
IMAGE CLASSIFICATION

Extraction of information from remotely-sensed data has
traditionally been performed through human interpreta-
tion of aerial imagery. With the development of remote
sensing and computer technology, these traditional tech-
niques have shifted from analog to digital image analy-
sis and interpretation. Image classification is an important
tool to extract thematic information from remotely sensed
data of the earth surface. Recently, computer digital im-
age processing has taken a large amount of human inter-
vention to extract and map thematic information from re-
motely sensed data. Hence, digital image classification has
become an inseparable component of remote sensing.

As the name indicates, remote sensing is the acquisition
of information from a distance. It is the art and science
of acquiring information about the physical and biological
characteristics of an object or a phenomenon without being
in direct contact with the object or phenomenon. Remotely
sensed data may come from satellite images, aerial photog-
raphy, radar images, or ground measurements.

Because remote-sensing technology and techniques are
growing rapidly, remote sensing is becoming one of the
most powerful and flexible tools for environmental man-
agement and economic development. Currently, remotely-
sensed data are the primary source of information for
global change and environmental a studies.

Remote sensing is a national and international priority.
Many countries use remote sensing products in their daily
planning, management and decision making. The continu-
ously growing use of remotely-sensed data has empowered
tremendous development and improvement in this tech-
nology. Many countries have currently their own earth ob-
servation satellites. The most internationally known satel-
lites are the Landsat program of the National Aeronautics
and Space Administration (NASA), the National Oceano-
graphic and Atmospheric Administration (NOAA) satellite
program, the ERS satellite program of the European Space
Agency, the Satellite Pour l’Observation de la Terre (SPOT)
satellite program of the Centre National d’Etude Spatiales,
France, the RADARSAT satellite program of the Canadian
Center for Remote Sensing, Canada, and satellites from
other programs such as those in Russian, Japan, and In-
dian (1).

Remote sensing technology is a relatively new concept
and, scientists are still exploring the methods and concepts
to better exploit this technology. The key components of re-
mote sensing include the physical properties of the ground
features to be imaged, the energy that interacts with these
features, and the sensor that records the energy coming
from these features. The energy is known as the electro-
magnetic energy, which is composed of wavelengths that
travels with an electric field and a magnetic field. The elec-
tromagnetic energy is measured by its wavelength or by
its frequency. The wavelengths are ranked by their length
and are represented by intervals, called spectral bands, on
what is referred to as the electromagnetic spectrum (Fig.
1). The electromagnetic spectrum ranges from very short
wavelengths (i.e., cosmic rays) to very long wavelengths
(i.e., audio wavelengths).

The visible portion of the spectrum is the energy that
humans can see with the naked eye. This portion is very
small compared to the entire spectrum over which remote
sensing instruments operate. This is a clear advantage of
this technology as it allows us to discriminate among ob-
jects over a large spectrum over which the human eye is
incapable of seeing. Because the physical properties of the
ground features are wavelength dependent, features that
look the same (i.e. respond similarly) in one region of the
electromagnetic spectrum (e.g., the visible) may look com-
pletely different in another portion of the spectrum (e.g.,
the infrared). Therefore, the wide range of the electromag-
netic spectrum allows us to detect and analyze objects in a
variety of wavelengths, which increases the possibilities of
their identification.

Essentially, remote sensors record the energy coming
from objects on the ground. This energy may be either re-
flected, emitted, or transmitted from these objects in sep-
arate wavelengths, called spectral bands or simply bands.
The information may be interpreted on individual bands or
a combination of bands. The combination of bands (multi-
spectral images) is a technique that allows the interpreter
to examine a feature in multiple dimensions to increase the
accuracy of extracting information. Remote-sensing data
may be in analogue format (e.g., photographs) or in a dig-
ital image format. Digital image interpretation is usually
performed with computers and the process is called image
classification. The process of digital image classification
usually involves a combination of hardware (i.e., comput-
ers) and software (i.e., programs) with special algorithms
known as classifiers. A pixel (picture element) in a digital
image is the spectral measurement of the corresponding
area on the ground. A pixel can then be defined as a point
in n-dimensional feature (spectral) space. Hence, a pixel is
an n-dimensional pattern vector. The size of an area form-
ing a pixel is determined by the sensors and is called the
spatial image resolution. The value of each pixel is called
the spectral signature (gray level) and is quantized during
the sensing process. In analog, a digital image is similar to
a matrix: a pair of coordinates and a value associated with
each matrix element.

