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formulation of theoretical access to the problem), (2) at the
level of selection of algorithms and representations (specifi-
cation of formal procedures for obtaining the solution), and
(3) at the implementational level (depending on the avail-
able hardware).

In the definition of cognitive processing in the classical the-
ory, vision is formalized as a pure information-processing
task. Such a formalization requires a well-defined closed sys-
tem. Since part of this system is the environment, the system
would be closed only if it were possible to model all aspects
of objective reality. The consequence is well known: Only toy
problems (blocks worlds, Lambertian surfaces, smooth con-
tours, controlled illumination, and the like) can be success-
fully solved.

The strict formalization of representations at different lev-
els of abstraction gave rise to breaking the problems into au-
tonomous subproblems and solving them independently. The
conversion of external data (sensor data, actuator commands,
decision making, etc.) into an internal representation was
separated from the phase of algorithms to perform computa-
tions on internal data; signal processing was separated from
symbolic processing and action. Processing of visual data was
treated, for the most part, in a syntactic manner and seman-
tics was treated in a purely symbolic way using the results of
the syntactic analysis. This is not surprising, since computerACTIVE PERCEPTION
vision was considered as a subfield of artificial intelligence
(AI) and thus studied using the same methodology, influenced‘‘The past two decades . . . have led to a powerful conceptual

change in our view of what the brain does . . . It is no longer by the ideas and computational theories of the last decades
(6–8).possible to divide the process of seeing from that of under-

standing . . .’’ (1). These lines of Zeki’s article express in a The strict hierarchical organization of representational
steps in the Marr paradigm makes the development of learn-concise way what has been realized in different disciplines

concerned with the understanding of perception. Vision (and ing, adaptation, and generalization processes practically im-
possible (so that there has not been much work on ‘‘vision andperception in general) should not be studied in isolation but

in conjunction with the physiology and the tasks that systems learning’’) (9). Furthermore, the conceptualization of a vision
system as consisting of a set of modules recovering generalperform. In the discipline of computer vision such ideas

caused researchers to extend the scope of their field. If ini- scene descriptions in a hierarchical manner introduces com-
putational difficulties with regard to issues of robustness, sta-tially computer vision was limited to the study of mappings

of a given set of visual data into representations on a more bility, and efficiency. These problems lead us to believe that
general vision does not seem to be feasible. Any system has aabstract level, it now has become clear that image under-

standing should also include the process of selective acquisi- specific relationship with the world in which it lives, and the
system itself is nothing but an embodiment of this relation-tion of data in space and time. This has led to a series of

studies published under the headings of active, animate, pur- ship. In the Marr approach the algorithmic level has been
separated from the physiology of the system (the hardware)posive, or behavioral vision. A good theory of vision would be

one that can create an interface between perception and other and thus vision was studied in a disembodied, transcenden-
tal manner.cognitive abilities. However, with a formal theory integrating

perception and action still lacking, most studies have treated Of course, many of the solutions developed for disembodied
systems may also be of use for embodied ones. In general,active vision (2,3,3a,3b) as an extension of the classical recon-

struction theory, employing activities only as a means to reg- however, this does not hold. Given infinite resources, every
(decidable) problem can be solved in principle. Assuming thatularize the classical ill-posed inverse problems.

Let us summarize the key features of the classical theory we live in a finite world and that we have a finite number of
possibilities for performing computations, any vision problemof vision in order to point out its drawbacks as an overall

framework for studying and building perceptual systems. In might be formulated as a simple search problem in a very
high-dimensional space. From this point of view, the study ofthe theory of Marr (4), the most influential in recent times,

vision is described as a reconstruction process, that is, a prob- embodied systems is concerned with the study of techniques
to make seemingly intractable problems tractable.lem of creating representations at increasingly high levels of

abstraction, leading from two-dimensional (2-D) images Not the isolated modeling of observer and world (as closed
systems) but the modeling of observer and world in a syner-through the primal sketch and the 2��-D sketch to object-cen-

tered descriptions (‘‘from pixels to predicates’’) (5). Marr sug- gistic manner will contribute to the understanding of percep-
tual information-processing systems (10). The question, ofgested that visual processes—or any perceptual or cognitive

processes—are information-processing tasks and thus should course, still remains how such a synergistic modeling should
be realized, or: How can we relate perception and action?be analyzed at three levels: (1) at the computational theoretic

level (definition of the problem and its boundary conditions; What are the building blocks of an intelligent perceptual sys-
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tem? What are the categories into which the system divides perceptual systems, especially of lower animals, such as me-
dusae, worms, and insects. In computational neuroethologyits perceptual world? What are the representations it em-

ploys? How is it possible to implement such systems in a flex- (neuroinformatics) researchers are copying the neuronal con-
trol found in such simple organisms into artificial systemsible manner to allow them to learn from experience and ex-

tend themselves to better ones? with the hope of learning to understand in this way the dy-
namics responsible for adaptive behavior.

Two other fields concerned with the study of interactions
WHERE ARE WE HEADING?

of systems and their environments have also given rise to a
number of new technical tools and mathematics. One of these

Interdisciplinary Research
is cybernetics. Its goal is the study of relationships between
behaviors of dynamical self-regulating systems (biological andComputer vision is not the only discipline concerned with the

study of cognitive processes responsible for a system’s interac- artificial ones) and their structure. Cybernetics initiated
many efforts in control theory. The mathematics that hastion with its environment. The last decade of the twentieth

century has been declared the decade of the brain. A number been employed involves integral and differential equations.
The other discipline is synergetics, which searches for univer-of new fields that together have established themselves as

neurosciences are providing us with results about the compo- sal principles in the interrelationship of the parts of a system
that possesses macroscopic spatial, temporal, and functionalnents of actually existing brains. In areas such as neurophysi-

ology, neurogenetics, and molecular biology new techniques structures.
have been developed that allow us to trace the processes at
the molecular, neural, and cellular levels. By now we have The Approach
gained some insight into the various functional components

After these discussions of biological sciences, one might as-
of the brain. We are, however, far from understanding the

sume that it is suggested here to define the scope of computer
whole. There are many other different disciplines concerned

vision as copying biological vision in artificial systems. This
with the problem of perception from the biological point of

is not the case: Computer vision is the discipline concerned
view: psychology, cognitive neurophysiology, ethology, and bi-

with the study of the computational theories underlying vi-
ology, to name a few of them.

sion. Its goal is to gain insight into perception from a compu-
For most of its history, cognitive modeling has focused al-

tational point of view. The computations that could possibly
most exclusively on human abilities and capacities. In the

exist have to be of a certain nature. Thus the problem is to
past, however, the studies were guided by other ideas and

understand the inherent properties of the computations that
a large number of psychological and psychophysical studies

a framework which models the understanding of purposive,
concentrated on the understanding of singularities in human

embodied systems will have.
perception, or visual illusions, as they are commonly called.

