increase results from StatPR and SyntPR is shown in Ref. 24. An extended example
merging the pair of clusters for which the measure Mij, where of the utility of SyntPR in an image interpretation application

appears in Ref. 25.
Typically, SyntPR approaches formulate hierarchical de-Mi j = ninj

ni + nj
‖mmmi − mmmj‖2

scriptions of complex patterns built up from simpler subpat-
terns. At the lowest level, primitive elements or building

is minimum. Recall blocks are extracted from the input data. One distinguishing
characteristic of SyntPR involves the choice of primitives.
Primitives must be subpatterns or building blocks, whereas
features (in StatPR) are any measurements.

Je =
c∑

i=1

∑
xxx∈Hi

‖xxx − mmmi‖2

Syntactic structure quantification is shown using two ap-
that is, Je measures the total squared error incurred in repre- proaches: formal grammars, and relational descriptions (at-
senting the n samples x1, . . . xn by c cluster means m1 . . . tributed graphs). These tools allow structurally quantitative
mc. pattern representation, which facilitate recognition, classifi-

The change in the SSE after merging clusters i and j is cation, or description. A class of procedures for syntactic rec-
ognition, including parsing (for formal grammars) and rela-
tional graph matching (for attributed relational graphs) are
then developed. While it is not mandatory, many SyntPR
techniques are based upon generation and analysis of com-
plex patterns by a hierarchical decomposition into simpler
patterns.

�Je = −

∑

xxx∈Hi

‖xxx − mmmi‖2 +
∑

xxx∈H j

‖xxx − mmmj‖2




+
∑

xxx∈Hi or H j

‖xxx − mmmi j‖2

where Formal Grammars and Syntactic Recognition by Parsing

The syntax rules of formal grammars may be used to generate
patterns (possibly from other patterns) with constrainedmmmi = 1

ni

∑
xxx∈Hi

xxx mmmj = 1
nj

∑
xxx∈H j

xxx

structural relations. A grammar may therefore serve to model
a class-specific pattern-generating source which generates all

and the patterns with a class-specific structure. Furthermore, it is
desirable to have each class-specific grammar derivable from
a set of sample patterns, that is, training must be considered.
This raises the issue of grammatical inference.

mmmi j = 1
ni + nj

∑
xxx∈Hi or H j

xxx

Useful introductions to formal grammars appear in Refs.
The objective is to merge clusters such that �Je is minimum. 26 and 27. References 19, 21, 22, and 23 are devoted entirely
It is possible to show: to SyntPR.

�Je = ninj

(ni + nj )
‖mmmj − mmmi‖2 = ninj

(ni + nj )
‖mmmi − mmmj‖2

and therefore use this measure in choosing clusters to merge.
The popularity of clustering has spawned a sizable and

varied library of clustering algorithms and software (17), one
of the most popular being the ISODATA (Iterative Self-
Organizing Data Analysis Techniques A) algorithm (10,18).

Class 1
structure

“Library” of
classes,

categorized
by structure

. . .Class 2
structure

Class c
structure

Structural
analysisInput

(Structural)
matcher*

Relevant
match(es)

SYNTACTIC (STRUCTURAL) PATTERN RECOGNITION
Figure 4. Generic syntactic (or structural) pattern recognition sys-

Many times the significant information in a pattern is not tem [from (2) Copyright 1992. Reprinted by permission of John Wi-
ley & Sons.]merely in the presence or absence, or the numerical values,
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Grammars. A grammar consists of the following four Constraints on the production or rewrite rules, P, in string
grammar G are explored by considering the general produc-entities:
tion form:

1. A set of terminal or primitive symbols (primitives), de-
noted VT (or, alternately, �). In many applications, the α1 → β2

choice of the terminal set or primitives is difficult, and
which means string �1 is replaced by string �2. In general, �1has a large component of art, as opposed to science.
and �2 may contain terminals and/or nonterminals.2. A set of non-terminal symbols, or variables, which are

In a context-free grammar, the production restrictions are:used as intermediate quantities in the generation of an
outcome consisting solely of terminal symbols. This set

α1 = S1 ∈ VNis denoted as VN (or, alternately, N).
3. A set of productions, or production rules or rewriting that is, �1 must be a single nonterminal for every production

rules which allow the previous substitutions. It is this in P, and
set of productions, coupled with the terminal symbols,
which principally gives the grammar its structure. The |S1| ≤ |β2|
set of productions is denoted P.