As new sensor technology has emerged over the past few
years, high dimensional hyperspectral data with hundreds
of bands have become available. These bands are usually
measured at a series of narrow and contiguous wavelength.
For example, the AVIRIS system gathers image data in 210
spectral bands in the range of 0.4-2.4 µm. Compared to the
lower dimensionality images (less than 20 bands), this hy-
perspectral data potentially provides a wealth of informa-
tion for identifying spectrally unique materials. The land
use/cover, detection of objections, urban fringe expansion
and, mudflows and landslides monitoring are some widely
applications for hyperspectral data. However, it also raises
the need for more specific attention to the data analysis
procedure if this potential is to be fully realized (42).

Image classification is a process that clusters pixels
of similar spectral response in an image into separate
categories (i.e. themes) representing ground cover types
(2). Thematic information can then be extracted in mul-
tiple spectral bands. Spectral classes are characteristics
recorded in the remotely sensed data in which the pixels in
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Figure 1. Schematic diagram of the electromagnetic spectrum. The visible portion is very small compared to the entire spectrum used
by the remote-sensing systems, which increase our ability to discriminate among ground features that respond differently at different
wavelengths.

the same category have the same or similar spectral signa-
tures and represent the information of ground cover types.
The output from a multispectral image classification sys-
tem is a thematic map in which each pixel in the original
imagery is classified into one of several spectral classes.
Image classification may also be thought of as a labeling
problem, providing each pixel with a class label.

The objective of digital image classification is to catego-
rize automatically all the image pixels into themes that cor-
respond to the ground cover. This is usually done through
the use of multispectral bands that allow for each pixel to
be analyzed in multiple dimensions for better discrimina-
tion among different features represented by these pixels.
Each pixel may be identified using three recognition forms
(2).

1. Spectral Pixels are recognized from their brightness
values (also called digital values, digital numbers,
spectral signatures, or gray levels).

2. Spatial Pixels are identified as a function of the sur-
rounding pixels.

3. Temporal Certain features are easier identified in
one season than in another. For example, it is difficult
to discriminate between conifers and deciduous in
the summer because both species have green leaves
(i.e., similar spectral response), but these two species
can easily be separated in the winter because decidu-
ous trees would have lost their leaves and their spec-
tral response would be different from that of conifers.

The two most common methods in digital image classifi-
cation are unsupervised classification and supervised clas-
sification. A third method is a combination of these two,
called hybrid classification.

A digital image classification system usually consists of
two stages: the training stage and the classification stage.
The training stage is used to determine the spectral signa-
ture of the optimal number of spectral classes. Given a set
of classes after the training process, these labeled classes
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are then used for classification in which the unknown pixel
should be assigned to one of these labeled classes. A clas-
sified image appears as a mosaic of uniform parcels.

Image classification algorithms may be grouped into two
main approaches to categorize a digital image into spec-
tral classes: pixel-based and region-based approaches. In
the region-based approach, the image is segmented into
homogeneous regions and a set of meaningful features is
defined. Once defined, image regions (blocks) can be cate-
gorized using pattern recognition techniques (3). However,
image segmentation has been proven to be a difficult goal.
In the pixel-based approach, three popular classification
techniques have been widely used in remotely sensed data,
namely, the minimum-distance, the parallelepiped, and the
maximum-likelihood classifiers (4). All of these classifiers
use spectral information to assign a pixel to a particular
class.

UNSUPERVISED CLASSIFICATION

In this method, the entire classification is done almost au-
tomatically. This method involves algorithms that exam-
ine and cluster pixels into spectral classes (i.e., clusters)
based on their spectral values. The intervention of the an-
alyst occurs only toward the end of the classification and
it is limited to regrouping spectral classes into informa-
tion classes. Of course, this means that the analyst must
have strong knowledge regarding the spectral characteris-
tics of the ground features to be able to label the different
classes. The analyst may use any ancillary data (aerial pho-
tographs, maps, etc.) that may be helpful to identify these
classes.

Many unsupervised algorithms have been developed to
classify an image into spectral classes. Most of these algo-
rithms use two phases (passes) (2):

� First Pass Cluster building
� Second Pass Assignment of pixels to classes using the

minimum distance classifier.