To achieve this goal the study of perception has to be ad-
The assumption was that the brain is designed in a modular,

dressed at various levels of abstraction. Our approach here is
principled fashion, and thus from the study of perceptual mal-

twofold: On the one hand we attempt to provide a global
functions [illusions (11)], information about its design can be

model—a working model—for explaining the abstract compo-
deduced. Recent results from cognitive neurophysiology—the

nents of a vision system. On the other hand we propose an
discipline that is concerned, among other topics, with the

approach for achieving the study and building of actual vision
study of visual agnosia (a condition exhibited by patients with

systems. The interaction we expect with biological sciences
partially damaged brains) (12,13)—indicate that the human

will be of the following kind. Results from biological sciences
brain is not designed in a clean, modular fashion, but consists

should give us inspiration about the visual categories relevant
of several processes working in a cooperative, distributed

for systems existing in environments like those of humans.
manner. The findings from studies of illusions actually sup-

The constraints imposed by the possible computations should
port this point, since a multitude of computational theories of

tell the biological scientists what experiments to perform to
different natures have been proposed for explaining the mul-

find out how biological organisms can possibly function.
titude of human visual illusions.

When referring to the intelligence of biological systems, we
The Modules of the System

refer to the degree of sophistication of their competences and
to the complexity of the behaviors that they exhibit in order Figure 1 gives a pictorial description of the basic components

of a purposive vision system. The abstract procedures andto achieve their goals. Various disciplines have been con-
cerned with the study of competences in biological organisms. representations of a vision system are the procedures for per-

forming visual perceptions, physical actions, learning, and in-Genetics and evolution theory study how different species ac-
quire their species-specific competences. Competences are formation retrieval, and purposive representations of the per-

ceptual information along with representations of informationclassified into two categories: those genetically inherited
(through phylogenesis) and those acquired individually, re- acquired over time and stored in memory.

At any time a purposive vision system has a goal or a setsponsible for the specific categories that an individual distin-
guishes (through ontogenesis). In ethology the relationship of goals that it wishes to achieve as best as it can by means

of its available resources. Thus at any time the system is en-between the acquisition of individual and species-specific
competences and the behavior of biological organisms is in- gaged in executing a task. The visual system possesses a set

of visual competences with which it processes the visual infor-vestigated. Organisms at various levels of complexity have
been researched. The discipline of neuroethology is concerned mation. The competences compute purposive representations.

Each of these representations captures some aspect of the to-with the physical implementation of behaviors. By now it has
given rise to a great deal of insight in the understanding of tal visual information. Thus compared with the representa-



ACTIVE PERCEPTION 225

Figure 1. Working model: Basic compo-
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nents of a purposive vision system.

tions of the old paradigm, they are partial. The representa- of the article: In this model the intelligence of a purposive
system is embodied in its visual competences and its actions.tions are of different complexities with regard to the space

they describe. The purposive representations themselves are Thus competences and actions are considered to be the build-
ing blocks of an intelligent system. In order to fulfill a pur-purposive descriptions of the visual information organized in

certain data structures. The purposive representations access pose (a task that is stated in the form of events that can be
perceived by means of the perceptual processes), a system ex-programs that we call action routines. This collective name

refers to two kinds of routines. The first kind are the pro- ecutes behaviors. Thus, behaviors, which are an emergent at-
tribute of the system, couple perception and action. They con-grams that schedule the physical actions to be performed,

that is, they initialize motor commands and thus provide the stitute some form of structure adaptation that might either
be visible externally or take place only internally in the forminterface to the body. The second kind schedule the selection

of information to be retrieved from the purposive representa- of parameter adaptation.
tions and stored in long-term memory. An important aspect
of the architecture is that the access of the visual processes Outline of the Approach
to the actions is on the basis of the contents of the purposive

If we aim to understand perception, we have to come up withrepresentations; that is, the contents of the purposive repre-
some methodology to study it. The ideal thing would be tosentations serve as addresses to the actions. Another class of
design a clearly defined model for the architecture of visionprograms is responsible for learning by providing the actions,
systems and start working on its components. However, wethe competences, and the representations with the means to
have few answers available when it comes down to actuallychange and adjust parameters.
talking about the visual categories that are relevant for visualAs can be seen from the Fig. 1, learning takes place at
systems. What kind of representations a system needs in or-various levels of, as well as in between, the modules of the
der to perform a task depends on the embodiment of the sys-system. For a flexible vision system, it should be possible to
tem and the environment in which it lives. Answers to theselearn the parameters describing actions, to acquire new ac-
questions cannot come as insights gained from the study oftions, to learn parameters describing visual competences, to
mathematical models. It must be empirical studies investigat-acquire new visual competences that compute new purposive
ing systems (biological and artificial ones) that will tell usrepresentations, and to learn the sequences of actions and
how to couple functionality, visual categories, and visual pro-perceptual competences to perform a task. In any case, learn-
cesses. Up to now we have not understood how we actuallying is accomplished by means of programs—learning proce-
could develop visual competences for systems that work indures—that allow the change and adaptation of parameters
environments as complex as our own, so we will not be ablein order to learn competences, actions, and their interrela-
to obtain a global view of the overall architecture and func-tionships.
tionality of vision systems. At this point in time it also wouldThe purposive perceptual representations, as well as rep-
not contribute much to the development of our understandingresentations containing other kinds of information, are stored
to just go ahead and develop particular systems that performin memory. The storing must happen in an efficient way ac-
particular tasks—say, for example, to build a system that rec-cording to the available memory space. Different representa-
ognizes tables. Even if we were able to create such a systemtions share common elements. Memory organization tech-
with a success rate of 99%, this system would have the capac-niques have to be studied that allow information to be stored
ity of recognizing many things that are unknown to us, andaccording to its content. Also, designing a memory for repre-
not just tables. Thus by aiming to build systems that recog-sentations includes designing the procedures necessary for
nize certain categories that seem relevant to our symbolic lan-fast and reliable access.
guage repertoire, we would not gain much insight into per-The abstract components on which we focus our discussion
ception.are (1) the visual competences and (2) the organization of