An alternate characterization of a T2 grammar is that every4. A starting (or root) symbol, denoted S. S � VN.
production must be of the form:

Note that VT and VN are disjoint sets, that is, VT � VN � 0�.
S1 → β2Thus, using the above definitions, we formally denote a

grammar, G, as the four-tuple:
where �2 � (VN � VT)* � ���. Note the restriction in the above
productions to the replacement of S1 by string �2 indepen-G = (VT ,VN , P, S)
dently of the context in which S1 appears.

Context-free grammars can generate a string of terminalsConstraining Productions. Given VT and VN, the produc-
and/or nonterminals in a single production. Moreover, sincetions, P, may be viewed as constraints on how class-specific
productions of the form A � �A� are allowed, context-freepatterns may be described. Different types of grammars place
grammars are self-embedding.restrictions on these mappings. For example, it is reasonable

Context-free grammars are important because they are theto constrain elements of P to the form
most descriptively versatile grammars for which effective
(and efficient) parsers are available. The production restric-A → B
tions increase in going from context-sensitive to context-free

where grammars.
Finite-state (FS) or regular grammars are extremely popu-

lar. The production restrictions in a finite-state or regularA ∈ (VN ∪ VT )+ − V +
T

grammar are those of a context-free grammar, plus the addi-
tional restriction that at most one nonterminal symbol is al-and
lowed on each side of the production. That is,

B ∈ (VN ∪ VT )∗

Thus, A must consist of at least one member of VN (i.e., a
α1 = S1 ∈ VN

|S1| ≤ |β2|
nonterminal), and B is allowed to consist of any arrangement
of terminals and nonterminals. This is a partial characteriza- and productions are restricted to:
tion of phrase structure grammar.

Grammar Application Modes. A grammar may be used in A1 → a
one of two modes: Generative, in which the grammar is used
to create a string of terminal symbols using P; a sentence in or
the language of the grammar is thus generated.

Analytic, a sentence (possibly in the language of the gram- A1 → aA2

mar), together with specification of G, one seeks to determine:
Finite-state (FS) grammars have many well-known character-If the sentence was generated by G; and, if so, the structure
istics which explain their popularity, including simple graphi-(usually characterized as the sequence of productions used) of
cal representations and known tests for equivalence. Finitethe sentence.
state grammars are useful when analysis (parsing) is to beThe following formal notation is used. Symbols beginning
accomplished with finite-state machines (26).with a capital letter (e.g., S1 or S) are elements of VN. Symbols

beginning with a lowercase letter (e.g., a or b) are elements
Other Grammar Types Used for Syntactic Pattern Recogni-of VT. n denotes the length of string s, that is,

tion. Grammars other than string grammars exist and are
usually distinguished by their terminals and nonterminalsn = |s|
(as opposed to constraints on P). These are useful in 2-D and
higher dimensional pattern representation applications, inGreek letters (e.g., �, �) represent (possibly empty) strings,

typically comprised of terminals and/or nonterminals. that the structure of the productions involving terminals and
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nonterminals is greater than one dimensional. Higher dimen-
sional grammars also facilitate relational descriptions. Pro-
ductions in higher dimensional grammars are usually more
complex, since rewriting rules embody operations more com-
plex than simple 1-D string rewriting. For example, in 2-D
cases standard attachment points are defined. Two of the
more popular are tree grammars and web grammars (19). Not
surprisingly, there is little correlation between the dimension
of the grammar used for pattern generation and the dimen-
sionality of the pattern space. For example, a 1-D grammar

(Strings of length 4)

(Strings of length 3)

(Strings of length 2)

(Strings of length 1)

4

3

2

1

1

t14

j

i

t13

t12

2 3 4

t11

t23

t22

t21

t32

t31 t41

may be used for 2-D or 3-D patterns.
Figure 6. Structure of CYK parse table [from (2) Copyright 1992.
Reprinted by permission of John Wiley & Sons.]Example of Grammatical Pattern Description for Chromosome

Classification. Figure 5, excerpted from Ref. 28, shows the
conversion of a chromosome outline to a string in a formal

i and j where 1 
 i 
 n and 1 
 j 
 (n � i � 1). The origingrammar, where the primitives and productions are given.
is at i � j � 1, and entry t11 is the lower-left hand entry inUsing the primitives and productions of grammar, GM, given
the table. t1n is the uppermost entry in the table. This struc-in Fig. 5(a), the string x � cbbabbbbdbbbbabbbcbbbabbbbd
ture is shown in Fig. 6.bbbbabbb may be produced to describe the sample chromo-

To build the CYK table, a few simple rules are used. Start-some outline shown in Fig. 5(b).
ing from location (1, 1), if a substring of x, beginning with xi,
and of length j can be derived from a nonterminal, this non-Parsing
terminal is placed into cell (i, j). If cell (1, n) contains S, theChomsky Normal Form. A CFG is in Chomsky normal form
table contains a valid derivation of x in L(G). It is convenient(CNF) if each element of P is in one of the following forms:
to list the xi, starting with i � 1, under the bottom row of
the table.