After these passes the intervention of the analyst is
needed to regroup the classified spectral classes into in-
formation (i.e. thematic) classes.

Cluster building

To perform this phase, the analyst may be asked to provide
four types of information:

� R, a spectral radius distance that will tell the com-
puter when a new cluster should be determined (e.g.,
R = 15 spectral units),

� N, the number of pixels to process between each clus-
ter merging (e.g., N = 2000 pixels),

� C, a spectral distance that determines if two or more
clusters need to be merged after processing N pixels
(e.g., C = 30 spectral units), and

� Amax, the maximum number of spectral classes to iden-
tify (e.g., Amax = 20 clusters).

These parameters may be set to default by the algorithm
if not specified by the analyst.

The algorithm starts at the origin of the image (pixel
[1,1]) and begins to evaluate every pixel in the image (Fig.
2). To simplify the process, let us consider the first three
pixels only of the image. Pixel 1 = [10,10], pixel 2 = [20,20],
and pixel 3 = [30,20] in two bands (Band 4 and Band 5)
(2). The spectral relationship between the three pixels is
illustrated in Fig. 2(a).

The digital number [10,10] associated with pixel 1 rep-
resents the mean value (µ1) of the first spectral class in
the two bands. Remember that in image classification, we
usually use n bands (n > 2). Next, the algorithm will eval-
uate pixel 2 ([20,20]). If the spectral distance (D) between
cluster 1 (µ1= [10,10]) and pixel 2 is greater than R (R =
15), pixel 2 will constitute a separate cluster (cluster 2)
with a cluster mean (µ2 = [20,20]). But if the distance D is
less than R, then pixel 2 will be merged with cluster 1 and
a new mean is computed. The new mean for cluster 1 be-
comes the weighted mean of pixel 1 and pixel 2 ([10+20]/2,
[10+20]/2), with a weight of 2 [Fig. 2(b)].

In our example, the distance D between cluster 1 (i.e.,
pixel 1) and pixel 2 is 14.14, computed as:

√
(20 − 10)2 + (20 − 15)2 =

√
200 = 4.14{<}15

Because D < R, pixel 2 will not form a new cluster and it
will be merged with cluster 1. The new cluster will have
a new mean with a new location at [15,15]. Next, pixel
3 ([30,20]) is evaluated relative to the new cluster mean
([15,15]) using the same formula:

√
(30 − 15)2 + (20 − 15)2 =

√
250 = 15.81 > 15

Because 15.81 is greater than 15, pixel 3 will form a sepa-
rate cluster with a mean value of [30,20] [Fig. 2(c)].

This process will continue until the number of processed
pixels is reaches N (N = 2000, in our case). At this point, the
algorithm stops evaluating individual pixels and examines
the nature of spectral clusters developed so far. The algo-
rithm computes the distance between the means of all the
existing clusters. Clusters which mean is less than C (C =
30, in our case), will be merged and a new cluster mean is
computed as a weighted mean of all the pixels in the new
cluster. When no cluster is within 30 units of any other clus-
ter, the algorithm will continue with the next pixel (pixel
N + 1). The process will continue until the entire image is
classified.

It should be noted that by adding a pixel to a cluster,
the mean of the cluster is displaced less dramatically as
the number of pixels increases in the cluster [Fig. 2(d)].
This is because each time a new pixel is added to a cluster,
the new mean is a weighted mean of all the pixels in the
cluster, not just between the new added pixel and the old
mean of the cluster.

Assignment of pixels to one of the Amax

Once the entire image is classified and number of clusters
specified is reached based on the specified parameters (R
and C), there will still be a number of pixels that have not
meet the specified requirements and, therefore, will not be-
long to a cluster. Because an image classification requires
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Figure 2. A two-dimensional representation of pixel clustering during the unsupervised classification process: (a) the original data
showing the relationship among pixels, (b) evaluation of the spectral distance between the first two pixels, which form cluster 1 because
the spectral distance (D) between the two pixels is less than the tolerance distance (R), (c) evaluation of pixel 3 against the mean value
of cluster 1, which forms a new cluster (cluster 2) because the spectral distance between pixel 3 and cluster 1 is greater than R, (d)
displacement of the cluster means during the several iterations of the classification process (from Jensen, Ref. 2).

that each pixel belongs to a class, the algorithm will then
assign the remaining pixels using the minimum distance
technique.