It thus seems somehow natural that the only way out ofmemory and the procedures for learning related to visual pro-
this problem of where to start is to approach the study ofcessing and the coupling of action and perception.
vision systems in an ‘‘evolutionary’’ way. We call such an ap-Let us summarize in which way the model just described
proach the synthetic (evolutionary) approach. We give here acaptures the study of perception and action in a synergistic

way and address some of the questions posed at the beginning short outline of the ideas behind this approach, which we dis-
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cuss in detail in the remainder of the article. It means that continuous differentiable function can be approximated in an
infinitesimal area by its derivatives). However, in order to usewe should start by developing individual primitive visual op-

erations and provide the system in this way with visual capa- this assumption for visual recovery, additional assumptions
regarding the number of planar patches have to made; thesebilities (or competences). As we go on, the competences will

become more and more complex. At the same time, as soon as are environment-specific assumptions. Similarly, we may as-
sume that the world is smooth between discontinuities; thiswe have developed a small number of competences, we should

work on their integration. Such an endeavor throws us imme- is general with regard to the environment. Again, for this as-
sumption to be utilized we must make some assumptionsdiately into the study of two other major components of the

system: How is visual information related to action and how specifying the discontinuities, and then we become specific.
We may assume that an observer only translates. If indeedis the information represented—how is it organized, and coor-

dinated with the object recognition space? Thus we are con- the physiology of the observer allows only translation, than
we have made a general assumption with regard to the sys-fronted on the one hand with the study of activities and the

integration of vision and action, and on the other hand with tem. If we assume that the motion of an observer in a long
sequence of frames is the same between any two consecutivethe study of the memory space with all its associated prob-

lems of memory organization, visual data representation, and frames, we have made a specific assumption with regard to
the system. If we assume that the noise in our system isindexing—the problem of associating data stored in the mem-

ory with new visual information. Furthermore, we also have Gaussian or uniform, again we have made a system-specific
assumption.to consider the problem of learning from the very beginning.

Our approach requires that the assumptions used have to
be general with regard to the environment and the system.

THE COMPETENCES
Scaled up to more complicated systems existing in various en-
vironments, this requirement translates to the capability of

Computational Principles
the system to decide whether a model is appropriate for the
environment in which the system is acting. A system mightOur goal is to study (or more precisely formulated, analyze in

order to design) a system from a computational point of view. possess a set of processes that together supply the system
with one competence. Various processes are limited to specificWe argued earlier that the study of visual systems should be

performed in a hierarchical manner according to the complex- environmental specifications. The system, thus, must be able
to acquire knowledge about what processes to apply in a spe-ity of the visual processes. As a basis for its computations a

system has to utilize mathematical models, which serve as cific situation.
The motivation for studying competences in a hierarchicalabstractions of the representations employed. Thus, when re-

ferring to the complexity of visual processes, we mean the way is to gain increasingly insight into the process of vision,
which is of high complexity. Capabilities that require complexcomplexity of the mathematical models involved.

Naturally, the computations and models are related to the models should be based on ‘‘simpler,’’ already developed capa-
bilities. The complexity of a capability is thus given by theclass of tasks the system is supposed to perform. A system

possesses a set of capabilities that allow it to solve certain complexity of the assumptions employed; what has been con-
sidered a simple capability might require complex models andtasks. In order to perform a task the system has to extract

and process certain informational entities from the imagery vice versa.
The basic principle concerning the implementation of pro-it acquires through its visual apparatus. What these entities

are depends on the visual categories the system reacts to. The cesses subserving the capabilities, which is motivated by the
need for robustness, is the quest for algorithms that are quali-categories again are related to the task the system is engaged

in. They are also related to the system’s physiology, or tative in nature. We argue that visual competences should
not be formulated as processes that reconstruct the world butamount of space (memory) and the time available to solve the

task (the required reaction time). as recognition procedures. Visual competences are procedures
that recognize aspects of objective reality which are necessaryThe synthetic approach calls first for studying capabilities

whose development relies on only simple models and then go- to perform a set of tasks. The function of every module in the
system should constitute an act of recognizing specific situa-ing on to study capabilities requiring more complex models.

Simple models do not refer to environment- or situation-spe- tions by means of primitives that are applicable in general
environments. Each such entity recognized constitutes a cate-cific models that are of use in only limited numbers of situa-

tions. Each of the capabilities requiring a specified set of mod- gory relevant to the system. Some examples from navigation
are as follows.els can be used for solving a well-defined class of tasks in

every environment and situation the system is exposed to. If The problem of independent-motion detection by a moving
observer usually has been addressed with techniques for seg-our goal is to pursue the study of perception in a scientific

way, as opposed to industrial development, we have to accept menting optical flow fields. But it also may be tackled through
the recognition of nonrigid flow fields for a moving observerthis requirement as one of the postulates, although it is hard

to achieve. Whenever we perform computations, we design partially knowing its motion (14–16). The problem of obstacle
detection could be solved by recognizing a set of locations onmodels on the basis of assumptions, which in the case of vi-

sual processing are constraints on the space-time in which the retina that represent the image of a part of the 3-D world
being on a collision course with the observer. To perform thisthe system is acting, on the system itself, and on their rela-

tionship. An assumption can be general with regard to the task it is not necessary to compute the exact motion between
the observer and any object in the scene, but only to recognizeenvironment and situation, or very specific.

For example, the assumption about piecewise planarity of that certain patterns of flow evolve in a way that signifies the
collision of the corresponding scene points with the observerthe world is general with regard to the environment (every
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(17). Pursuing a target amounts to recognizing the target’s plines give us some answers. Much simpler than the human
visual system are the perceptual systems of lower animals,location on the image plane along with a set of labels repre-

senting aspects of its relative motion sufficient for the ob- like medusae, worms, crustaceans, insects, spiders, and mol-
luscs. Researchers in neuroethology have been studying suchserver to plan its actions. Motion measurements of this kind

could be relative changes in the motion such as a turn to the systems and have by now gained a great deal of understand-
ing. Horridge (21,22), working on insect vision, studied theleft, right, above, down, further away, or closer. In the same

way, the problem of hand–eye coordination can be dealt with evolution of visual mechanisms and proposed hierarchical
classifications of visual capabilities. He argued that the mostusing stereo and other techniques to compute the depth map

and then solve the inverse kinematics problem in order to basic capabilities found in animals are based on motion. Ani-
mals up to the complexity of insects perceive objects entirelymove the arm. While the arm is moving the system is blind

(18). However, the same problem can be solved by creating a by relative motion. His viewpoint concerning the evolution of
vision is that objects are first separated by their motions, andmapping (the perceptual kinematic map) from image features

to the robot’s joints; the positioning of the arm is achieved by with the evolution of a memory for shapes, form vision pro-
gressively evolves. The importance of these studies on lowerrecognizing the image features (14,19).

Instead of reconstructing the world, the problems de- animals becomes very clear when we take into account the
commonly held view by leaders in this field, that the princi-scribed above are solved through the recognition of entities

that are directly relevant to the task at hand. These entities ples governing visual motor control are basically the same in
lower animals and humans—whereas, of course, we humansare represented by only those parameters sufficient to solve

the specific task. In many cases, there exists an appropriate and other primates can see without relative motion between
ourselves and our surrounding.representation of the space-time information that allows us

to derive directly the necessary parameters by recognizing a In the last decades the part of the brain in primates re-
sponsible for visual processing—the visual cortex—has beenset of locations on this representation along with a set of at-

tributes. Since recognition amounts to comparing the infor- studied from an anatomical, physiological, and also behav-
ioral viewpoint. Different parts of the visual cortex have beenmation under consideration with prestored representations,

the described approaches to solving these problems amount identified and most of their connections established. Most sci-
entists subscribe to the theory that the different parts per-to matching patterns.