Example. Sample use of grammars and the CYK parsing
A → BC where A, B,C ∈ VN

A → a where A ∈ VN , a ∈ VT
algorithm for recognition:

Sample Grammar Productions. These are shown next. WithThe Cocke-Younger-Kasami (CYK) Parsing Algorithm. The
these constraints, notice there are six forms for the derivationCYK algorithm is a parsing approach which will parse string
of the string x � aabb.x in a number of steps proportional to �x�3. The CYK algorithm

requires the CFG be in Chomsky normal form (CNF). With
this restriction, the derivation of any string involves a series
of binary decisions. First, the CYK table is formed. Given
string x � x1, x2, . . . xn, where xi � VT, �x� � n, and a gram-
mar, G, we form a triangular table with entries tij indexed by

S → AB|BB

A → CC|AB|a
B → BB|CA|b
C → BA|AA|b

Parse Table for String x � aabb. Construction of an example
parse table is shown in Fig. 7. Recall cell entry (i, j) corre-
sponds to the possibility of production of a string of length j,
starting with symbol xi. The table is formed from the bottom
row ( j � 1) upwards. Entries for cells (1, 1), (2, 1), (3, 1), and
(4, 1) are relatively easy to determine, since they each corre-
spond to production of a single terminal. For the second ( j �
2) row of the table, all nonterminals which could yield deriva-

VNM =    S, A, B, D, H, J, E, F   ,    

GM = (VTM, VNM, PM, S)   

VTM =    a,      ; b,      ; c,         ; d,

PM : S AA
A cB
B FBE
B HDJ

D FDE
D d
F b

E b
H a
J a

a

a

a

a

(b)

(a)

b
b b b b

b b b

b
bb

c c

bb
b

bbb

b b b b b b b b

bbb

d

d

(Strings of length 4)  j = 4

(Strings of length 3)  j = 3

(Strings of length 2)  j = 2

(Strings of length 1)  j = 1

Input string to parse

C, B, A,
S,

C, A

C

A A

= x

S, C, A

S, A S, B, A

B, C B, C

i = 1 i = 2 i= 3 i = 4
a a b b

Note: S is here x    L(G)    ∈

or

Figure 5. Conversion of a chromosome outline to a string in a formal
grammar [excerpted from (28) Copyright 1972, IEEE]. (a) Primitives Figure 7. Construction of a sample parse table for the string x �

aabb [from (2) Copyright 1992. Reprinted by permission of John Wi-and productions in L(G). (b) Sample chromosome outline yielding
string x � cbbbabbbbdbbbbabbbcbbbabbbbdbbbbabbb. ley & Sons.]
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tions of substrings of length 2, beginning with xi i � 1, 2, 3, Graphical Approaches Using Attributed Relational Graphs
must be considered. For example, cell (1, 2) corresponds to Digraphs and Attributed Relational Graphs (ARG). Directed
production of two-terminal long-string beginning with a. Al- graphs or digraphs are valuable tools for representing rela-
ternately, it is only necessary to consider nonterminals which tional information. Here we represent graph G as G � �N,
produce AA, as shown in the j � 1 row of the table. From Fig. R� where N is a set of nodes (or vertices) and R is a subset of
7, only nonterminal C, in the production C � BA�AA�b satis- N � N, indicating arcs (or edges) in G.
fies this. In addition to representing pattern structure, the repre-

Forming the third and fourth ( j � 3 and j � 4 respectively) sentation may be extended to include numerical and perhaps
rows of the table is slightly more complicated. For example, symbolic attributes of pattern primitives (i.e., relational
cell (1, 3) corresponds to strings of length 3, beginning with graph nodes). An extended representation includes features
terminal x1 (a) in this case. This requires examination of cells or properties as well as relations with other entities. An at-
(1, 1) and (2, 2), corresponding to producing the desired string tributed graph, as defined next, results.
with 1 nonterminal followed by 2 nonterminals, (denoted
�1 � 2� hereafter) as well as cells (1, 2) and (3, 1) (denoted the Attributed Graphs. An attributed graph, Gi, is a 3-tuple and
�2 � 1� derivation). For the former, it is necessary to consider is defined as follows:
production of AS, and AA, and nonterminal C is applicable.
For the latter, the production of CB and CC is considered, Gi = {Ni, Pi, Ri}
yielding A. Thus, cell (1, 3) contains nonterminals C and A.