Establishment of information classes

Generally, the analyst produces a scatter plot combining
many bands, two at a time, to analyze the spectral loca-
tion of each pixel. Next, the analyst identifies the pixels on
the image and labels them if possible, then regroup spec-
tral classes that constitute one information category. It is
at this stage where a thorough knowledge of the terrain
properties becomes very important.

An example of spectral clusters is illustrated in Fig. 3(a)
for bands 3 and 4. Because bands 3 (red) and 4 (infrared)
have low correlation, they are often used to identify and
regroup the spectral classes into information classes for
vegetated areas. Figure 3 displays a scatter plot similar to
that of the vegetation index.

Identification of spectral classes is often done interac-
tively. The visual analysis, in conjunction with the scatter
diagram, helps the analyst to regroup the spectral classes
into information classes as shown in Fig. 3(b).

� Spectral class 1 forms a distinct class, water
� Spectral classes 4 and 5 are located in a spectral re-

gion contained between forest and water and, there-
fore, they are assigned to wetlands.

Many statistical algorithms have been developed to
carry out an unsupervised classification. Some of the most
commonly used are the iterative self-organizing data anal-
ysis technique (ISODATA), the K-means, and the hierar-
chical algorithms (5).
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Figure 3. Spectral representation of the mean values of the fi-
nal clusters formed during the unsupervised classification process
using bands 3 (red) and 4 (infrared); (a) spectral clusters as de-
termined by the classifying algorithm before been identified and
labeled by the analyst and (b) identification, regrouping, and label-
ing of the spectral classes into information (or thematic) classes.
This step requires experience and knowledge of the spectral char-
acteristics of ground features. Photographs, field data, and any
other ancillary information may be used to conduct this process
(from Jensen, Ref. 2).

SUPERVISED CLASSIFICATION

To conduct a supervised classification, seven steps are nec-
essary:

1. Develop an adequate classification scheme

2. Select accurate training sites
3. Extract statistical information from the training sites
4. Analyze the statistical data to select the best bands for

the classification
5. Select an appropriate classification algorithm
6. Classify the image
7. Evaluate the image classification accuracy and repeat

the procedure if necessary

Classification Scheme

Before classifying the image, the analyst must define the
different information categories to extract. For this, a clas-
sification system must be established so that each pixel
is attributed to a specific predefined class. Many systems
have been developed for this purpose [e.g., USGS Land
Use/Cover Classification System, US Fish and Wildlife Ser-
vice Wetland Classification System, NOAA CoastWatch
Land Cover Classification System (1)].

Training Site Selection

This step is critical in supervised image classification. It
consists of training the computer to recognize the spectral
signature of each category (class) to classify. Any error in-
troduced at this level will be carried through the entire
classification process and will lead to misclassification. To
obtain satisfactory results, the sample sites must reflect
the spectral characteristics of the classes they represent as
accurately as possible. This means that the analyst must
obtain accurate descriptive statistics for all the spectral
classes (cluster) forming each information class (theme) to
be mapped.

In other words, all the spectral classes constituting each
information class must be adequately represented by the
training samples used to classify the image. For example,
a feature located on different soil types requires as many
training sites as that of soil types to adequately be repre-
sented. This information will be used to define the decision
rules, and each pixel of the image is then assigned to one
of the most appropriate classes based on the decision rules
in the classification phase.

Training sites are usually identified and delineated di-
rectly on the computer screen. Figure 4 shows an example
of selecting training sites. Notice that the training sites
have carefully been delineated inside homogenous areas to
ovoid including mixed (or polluted) pixels along the edges
of the areas.

The best way to represent all the information classes is
to select a high number of training sites containing a small
but very homogeneous number of pixels. For example, 20
sites of 40 pixels each are much better than 5 sites of 160
pixels each. In other words, it is important to avoid exclud-
ing important spectral classes to represent each informa-
tion class and, at the same time, avoid including redundant
training pixels to reduce the manipulation time.

Statistics Extraction and Analysis

Statistical distribution of the training sites may be ana-
lyzed graphically (qualitatively) or numerically (quantita-
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Figure 4. Delineation of training sites on the computer screen.
The analyst must have definite knowledge about the areas to rep-
resent and the training sites must be carefully delineated inside
homogenous fields to ovoid inclusion of pixels (i.e., mixed or pol-
luted pixels) from other categories surrounding the area under
consideration. These training sites will train the classifying al-
gorithm to recognize the spectral signature of each category; and
“bad” training will confuse the algorithm and result in misclassi-
fication (from Lillesand and Kiefer, Ref. 4).

tively). Generally the combination of the two techniques is
used for better results.