In addition, image information should be, whenever possi- form functionally specialized operations. What exactly these
functions are has not been clarified yet. In particular, opin-ble, utilized globally. Since the developed competences are

meant to operate in real environments under actual existing ions diverge about the specialization and the interconnections
conditions—just such as biological organisms do—the compu- involved in later stages of processing of the visual data. Much
tations have to be insensitive to errors in the input measure- more is known about the earlier processes. The visual signal
ments. This implies a requirement for redundancy in the in- reaches the cortex at the primary visual cortex, also called
put used. The partial information about the scene, which we V1, or striate cortex, via the retina and the lateral geniculate
want to recognize, will mostly be globally encoded in the im- body. From the primary visual cortex the visual signals are
age information. The computational models we are using sent to about 30 extrastriate or higher-order visual cortical
should thus be such that they map global image information areas, among which about 300 connections have been re-
into partial scene information. Later in this section, we will ported. Figure 2, taken from Ref. 23, shows the major areas
demonstrate our point by means of the rigid motion model. involved in visual processing. According to Orban the modules

To speak of an algorithm as qualitative, the primitives to in the primate visual cortex can be divided into four hierar-
be computed do not have to rely on explicit unstable, quanti- chical levels of processing. It seems to be pretty well accepted
tative models. Qualitativeness can be achieved in a number that there exist lower areas that are specialized for the pro-
of ways: The primitives might be expressible in qualitative cessing of either static or dynamic imagery. MT (also called
terms, their computation might be derived from inexact mea- V5), MST, and FST seem to be involved in motion processing,
surements and pattern recognition techniques, or the compu- and V4 in color processing. Form vision seems to be accom-
tational model itself might be proved stable and robust in all plished by different lower modules that use both static and
possible cases. dynamic information. Zeki (24), for example, suggests that V3

The synthetic approach has some similarities at the philo- is responsible for the understanding of form from motion in-
sophical level with Brooks’s proposal about understanding in- formation, and V4 derives form and color information. At
telligent behavior through the construction of working mecha- later stages the modules process both kinds of information in
nisms (20). In proposing the subsumption architecture, a combined way.
Brooks suggested a hierarchy of of competences such as On the basis of anatomical evidence and behavioral studies
avoiding contact with objects, exploring the world by seeing (studies on patients with lesions of specific cortical areas) the
places, and reasoning about the world in terms of identifiable hypothesis has been advanced (25) that there exist two visual
objects. This proposal, however, suffered from the same curse pathways originating from V1: a dorsal one leading to the pa-
of generality that weakened Marr’s approach. The subsump- rietal cortex and a ventral one leading to the inferotemporal
tion architecture lacked a solid basis, since it did not provide cortex. The dorsal path is concerned with either the computa-
a systematic way of creating a hierarchy of competences by tions concerned with ‘‘where’’ (object localization) or ‘‘how’’
taking into account the system’s purpose and physiology. [the visual guidance of movements (26)], and the ventral path

with the computations concerned with ‘‘what’’ (object identi-
Biological Hierarchy fication). It would be an oversimplification to conceive of these

two pathways as being mutually exclusive and hierarchicallyIt remains to discuss the actual simple capabilities on which
we should concentrate our first efforts. Other scientific disci- organized (24); one of the reasons is that this theory fails to
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Figure 2. Diagram of the primate visual
system indicating the subcortical struc-
ture as well as the four tentative levels of
cortical visual processing (from Ref. 23).

Parietal

7a

Inferotemporal

TE

TEO

V4

Cortex

V2

MST FST

MT

V3A

V3

V1

LGN

Retina

Pulvinar

Colliculus

Fourth level

Third level

Second level

First level

provide an answer to where and how the knowledge of ‘‘what’’ 3-D only locally. Therefore, it will be necessary to study new
forms of shape representations. In nature too there is not justan object is might be integrated with the knowledge of

‘‘where’’ it is. Also, recently the existence of a third pathway one method of shape representation. As results from neurobi-
ology show, form perception in human brains takes place inleading to the identification of actions has been suggested

(27). more than just one part of the cortex and is realized with
different kinds of hardware.Results from the brain sciences show us that there is not

just one hierarchy of visual processes, but various different Space is also understood from the processing of various
cues in a variety of ways. Furthermore, different tasks willcomputations are performed in parallel. Also, it is not our in-

tention to propose one strict hierarchy for developing visual require representations of space with regard to different ref-
erence systems—not just one, as often has been debated incompetences. We merely suggest studying competences by in-

vestigating more and more complex models, and basing more the past. Representations might be object-centered, ego-cen-
tered, or action-driven.complicated competences on simpler ones. Naturally, it fol-

lows that computations concerned with different cues and Actions can be very typical for objects. Early perceptual
studies have shown that humans are able to interpret movingrepresentations can and should be studied in parallel.

Inspired by the results from the natural sciences, we chose scenes correctly, even when the static view does not contain
information about the structure at all. In the experiments ofto study first the competences that only involve information

resulting from motion. This led us to the problems of naviga- Johansson (28) subjects were able to recognize animals, as
well as specific human beings, given only the motions of lighttion. The competences we encounter in visual navigation en-

compass representations of different forms. To elucidate the bulbs mounted on the object’s joints. Since our viewpoint is
that we should formulate competences as recognition proce-synthetic approach, in the next section we will discuss a se-

ries of competences of increasing complexity employing repre- dures, the study of navigation also leads us to the study of
action-driven visual processing. We propose to start modelingsentations of motion, shape, and space. In the following sec-

tion we will then outline our realizations of the most basic such competences by means of more complicated motion mod-
competences in visual navigation, which only require motion els (nonrigid-motion models).
information.

Next in the hierarchy follow capabilities related to the un- A Hierarchy of Models for Navigational Competences
derstanding of form and shape and the learning of space. Con-

Navigation, in general, refers to the performance of sensory-cerning form and shape, our viewpoint is that we should not
mediated movement, and visual navigation is defined as thetry to adopt the classical idea of computing representations
process of motion control based on an analysis of images. Athat capture the 3-D world metrically. Psychological studies
system with navigational capabilities interacts adaptivelyon the role of the eye movements suggest that fixations play
with its environment. The movement of the system is gov-an important role in our understanding of space. It seems to
erned by sensory feedback, which allows it to adapt to varia-be that the level on which information from successive fixa-
tions in the environment. By this definition visual navigationtions is integrated is relatively abstract and that the repre-

sentations from which organisms operate on the world are comprises the problem of navigation in which a system con-
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trols its single components relative to the environment and general case it cannot be solved without any knowledge of the
system’s own motion. Imagine a moving system that takes anrelative to each other.