where Ni is a set of nodes, Pi is a set of properties of theseSimilarly, for cell (2, 3), cells (2, 1) and (3, 2) (the �1 � 2�
nodes, and Ri is a set of relations between nodes. (An alterna-derivation) as well as (2, 2) and (4, 1) (the �2 � 1� derivation)
tive viewpoint is that Ri indicates the labeled arcs of Gi, wheremust be considered.
if an arc exists between nodes a and b, then Ri contains ele-Finally, formation of cell (1, 4) is considered. Possible cell
ment (a, b).)pairings to consider are summarized here

Attributed Relational Graph Example: Character Recogni-
tion. Figure 8 (courtesy of R. D. Ferrell) shows an example of

(1, 1) and (2, 3) �1 � 3� � AS, AC, AA : C
ARGs used to quantify the structure of block characters C

(1, 2) and (3, 2) �2 � 2� � CS, CB, CA : B and L. Each line segment of the character is an attributed
node in the corresponding graph, with a single attribute(1, 3) and (4, 1) �3 � 1� � CB, CC, AB, AC : A, S
indicating either horizontal or vertical spatial orientation.
Node relations used indicate whether the segments meet at aCell pairings which yield a possible nonterminal are shown
90� or 180� angle, as well as connectedness above or to the

underlined. Thus, (1, 4) contains nonterminals C, B, A, S. left.
Since this includes the starting symbol, the parse succeeds Comparing Attributed Relational Graphs. One way to recog-
and aabb is a valid string in the language of this grammar. nize structure using graphs is to let each pattern (structural)
Note that since the grammar is in CNF, it is never necessary class be represented by a prototypical relational graph. An
to consider more than two-cell pairings (although as we in-
crease j the number of possible pairings increases).

String Matching. A somewhat simpler approach to classifi-
cation or recognition of entities using syntactic descriptions is
a matching procedure. Consider the c class case. Class-specific
grammars G1, G2, . . . Gc are developed. Given an unknown
description, x, to classify, it is necessary to determine if x �
L(Gi) for i � 1, 2, . . . c. Suppose the language of each Gi

could be generated and stored in a class-specific library of pat-
terns. By matching x against each pattern in each library, the
class membership of x could be determined. String matching
metrics yield classification strategies which are a variant of
the 1-NNR rule for feature vectors, where a matching metric
using strings instead of vectors is employed.

There are several shortcomings to this procedure. First,
often �L(Gi)� � �, therefore the cataloging or library based
procedure is impossible. Second, even if L(Gi) for each i is
denumerable, it usually requires very large libraries. Conse-
quently, the computational effort in matching is excessive.
Third, it is an inefficient procedure. Alternatives which em-
ploy efficient search algorithms, prescreening of the data, the
use of hierarchical matching and prototypical strings are of-
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unknown input pattern is then converted into a structural puting emerged from attempts to draw upon knowledge of
how biological neural systems store and manipulate informa-representation in the form of a representational graph and

this graph is then compared with the relational graphs for tion. This leads to a class of artificial neural systems termed
neural networks and involves an amalgamation of research ineach class. Notice that compared does not necessarily mean

matched verbatim. many diverse fields such as psychology, neuroscience, cogni-
tive science, and systems theory. Artificial neural networksAttributed Relational Graph Matching Measures which Allow

Structural Deformations. In order to allow structural deforma- (ANNs) are a relatively new computational paradigm, and it
is probably safe to say that the advantages, disadvantages,tions, numerous match or distance measures have been pro-

posed. These include (29,30): applications, and relationships to traditional computing are
not fully understood. Neural networks are particularly well
suited for some pattern association applications.• Extraction of features from G1 and G2, thereby forming

Fundamental neural network architecture and applicationfeature vectors x1 and x2, respectively. This is followed
Refs. are 2, 31, 32, 33, 34. Rosenblatt (35) is generally cred-by the use of StatPR techniques to compare x1 and x2.
ited with initial perceptron research. The general feedforwardNote the features are graph features, as opposed to direct
structure is also an extension of the work of Minsky/Papertpattern features.
(36) and the early work of Nilsson (37) on the transformations• Using a matching metric the minimum number of trans-
enabled by layered machines, as well as the effort of Widrow/formations necessary to transform G1 (the input) into G2
Hoff (38) in adaptive systems. A comparison of standard and(the reference). Common transformations include: node
neural classification approaches is found in Ref. 39.insertion, node deletion, node splitting, node merging,

vertex insertion, and vertex deletion.
ANN Components

Graph Transformation Approaches. Here we consider a set
Basically, three entities characterize an ANN:of comparisons, transformations and associated costs in deriv-

ing a measure D(Gi, Gj). Desirable attributes of D(Gi, Gj) are:
1. The network topology, or interconnection of neural

units1. D(Gi, Gj) � 0
2. D(Gi, Gj) � 0 if i � j 2. The characteristics of individual units or artificial neu-

rons3. D(Gi, Gj) � D(Gj, Gi)
3. The strategy for pattern learning or training4. D(Gi, Gj). 
 D(Gi, Gk). � D(Gk, Gj).

Property 4 is referred to as the triangle inequality. Property As in the SyntPR and StatPR approaches to pattern recogni-
3 requires wni � wnd and wei � wed where wni is the cost of node tion, the success of the NeurPR approach is likely to be
insertion, wnd is the cost of node deletion, wei is the cost of strongly influenced by the quality of the training data and
edge insertion, and wed is the cost of edge deletion. algorithm. Furthermore, existence of a training set and a

training algorithm does not guarantee that a given network
Node Matching Costs and Overall Cost in Matching Attributed will train or generalize correctly for a specific application.

Relational Graphs. Since nodes possess attributes and there-
fore even without considering relational constraints all nodes

Key Aspects of Neural Computingare not equal, a similarity measure between node pi of Gi and
node qj of Gj is required. Denote this cost fn(pi, qj). For candi- The following are key aspects of neural computing. The over-
date match between G1 and G2, denoted x, with p nodes, the all computational model consists of a variable interconnection
total cost is of simple elements, or units. Modifying patterns of interele-

ment connectivity as a function of training data is the key
learning approach. In other words, the system knowledge, ex-cn(x) =

∑
fn(pi, qj )

perience, or training is stored in the form of network inter-
connections.where the summation is overall corresponding node pairs, un-

To be useful, neural systems must be capable of storingder node mapping x. For a candidate match configuration (i.e.,
information (trainable). Neural PR systems are trained withsome pairing of nodes and subsequent transformations) the
the hope that they will subsequently display correct general-overall cost for configuration x is
ized behavior when presented with new patterns to recognize
or classify. That is, the objective is for the network (somehow)DS(x) = wnicni + wndcnd + wbicbi + wbdcbd + wncn(x)

in the training process to develop an internal structure which
enables it to correctly identify or classify new similar pat-and the distance measure, D, is defined as
terns.

Many open questions regarding neural computing, and itsD = min
x {Ds(x)}

application to PR problems, exist. Furthermore, the mapping
of a PR problem into the neural domain, that is, the design of
a problem-specific neural architecture, is a challenge whichNEURAL PATTERN RECOGNITION
requires considerable engineering judgment. A fundamental
problem is selection of the network parameters, as well as theModern digital computers do not emulate the computational

paradigm of biological systems. The alternative of neural com- selection of critical and representable problem features.
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Widrow and Hoff in adaptive systems, specifically the Adaline
(Adaptive Linear Element) and modified Adaline (Madeline)
structures presented in Refs. 40 and 41 are also relevant. For
brevity, we will consider them as one generic structure.

The units in the perceptron form a linear threshold unit,
linear because of the computation of the activation value (in-
ner product) and threshold to relate to the type of activation
function (hardlimiter). Training of a perceptron is possible
with the perceptron learning rule. As shown in Fig. 9, the
basis for the perceptron adaline element is a single unit
whose net activation is computed using

.
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Figure 9. Basic Perceptron/Adaline element [from (41) Copyright neti =
∑

j

wi jx j = wwwTxxx (3)
1988, IEEE].

The unit output is computed by using a hard limiter, thresh-
Neural Network Structures for Pattern Recognition. Several old-type nonlinearity, namely the signum function, i.e., for

different generic neural network structures, are useful for a unit i with output oi:
class of pattern recognition (PR) problems. Examples are:

The Pattern Associator (PA). This neural implementation is
exemplified by feedforward networks. The most commonly
used learning (or training) mechanism for feedforward (FF)

oi =
{

+1 if neti ≥ 0
−1 if neti < 0

(4)

networks is the backpropagation approach using the general-
ized delta rule. The unit has a binary output, however the formation of neti

The Content-Addressable or Associative Memory Model (CAM (as well as weight adjustments in the training algorithm) is
or AM). This neural network structure is best exemplified by based upon the linear portion of the unit, that is, the mapping
the recurrent network often referred to as the Hopfield model. obtained prior to application of the nonlinear activation
Typical usage includes recalling stored patterns when pre- function.
sented with incomplete or corrupted initial patterns (see Hop-
field networks).