Visual navigation encompasses a wide range of perceptual image showing two areas of different rigid motion. From this
image alone, it is not decidable which area corresponds to thecompetences, including tasks that every biological species

possesses, such as motion segmentation or kinetic stabiliza- static environment and which to an independently moving
object.tion (the ability of a single compact sensor to understand and

control its own motion), as well as advanced specific hand– However, such an example should not discourage us and
drive us to the conclusion that ego-motion estimation and in-eye coordination and servoing tasks.

To explain the principles of the synthetic approach to Me- dependent-motion detection are chicken-and-egg problems:
unless one of them has been solved, the other can not be ad-dusa, we describe six such competences, all of which are con-

cerned only with the movement of a single compact sensor. dressed either. Have you ever experienced the illusion that
you are sitting in front of a wall that covers most of yourThese are ego-motion estimation, partial object-motion esti-

mation, independent-motion detection, obstacle avoidance, visual field, and suddenly this wall (which actually is not a
wall) starts to move? You seem to experience yourself moving.target pursuit, and homing. These particular competences

allow us to demonstrate a hierarchy of models concerned with It seems that vision alone does not provide us (humans) with
an infallible capability of estimating motion. In nature thethe representation of motion, form, and shape.

In the past, navigational tasks, since they inherently in- capability of independent-motion detection appears at various
levels of complexity. We argue that in order to achieve a veryvolve metric relationships between the observer and the envi-

ronment, have been considered as subproblems of the general sophisticated mechanism for independent-motion detection,
various processes have to be employed. Another glance at na-‘‘structure-from-motion’’ problem (29). The idea was to recover

the relative 3-D motion and the structure of the scene in view ture should give us some inspiration: We humans do not per-
ceive everything moving independently in our visual field. Wefrom a given sequence of images taken by an observer in mo-

tion relative to its environment. Indeed, if structure and mo- usually concentrate our attention on the moving objects in the
center of the visual field (where the image is sensed with hightion can be computed, then various subsets of the computed

parameters provide sufficient information to solve many prac- resolution) and pay attention only if something is moving fast
in the periphery. It thus seems to make sense to develop pro-tical navigational tasks. However, although a great deal of

effort has been spent on the subject, the problem of structure cesses that detect anything moving very fast (15). If some up-
per bound on the observer’s motion is known (maximalfrom motion still remains unsolved for all practical purposes.

The main reason for this is that the problem is ill-posed, in speed), it is possible to detect motion even for small areas
where motions above the speed threshold appear. Similarly,the sense that its solution does not continuously depend on

the input. for specific systems, processes that recognize specific types of
motion may be devised by employing filters that respond toThe simplest navigational competence, according to our

definition, is the estimation of ego motion. The observer’s sen- these motions (of use, for example, when the enemy moves in
a particular way). To cope with the ‘‘chicken-and-egg’’ prob-sory apparatus (eye or camera), independent of the observer’s

body motion, is compact and rigid and thus moves rigidly with lem in the detection of larger independently moving objects,
we develop a process, based on the same principle as the esti-respect to a static environment. As we will demonstrate, the

estimation of an observer’s motion can indeed be based on mation of ego motion, which for an image patch recognizes
whether the motion field within the patch originates fromonly the rigid-motion model. A geometric analysis of motion

fields reveals that the rigid-motion parameters manifest only rigid motion or whether the constraint of rigidity does
not hold. Having some idea about the ego motion or the scenethemselves in the form of patterns defined on partial compo-

nents of the motion fields (30). Algorithmically speaking, the (for example, in the form of bounds on the motion or knowing
that the larger part of the scene is static) we can also decideestimation of motion thus can be performed through pattern-

recognition techniques. where the independently moving objects are.
To perform obstacle avoidance it is necessary to have someAnother competence, the estimation of partial information

about an object’s motion (its direction of translation), can be representation of space. This representation must capture in
some form the change of distance between the observer andbased on the same model. But whereas for the estimation of

ego motion the rigid-motion model could be employed glob- the scene points that have the potential of lying in the observ-
er’s path. An observer that wants to avoid obstacles must beally, for this competence only local measurements can legiti-

mately be employed. Following our philosophy about the able to change its motion in a controlled way and must there-
fore be able to determine its own motion and set it to knownstudy of perception, it makes perfect sense to define such a

competence, which seemingly is very restricted. Since our values. As can be seen, the capability of ego-motion estima-
tion is a prerequisite for obstacle avoidance mechanisms, andgoal is to study visual problems in the form of modules that

are directly related to the visual task in which the observer general independent-motion detection will require a model
that is as complex as that used in ego-motion estimation inis engaged, we argue that in many cases when an object is

moving in an unrestricted manner (translation and rotation) addition to other simple motion models.
Even higher in the hierarchy are the capabilities of targetin the 3-D world, we are only interested in the object’s trans-

lational component, which can be extracted using dynamic pursuit and homing (the ability of a system to find a particu-
lar location in its environment). Obviously, a system that pos-fixation (31).

Next in the hierarchy follow the capabilities of indepen- sesses these capabilities must be able to compute its ego mo-
tion and must be able to avoid obstacles and detectdent-motion detection and obstacle avoidance. Although the

detection of independent motion seems to be a very primitive independent motion. Furthermore, homing requires knowl-
edge of the space and models of the environment (for example,task, it can easily be shown by a counterexample that in the
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shape models), whereas target pursuit relies on models for
representing the operational space and the motion of the tar-
get. These examples should demonstrate the principles of the
synthetic approach, which argues for studying increasingly
complex visual capabilities and developing robust (qualita-
tive) modules in such a way that more complex capabilities
require the existence of simpler ones.

Motion-Based Competences

In this section we describe the ideas behind some of the mod-
ules we have developed to realize the most basic competences

(r,s)

for visual navigation: the competence of ego-motion estima-
tion, a process for partial object-motion estimation, and a pro- Figure 3. Positive (r, s) copoint vectors.
cess for independent-motion detection. This description
should merely serve to demonstrate our viewpoint concerning
the implementation of qualitative algorithms; more detailed have a certain structure that takes the form of patterns in
outlines and analyses are found elsewhere. the image (on the sphere or in the plane). For example, one

First, let us state some of the features that characterize can select in the plane normal-flow vectors whose direction is
our approach to solving the previously mentioned compe- defined with regard to a point with coordinates (r, s). These
tences and differentiate it from most existing work. so-called copoint vectors (r, s) are vectors that are perpendicu-

In the past, the problems of ego-motion recovery for an ob- lar to straight lines passing through the point (r, s). In addi-
server moving in a static scene and the recovery of an object’s tion, the normal-flow vectors of a class are distinguished as to
3-D motion relative to the observer, since they both were con- whether their direction is counterclockwise or clockwise with
sidered as reconstruction problems, have been treated in the respect to (r, s), in which case they are called positive or nega-
same way. The rigid-motion model is appropriate if only the tive (see Fig. 3). Since any point (r, s) in the image can be
observer is moving, but it holds only for a restricted subset of chosen as a reference point, there exists an infinite number
moving objects—mainly man-made ones. Indeed, all objects of such classifications.
in the natural world move nonrigidly. However, considering Every class of copoint vectors has the following property:
only a small patch in the image of a moving object, a rigid- Considering only translational vectors, we find that the posi-
motion approximation is legitimate. For the case of ego mo- tive and negative vectors are separated by a line. In one half-
tion, data from all parts of the image plane can be used, plane the vectors are positive, in the other the vectors are
whereas for object motion only local information can be em- negative, and on the line they are zero [Fig. 4(a)]. Vectors due
ployed. to rotation, on the other hand, are separated by a conic sec-

Most current motion understanding techniques require the tion into positive and negative ones [Fig. 4(b)]. Vectors of a
computation of exact image motion (optical flow in the differ- general rigid motion (rotation and translation) thus obey the
ential case or correspondence of features in the discrete case). structure shown in Fig. 4(c). In one area the vectors are posi-
This, however, amounts to an ill-posed problem, additional tive, in a second they are negative, and the vectors in the
assumptions about the scene have to be employed, and as a third area can take any value. This structure on the norma-
result, in the general case, the computed image displacements flow vectors is called the copoint pattern. Similar patterns ex-
are imperfect. In turn, the recovery of 3-D motion from noisy ist for other classifications (34,35).
flow fields has turned out to be a problem of extreme sensitiv- These findings allow us to formulate the problem of ego-
ity with small perturbations in the input, causing large motion estimation as a pattern recognition problem. By lo-
amounts of error in the motion-parameter estimates. To over- calizing for different classes of normal-flow vectors the posi-
come this problem, in our approach to the development of mo- tive and negative areas in the image plane, the parameters
tion related competences, we skip the first computational for the axis of translation and direction of rotation can be
step. All the techniques developed are based on the use of derived (30).
only the spatiotemporal derivatives of the image intensity Also, based on the same basic constraints, a process for the
function—the so-called normal flow. As a matter of fact, in detection of independent motion has been designed. Since the
part, only the sign of the normal flow is employed. It should observer is moving rigidly, an area with a motion field not
be mentioned that a few techniques using normal flow have possibly due to only one rigid motion must contain an inde-
appeared in the literature; however, they deal only with re- pendently moving object. The constraints are defined for the
stricted cases [only translation or only rotation (32,33)]. whole visual field, but also the motion vectors in every part of

Another characteristic is that the constraints developed for the image plane must obey a certain structure. Our approach
the motion modules, for which the rigid-motion module is the consists of comparing the motion field within image patches
correct one globally, are such that the input also is utilized with prestored patterns (which represent all possible rigid
globally. The basis of these computations form global con- motions).
straints that relate the spatiotemporal derivatives of the im- By considering patches of different sizes and using various
age intensity function globally to the 3-D motion parameters. resolutions, the patterns may also be of use in estimating the

The global constraints are defined on classes of normal- motion of objects. Differently sized filters can first be em-
flow vectors. Given a normal-flow field, the vectors are classi- ployed to localize the object and then an appropriately sized

filter can be used to estimate the motion. Objects, however,fied according to their directions. The vectors of each class
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fixation on a small area on the object the observer can derive
information about the direction of the object’s translation par-
allel to its image plane. By tracking the object over a small
amount of time, the observer derives additional information
about the translation perpendicular to the image plane. Com-
bining the computed values allows us to derive the direction
of an object’s translation (36). Several recent results have
strengthened this framework (37–48).

A Look at the Motion Pathway

There is a very large amount of literature (49–52) on the
properties of neurons involved in motion analysis. The mod-
ules that have been found to be involved in the early stages
of motion analysis are the retinal parvocellular neurons, the
magnocellular neurons in the LGN, layer 4C� of V1, layer 4B
of V1, the thick bands of V2, and MT. These elements to-
gether are referred to as the early-motion pathway. Among
others they feed further motion-processing modules, namely
MST and FST, which in turn have connections to the parietal
lobe. Here we concentrate on two striking features: the
change of the spatial organization of the receptive fields and
the selectivity of the receptive fields for motion over the early
stages of the motion pathway. The computational modeling of
the visual motion interpretation process that we described
above appears consistent with our knowledge about the orga-
nization and functional properties of the neurons in the early-
stage-motion pathway of the visual cortex. In addition our
computational theory creates a hypothesis about the way mo-
tion is handled in the cortex and suggests a series of experi-
ments for validating or rejecting it.

Figure 5 (from Ref. 53) shows an outline of the process to
be explained that involves four kinds of cells with different
properties. In the early stages, from the retinal Pa ganglion
cells through the magnocellular LGN cells to layer 4Ca of V1
the cells appear functionally homogeneous and respond al-
most equally well to the movement of a bar (moving perpen-
dicularly to its direction) in any direction [Fig. 5(a)]. Within
layer 4C of V1 we observe an onset of directional selectivity.
The receptive fields of the neurons here are divided into sepa-
rate excitatory and inhibitory regions. The regions are ar-
ranged in parallel stripes, and this arrangement provides the
neurons with a preference for a particular orientation of a bar

(a)

(b)

(c)

(r,s)

(r,s)

(r,s)

AOR

AOR

FOE

FOE

target (which is displayed in the polar diagram) [Fig. 5(b)]. In
layer 4B of V1 another major transformation takes place withFigure 4. (a) The translational (r, s) copoint vectors are separated

by a line that passes through the FOE (the point that denotes the the appearance of directional selectivity. The receptive fields
direction of translation); in one half-plane all vectors have positive here are relatively large and they seem to be excited every-
values (light gray), in the other half-plane negative values (dark where by light or dark targets. In addition, these neurons re-
gray). (b) The rotational (r, s) copoint vectors are separated by a sec- spond better or solely to one direction of motion of an opti-
ond-order curve that passes through the AOR (the point where the mally oriented bar target, and less or not at all to the other
rotation axis pierces the image plane). (c) A general rigid motion sep-

[Fig. 5(c)]. Finally, in MT neurons have considerably large re-arates the (r, s) copoint vectors into an area of negative vectors, an
ceptive fields and in general the precision of the selectivityarea of positive vectors, and an area that may contain vectors of any
for direction of motion that the neurons exhibit is typicallyvalue (white).
less than that in V1 [Fig. 5(d)]. In MST the size of the re-
ceptive fields of neurons becomes even larger, ranging from
30� to 100�, each responding to particular 3-D motion config-do not always move rigidly. Furthermore, in many cases the
urations (23,49,51).area covered by the object will not be large enough to provide

One can easily envision an architecture that, using neu-satisfying, accurate information. In the general case, when
rons with the properties previously listed, implements aestimating an object’s motion, only local information can be
global decomposition of the normal motion field. Neurons ofemployed. In such a case, we utilize the observer’s capability
the first kind could be involved in the estimation of the localto move in a controlled way. We describe the object’s motion

with regard to an object-centered coordinate system. From retinal motion perpendicular to the local edge (normal flow).
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terns. Matches provide information about ego motion and
mismatches provide information about independent motion.