Combination of Perceptrons of Adaline Units to Achieve More
Self-Organizing Networks. These networks exemplify neu-

Complex Mappings. Layers of Adaline units, often referred to
ral implementations of unsupervised learning in the sense

as multilayer perceptrons or MLPs may be used to overcome
that they typically cluster, or self-organize input patterns into

the problems associated with nonlinearly separable map-
classes or clusters based upon some form of similarity.

pings. One of the biggest shortcomings of MLPs, however, is
the availability of suitable training algorithms. This short-

Perceptrons
coming often reduces the applicability of the MLP to small,
hand-worked solutions. As shown in Fig. 10, combinations ofPerceptron and Adaline Unit Structure. The perceptron is a

regular feedforward network layer with adaptable weights Adaline units yield the Madaline (modified Adaline) or multi-
layered perceptron structure, which may be used to formand hardlimiter activation function. Rosenblatt (35) is gener-

ally credited with initial perceptron research. The efforts of more complex decision regions.

Figure 10. Using combinations of ad-
aline units yield the multilayered per-
ceptron (Madaline) [from (41) Copyright
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Figure 11. The typical feedforward net-
work, consisting of layers of simple units.
[from (2)].
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Feedforward Networks Back Propagation—A Multistep Procedure for Training Feedfor-
ward Networks. Beginning with an initial (possibly random)

The feedforward network is in some sense an extension of the
weight assignment for a 3-layer feedforward network, proceed

Madeline/perceptron structure composed of a hierarchy of
as follows:

processing units, organized in a series of two or more mutu-
ally exclusive sets of neurons or layers. The first, or input Step 1. Present input xp, form outputs, oi, of all units in
layer, serves as a holding site for the values applied to the network.
network. The last, or output, layer is the point at which the

Step 2. Update wji for output layer.final state of the network is read. Between these two ex-
Step 3. Update wji for hidden layer(s).tremes lie zero or more layers of hidden units; it is here that
Step 4. Stop if updates are insignificant or error is below athe real mapping or computing takes place. Links, or weights,

preselected threshold, otherwise proceed to Step 1.connect each unit in one layer to only those in the next-higher
layer. There is an implied directionality in these connections,

This leads to an adjustment scheme based upon back propa-in that the output of a unit, scaled by the value of a connect-
gation, commonly referred to as the generalized delta ruleing weight, is fed forward to provide a portion of the activa-
(GDR). A summary of the GDR equation is given in Table 1.tion for the units in the next-higher layer. Figure 11 illus-

trates the typical feedforward network. The network as
Hopfield (Recurrent) Networks for Pattern Recognitionshown consists of a layer of d input units, (Li), a layer of c

output units, (Lo), and a variable number (5 in this example) Hopfield (42,43) characterized a neural computational para-
of internal or hidden layers (Lhi

) of units. Observe the feedfor- digm for using a neural net as an auto-associative memory.
ward structure, where the inputs are directly connected to The following variables are defined:
only units in Lo, and the outputs of layer Lk units are only
connected to units in layer Lk�1 or are outputs, if Lk � Lo. oi: the output state of the ith neuron

oi: the activation threshold of the ith neuron
Training Feedforward Networks. Once an appropriate net-

wij: the interconnection weight, that is, the strength of thework structure is chosen much of the effort in designing a
connection from the output of neuron j to neuron i.neural network for PR concerns the design of a reasonable

training strategy. Often, for example, while observing a par-
Thus, �jwijoj is the total input or activation (neti) to neuron i.ticular training experiment, the designer will notice the
Typically, wij � R, although other possibilities (e.g., binaryweight adjustment strategy favoring particular stimulus-re-
interconnections) are possible. With the constraints developedsponse (S-R) patterns, becoming painfully slow (perhaps
here, for a d-unit network there are d(d � 1)/2 possibly non-while stuck in a local minimum), becoming unstable, or oscil-
zero and unique weights.lating between solutions. This necessitates engineering judge-

ment in considering the following training parameters:

• Train by pattern or epoch
• Use of momentum and corresponding weight
• Learning weight/weight changes over time
• Sequential versus random ordering of training vectors
• Whether the training algorithm is stuck at a local energy

minimum
• Suitable unit biases (if applicable)
• Appropriate initial conditions on biases, weights, and

so on

Table 1. Summary of the GDR Equations
for Training Using Backpropagation

(pattern) error measure: Ep � �� �j (t p
j � op

j )2

(pattern) weight correction �pwji � �� p
j õ

p
i

(output units) � p
j � (t p

j � op
j ) f �j (netp

j )
(internal units)* � p

j � f �j (net p
j ) �n � p

nwnj

* where � p
n are from next

layer (Lk�1)
output derivative f �j (net p

j ) � op
j (1 � op

j )
(assumes sigmoidal characteristic)
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In the Hopfield network, every neuron is allowed to be con- is not even necessary to update all units at each iteration.
Surprisingly, network convergence is relatively insensitive tonected to all other neurons, although the value of wij varies

(it may also be 0 to indicate no unit interconnection). To avoid the fraction of units (15–100%) updated at each step.
false reinforcement of a neuron state, the constraint wii � 0
is also employed. The wij values, therefore, play a fundamen- Hopfield Energy Function and Storage Prescription. For the
tal role in the structure of the network. In general, a Hopfield case of �i � 0, stable (stored) states correspond to minima of
network has significant interconnection (i.e., practical net- the following energy function:
works seldom have sparse W matrices, where W � [wij]).

Network Dynamics, Unit Firing Characteristic and State Propa- E = −
(

1
2

)∑∑
i �= j

wi joio j

gation. A simple form for Hopfield neuron firing characteris-
tics is the nonlinear threshold device:

This leads to the rule for determination of wij and a set of
desired stable states os, s � 1, 2, . . . n, that is the training
set (stored states) H � �o1, o2, . . ., on�, as:oi =

{
1 if

∑
j; j �=i wi jo j > αi

0 otherwise

(Hopfield suggested an alternative characteristic, which wi j =
n∑

s=1

(2os
i − 1)(2os

j − 1) i �= j
leaves the output unchanged if �j ; j�iwijoj � �i). Note in either
case the neuron activation characteristic is nonlinear. Com-

(with the previous constraint wii � 0). The convergence of themonly, the threshold �i � 0. Viewing the state of a d-neuron
network to a stable state involves the Hamming distance be-Hopfield network at time (or iteration) tk as an d � 1 vector,
tween the initial state and the desired stable state. Differento(tk), the state of the system at time tk�1 (or iteration k � 1 in
stable states which are close in Hamming distance are unde-the discrete case) may be described by the nonlinear state
sirable, since convergence to an incorrect stable state may re-transformation:
sult. Reference 42 suggests that an n-neuron network allows
approximately 0.15n stable states; other researchers have∗

Wooo(tk) ⇒ ooo(tk+1)
proposed more conservative bounds (44).

where the ⇒* operator indicates the element by element state
transition characteristic used to form o(tk�1). The model may Hopfield Pattern Recognition Example: Character Recall. Fig-

ure 12 shows a Hopfield network used as associative memorybe generalized for each unit to accomodate an additional vec-
tor of unit bias inputs. for recall of character data. A 10 � 10 pixel array is used to

represent the character, yielding 100 pixels. Each pixel valueThe network state propagation suggests that the unit tran-
sitions are synchronous, that is, each unit, in lockstep fashion is the state of a single, totally interconnected unit in a Hop-

field network. Thus, the network consists of 100 units andwith all other units, computes its net activation and subse-
quent output. While this is achievable in (serial) simulations, approximately 100 � 100 interconnection weights. The net-

work was trained using characters A, C, E and P. The topit is not necessary. Also, empirical results have shown that it
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Figure 12. Use of a Hopfield network for character association/completion/recognition [from (1)
Copyright 1989. Reprinted by permission of John Wiley & Sons.]
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row of Fig. 12 shows initial states for the network; these are Training the Self-Organizing Feature Maps. Each unit, ui, in
the network has the same number of weights as the dimen-distorted patterns corresponding to the training patterns.
sion of the input vector, and receives the input pattern x �Succeeding rows show the state evolution of the network.
(x1, x2, . . . xd)T in parallel. The goal of the self-organizingNote that the network converged to elements of H in at most
network, given a large, unlabeled training set, is to have indi-two iterations in this example.
vidual neural clusters self-organize to reflect input pattern
similarity. Defining a weight vector for neural unit ui as

Kohonen Self-Organizing Feature Maps (SOFMs)
mi � (wi1, wi2, . . . wid)T, the overall structure may be viewed
as an array of matched filters, which competitively adjustKohonen (45,46) has shown an alternative neural learning
unit input weights on the basis of the current weights andstructure involving networks which perform dimensionality
goodness of match. A useful viewpoint is that each unit triesreduction through conversion of feature space to yield topolog-
to become a matched filter, in competition with other units.ically ordered similarity graphs or maps or clustering dia-

Assume the network is initialized with the weights of allgrams (with potential statistical interpretations). In addition,
units chosen randomly. Thereafter, at each training iteration,a lateral unit interaction function is used to implement a form
denoted k for an input pattern x(k), a distance measure d(x,of local competitive learning.
mi) between x and mi �i in the network is computed. ThisOne-D and 2-D spatial configurations of units are used to
may be an inner product measure (correlation), Euclidean dis-form feature or pattern dimensionality reducing maps. For
tance, or another suitable measure. For simplicity, we proceedexample, a 2-D topology yields a planar map, indexed by a 2-
using the Euclidean distance. For pattern x(k), a matchingD coordinate system. of course, 3-D and higher dimensional
phase is used to define a winner unit uc, with weight vectormaps are possible. Notice each unit, regardless of the topol-
mc, usingogy, receives the input pattern x � (x1, x2 . . . xd)T in parallel.

Considering the topological arrangement of the chosen units,
the d-dimensional feature space is mapped into 1-D, 2-D, 3- ‖xxx(k) − mmmc(k)‖ =

min
i {‖xxx(k) − mmmi(k)‖}

D, and so on. The coordinate axes used to index the unit topol-
ogy, however, have no explicit meaning or relation to feature Thus, at iteration k, given x, c is the index of the best match-
space. They may, however, reflect a similarity relationship be- ing unit. This affects all units in the currently defined cell,
tween units in the reduced dimensional space, where topologi- bubble, or cluster surrounding uc, Nc(k) through the global
cal distance is proportional to dissimilarity. network updating phase as follows:

Choosing the dimension of the feature map involves engi-
neering judgement. Some PR applications naturally lead to a
certain dimension, for example a 2-D map may be developed mmmi(k + 1) =

{
mmmi(k) + α(k)[xxx(k) − mmmi(k)] i ∈ Nc

mmmi(k) i /∈ Nc
for speech recognition applications, where 2-D unit clusters
represent phonemes (47). The dimensions of the chosen topo- The updating strategy bears a strong similarity to the c-
logical map may also influence the training time of the net- means algorithm. d(x, mi) is decreased for units inside Nc, by
work. Once a topological dimension is chosen, the concept of moving mi in the direction (x � ni). Therefore, after the ad-
a network neighborhood, (or cell or bubble) around each neu- justment, the weight vectors in Nc are closer to input pattern
ron may be introduced. The neighborhood, denoted Nc, is cen- x. Weight vectors for units outside Nc are left uncharged. The
tered at neuron uc, and the cell or neighborhood size (charac- competitive nature of the algorithm is evident since after the
terized by its radius in 2-D, for example) may vary with time training iteration units outside Nc are relatively further from
(typically in the training phase). For example, initially Nc x. That is, there is an opportunity cost of not being adjusted.
may start as the entire 2-D network, and the radius of Nc Again, � is a possibly iteration-dependent design parameter.
shrinks as iteration (described subsequently) proceeds. As a The resulting accuracy of the mapping depends upon the
practical matter, the discrete nature of the 2-D net allows the choices of Nc, �(k) and the number of iterations. Kohonen cites
neighborhood of a neuron to be defined in terms of nearest the use of 10,000–100,000 iterations as typical. Furthermore,
neighbors, for example, with a square array the four nearest �(k) should start with a value close to 1.0, and gradually de-
neighbors of uc are its N, S, E, and W neighbors; the eight crease with k. Similarly, the neighborhood size, Nc(k), de-

serves careful consideration in algorithm design. Too small anearest neighbors would include the corners.

1 2 3 4 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
0 0 0 0 0 1 2 3 4 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 3 3 3 3 6 6 6 6 6 6 6 6 6 6  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 1 2 3 4 2 2 2 2 2 2 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 1 2 3 4 5 6
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Item
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a2
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a4
a5

(a) (b)

B  C D  E  *  Q  R  *  Y  Z 
A  *   *   *   *   P  *  *   X  * 
  *  F   *  N  O  *  W  *   *  1
 *  G *  M  *   *   *  *   2   * 
  H  K L  V  T  U   *  3   *   *
 *  1   *    *   *   *   *   *  4   *  
  *  J   *   S   *   *  V   *  5  6

Figure 13. Sample results using a 2-D Kohonen SOFM for a 5-D feature case involving upper-
case characters [from (48) Copyright 1988, IEEE]. Part (a) shows the extracted features for each
character. Part (b) shows the resulting map.
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