In this architecture we are not concerned with neurons
that possibly estimate the motion field (optic flow). This is not
to say that optic flow is not estimated in the cortex; several
neurons could be involved in approximating the motion field.
However, if the cortex is capable of solving some motion prob-
lems without the use of optic flow, whose estimation amounts
to the solution of an optimization problem, it is quite plausi-
ble to expect that it would prefer such a solution. After all, it
is important to realize that at the low levels of processing the
system must utilize very reliable data, such as, for example,
the sign of the motion field along some direction. It is worth
noting that after deriving ego motion from normal flow, infor-
mation about 3-D motion is available, and the cortex could
involve itself with approximating optic flow, because in this
way the problem is not ill-posed any more (at least for back-
ground scene points).

Form-Based Competences

Since computer vision was considered to have as a goal the
construction of 3-D descriptions of the world, a lot of effort
was spent on developing techniques for computing metric
shape and depth descriptions from 2-D imagery. Studies that
are concerned with this kind of work are collectively referred
to as shape from X computations, where by X is meant cues
such as shading, texture, pattern, motion, or stereo. However,
an exact, quantitative 3-D structure is hard to compute, and
in the models employed, explicit assumptions about the scene
(smoothness, planarity, etc.) usually have to be made.

Considering all the work that has been expended on the
computation of metric shape and that has not yet given rise
to any system working in a real environment, a glance at na-
ture might give us some inspiration. Maybe it is a hopeless
task to aim at deriving metric shape or depth information.
Psychophysical experiments indicate that binocular stereop-
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sis in the human visual system does not produce an explicit

Figure 5. The spatial structure of visual receptive fields and their representation of the metric depth structure of the scene. Psy-
directional selectivity at different levels of the motion pathway, from chophysical evidence (54,55) suggests that human perfor-
Ref. 53. The spatial scales of the receptive fields (0.1�, etc.) listed here

mance in tasks involving metric structure from binocular dis-are for neurons at the center of gaze; in the periphery these dimen-
parities is very poor. Also, other cues do not seem to allowsions would be larger. The polar diagrams illustrate responses to
humans to extract the kind of depth information that hasvariation in the direction of a bar target oriented at right angles to
usually been considered. In their experiments, Todd and Rei-its direction of motion. The angular coordinate in the polar diagram
chel (56) had subjects estimate the depths of points on aindicates the direction of motion and the radial coordinate the magni-

tude of the response. drapelike surface shown on video images. Subjects could accu-
rately report the relative depth of two points if they were on
the same surface on the same side of the ‘‘fold,’’ but were quite
poor at determining the relative depth if the points were on
different folds. This experiment leads to the conclusion thatNeurons at this stage could be thought of as computing
humans possess a relative depth judgment for points withinwhether the projection of retinal motion along some direction
a local area lying on a surface; however, they cannot estimateis positive or negative. Neurons of the second kind could be
even relative depth correctly for large distances in the visualinvolved in the selection of local vectors in particular direc-
field, when depth extrema are passed.tions as parts of the various different patterns discussed in

We also know that in humans the area of the eye in whichthe preceding section, while neurons of the third kind could
detailed (high-resolution) information can be extracted coversbe involved in computing the sign (positive or negative) of pat-
only a small region around the fovea (about 5� of visual angletern vectors for areas in the image; that is, they might com-
at normal viewing distance). The low resolution at the periph-pute for large patches of different sizes, whether the normal
ery does not allow us to derive accurate depth information.flow in certain directions is positive or negative. Finally, neu-
Human eyes, however, are seldom not in motion. The eyesrons of the last kind (MT and MST) could be the ones that
are engaged in performing fixations, each lasting about one-piece together the parts of the patterns developed already into

global patterns that are matched with prestored global pat- quarter of a second. Between the fixations, saccadic move-
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ments are carried out, during which no useful information is
extracted.

The biological evidence gives us good reason to argue for
alternative-shape models. The experiments mentioned before
give rise to the following conclusions:

1. Shape or depth should not be computed in metric form,
but only relative depth measurements (ordered depth)
should be computed.

2. A complete shape or depth map relating every pixel to
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every other pixel should not be computed globally but
Figure 6. The translation along the Xl axis is LK � U dt. The trans-only for parts of the image. Then the information de-
lation along the Zl axis is KR � W dt. The angle denoting rotationrived for different parts has to be integrated. This inte-
around the Yl axis is LFR � � dt. L, K, R, F belong to the fixationgration, however, should not take place in the usual
plane. dt is a hypothetical small time interval during which the mo-form, leading to complete, coherent spatial descriptions.
tion bringing XlYlZl to XrYtZt takes place.The result should not be a complete reconstructed

3-D shape model, obtained by exactly putting (‘‘gluing’’)
together the local shape representations into a global

deriving functions of the depth measurement Z of the formone. Instead, we have to look for alternative representa-
f (Z) � (1/Z)a � b, f (Z) � aZ � b, f (Z) � eaZ � b, etc., where ations that suffice for accessing the shape information
and b are unknown constants] (57,58). We argue that oneone needs to solve particular tasks.
could try to compute even less informative features than met-
ric depth or shape information by aiming at deriving moreThese or similar arguments also find support from compu-
involved depth functions.tational considerations. Concerning argument 2, one might

An example is given here from binocular vision. Given aask why one should compute only local information, if from a
fixated stereo pair, we can choose normal disparities (projec-technical standpoint there is no difference whether the sen-
tions of disparity vectors on the orientation of the local imagesors have different or the same resolution everywhere. If
gradient) in such a way that the values of the normal dispari-stereo systems are used—the most obvious for deriving shape
ties are sufficient for ordering the depth values. Consider aninformation—and the two cameras fixate at a point, the dis-
active binocular observer capable of fixating on an environ-parity measurements are small only near the fixation point
mental point. The geometry of the system can be described asand thus can also be computed exactly only there. In particu-
a constrained rigid motion between the left and right eye. Iflar, if continuous techniques are employed to estimate the dis-
we fix a coordinate on the left eye with the z axis aligned withplacement (due to stereo or due to motion), the assumption of
its optical axis and the y axis perpendicular to the fixationcontinuity of the spatiotemporal imagery does not have to be
plane, then the transformation relating the right eye to thegreatly violated. The measurements that are due to rotation
left is a rotation around the y axis and a translation in theincrease with the distance from the image center, and the
xz plane (Fig. 6). At the fixation point the disparity measure-translational measurements are proportional to the distance
ments are zero and in a neighborhood around it relativelyfrom the epipole or the point denoting the direction of transla-
small. Thus, it is legitimate to approximate the disparitytion. Another argument is that computing shape only locally
measurements through a continuous velocity field. Thisgives legitimacy to the the orthographic projection model for
amounts to the small baseline approximation that has beenapproximating the image formation. The exact perspective
used in the literature (58).projection model makes the computation of distance and

Denoting, as usual, by U and W the translation along theshape very hard, since the depth component appears in-
x and z axes and by � the rotation around the y axis, andversely in the image coordinates, which in turn leads to equa-
setting x0 equal to (U/W)f (the x coordinate of the focus oftions that are nonlinear in the unknown parameters.
expansion, where f is the focal length), the component un ofHowever, concerning argument 1, we do not just want to
the disparity vector (u, v) along the gradient direction (nx,prescribe the computation of ordered, as opposed to metric,
ny) isshape information. Why should we limit ourselves to ordered

depth and not be even less restrictive? Throughout this arti-
cle, we have argued for task-dependent descriptions. This also
applies to shape descriptions; a variety of shape descriptions

un = W
Z

(−x0nx + xnx + yny) − β

�
fnx + x2

f
nx + xy

f
ny

�
(1)

subserving different tasks can be accepted. To derive metric
depth or shape means to compute exact values of the distance The exact geometry of the stereo configuration cannot be

assumed and we do not wish to attempt the usual two-stepbetween the camera and the scene. In order to solve, for ex-
ample, the general structure from motion problem, theoreti- approach of first computing it from the available information

in order to utilize it and derive in a second step the depthcally we require at least three views of the scene, or two views
and some additional information, such as the length of the estimates. The reason is that small errors in the parameter

estimation of the extrinsic geometry can result in large errorsbaseline for a stereo setting. From two perspective views, only
scaled distance, or distance up to the so-called relief transfor- in the depth or shape estimates.

We show below how to obtain ordinal depth from one fixa-mation, can be derived. To compute only ordered depth mea-
surements would mean that, in addition, scaled depth is de- tion. Additional fixations provide more information that can

be fused into a single representation.rived only up to a positive term [i.e., it would result in



234 ACTIVE PERCEPTION

ments. A new look at the old research with a different goal in
mind might give us new insights. From different cues, depth
and shape information of different forms might be computed
and then appropriately fused. A representation that is less
than an ordered one by itself does not seem to be sufficient
for 3-D scene understanding. However, by combining two or
more such representations, additional information can be ob-
tained. It seems that the study of fusion of information for
the purpose of deriving a form and shape description will
definitely be of importance.

It should be noted that whereas shape and depth measure-
ments are equivalent for a metric 3-D representation, they
are not for ordered representations. Dealing with metric mea-
surements, if absolute depth is given, shape (defined as the
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first-order derivatives of depth) can be directly computed and
Figure 7. Shape computation from one pair of images taken by a vice versa. The same, however, does not hold for ordered, or
binocular fixating vision system: A partial ordering of the depth val- even less informative representations.
ues can be obtained for all points with edges tangential (or normal Our goal is to derive qualitative, as opposed to quantitative
disparity measurements perpendicular) to the curves of a family.

representations, because the computations to be performed
should be robust. This requires that we do not make unrea-
sonable assumptions and employ computations that are ill-

An active binocular stereo system capable of changing its posed. Qualitativeness, for example, does not mean per-
geometric parameters in a controlled way should be aware of forming the same computations that have been performed
the pose of its eyes with regard to some head-frame-centered under the reconstruction philosophy, making the same as-
coordinate system. Thus it should know the angle the optical sumptions about the 3-D world, and at the end separating
axis makes with the baseline, which amounts to knowing the the computed values by a threshold in order to end up with
parameter x0. If for a particular system this knowledge is not ‘‘qualitative’’ information in the form of ‘‘greater or smaller
available, utilizing the constraints described in the section than some value.’’ Our effort should be devoted to deriving
entitled ‘‘Motion-Based Competences,’’ the direction of the qualitative shape descriptions from a well-defined input. For
translation x0 can be derived from the patterns of the normal example, it would not make sense to assume exact optical flow
disparity field, utilizing only the sign of the disparity mea- or stereo disparity measurements—which are impossible to
surements. obtain—in order to derive shape descriptions less powerful

We do not know, however, the amount of rotation � and than those of scaled depth. If we had exact 2-D image mea-
we also do not have to know the distance between the two surements, we could compute scaled shape, and we would
eyes. Using Eq. (1) it is possible to obtain an ordinal depth gain nothing computationally from computing less.
representation for the scene whose image points lie on fami- By concentrating on simpler shape descriptions, new math-
lies of curves. Dividing Eq. (1) by �nx, we obtain ematical models and new constraints might be found. Purely

mathematical considerations can reveal the kind of informa-
tion that could possibly be computed from a certain input
allowing a defined class of operations. The study of Koende-
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rink and van Doorn (59) on affine structure from motion
might serve as an inspiration; in it they investigated a hierar-We define a classification in the gradient directions ny/nx in

such a way that for each single class the ratio of the coeffi- chy of shape descriptions based on a stratification of geome-
tries.cients of W/Z and � in Eq. (2) is a constant C everywhere in

the image plane. Consequently, for the vectors of each class
an appropriately normalized value of the normal disparity un Space Understanding
can be written as a linear function in the inverse depth with

Since in the past the actions of the observer were not consid-unknown coefficients. However, this allows the estimation of
ered as an integral part of perceptual investigations, compu-ordinal depth. To give a geometric interpretation to the selec-
tational modeling, and in particular AI research, has dealttion of classes, the normal disparity vectors in each class are
with space only at a symbolic level. For example, some earlyperpendicular to edges in the image that can be derived from
systems (60) dealt with the spatial relationship of objects ina differential equation. Figure 7 shows the integral curves for
a block world. Assuming that objects can be recognized andone class of a particular stereo configuration ( f � 1, x0 � 1,
thus can be stored as symbols, the spatial configuration ofC � 0.2).
these objects under changing conditions was studied. Also, inFrom one stereo pair we can obtain partial ordinal depth
existing studies on spatial planning (e.g., path planning), so-maps. Additional fixations, since they are only separated by
lutions to the problems of recognizing the objects and the en-rotations, allow the comparison of depth values corresponding
vironment are assumed to be available for the phase of coordi-to different classes that are to be found in the same class in
nating motions.some other fixated disparity pair. This way, merging classes

Within the framework of behavioral vision a new meaningand building one ordinal depth map becomes possible (42).
is given to the study of space perception. The understandingUnder the influence of the reconstructionists’ ideas, all ef-

fort in the past has been devoted to deriving metric measure- of the space surrounding an observer results from the actions