The statistical method is used to select the bands that
give the highest degree of statistical separation among
classes. The quantitative distribution is generally repre-
sented by variance-covariance and correlation coefficient
tables. However, quantitative analysis alone is not always
sufficient to understand the nature of the spectral data.
Consequently, we combine this type of analysis with graph-
ical analysis.

Many graphical techniques have been developed to se-
lect a combination of bands that provide the best discrim-
ination among image features. Figure 5 shows a spectral
configuration of a training site in five bands. Histogram
representation is very important when the maximum-
likelihood classifier (discussed later) is used because this
classifier requires a normal distribution, which can easily
be shown by a histogram representation.

Although the histograms in Fig. 5 show a good represen-
tation of individual categories, they do not give us enough
information concerning the separability among the differ-
ent classes. Consequently, we use what we call coincident
spectral plots (Fig. 6) (4). This figure illustrates the mean
spectral response of each category (with a letter: C = Corn,
F = Forest, H = Hay, S = Sand, U = Urban, and W = Wa-
ter) and the variance of the distribution (µ ± 2 standard
deviation) for each category in each band. Figure 6 indi-
cates that the hay and corn response patterns overlap in
all spectral bands. The plot also shows which combination
of bands might be best for discrimination among the dif-
ferent features such as bands 3 and 5 for hay and corn
discrimination.

The main challenge in spectral recognition of a ground
feature is to find a technique that leads to high separability
among features using a minimum number of bands. When
there is spectral overlap among classes, any decision used
to separate among classes must be taken into consideration
for two types of errors:

� Error of commission when a pixel is assigned to a class
to which it should not belong.

� Error of omission when a pixel is omitted from a class
to which it should belong.

If the spectral signatures of the classes are normally
distributed, it is possible to use what we call divergence
(degree of separability) to separate between two classes.
Divergence between the two classes C and D is given as
(2):

DiverCD = 0.5Tr[VC − VD)(V−1
D − V−1

C )] + 0.5[(V−1
C + V−1

D )

× (MC − MD)(MC − MD)T )] (1)

Where,Tr is the sum of the diagonal elements of the matrix
[Y],VC and VD are the covariance matrices for classes C and
D, V−1 is the inverse matrix of V, T indicates the transpose
of the matrix, and MC and MD are the mean values for
classes C and D.

Selection of an Image Classification Algorithm

Numerous classification algorithms have been developed to
categorize a digital image into spectral classes. The choice
of a particular technique depends on the nature of the data
to be processed, the output to be derived, and the accuracy
required. The most common algorithms, however, are the
minimum distance, the parallelepiped, and the maximum
likelihood.

To analyze each of these algorithms, let us consider a
simple spectral diagram on which six classes are repre-
sented by the scatter plots [Fig. 7(a)]. To simplify the anal-
ysis, let us consider two bands only (MSS3 and MSS4). Also,
let us assume that the pixel observations are from areas of
known cover types (from training sites, for example).

Minimum Distance. Remember that among the statis-
tical parameters extracted from an image is the mean of
each class, which should be determined before the classifi-
cation procedure. Class means are indicated by a plus sign
in Fig. 7(a). By considering the two-band pixel values as
positional coordinates (as they are portrayed in the scat-
ter plot), a pixel of unknown identity may be classified by
computing the distance (i.e., spectral distance) between the
value of the unknown pixel and the mean of each class. The
unknown pixel is attributed to the closest class. Computa-
tion of this distance is done using the Euclidean distance
based on the Pythagorean theorem (2):

Dist =
√

(DNi,i,k − µc,k)2 + (DNi, j,l − µc,l)2 (2)

where DNi,j ,k is the digital number of the unknown pixel
(i,j) in band k, DNi,j ,l is the digital number of the unknown
pixel (i,j) in band l, and µc,k and µc,l are the spectral means
for class C in band k and l, respectively.

In a multispectral (more than two bands) image classi-
fication, the same formula applies as

Dist =

√√√√ k=n∑
k=1

(DNi, j,k − µc,k)2 (3)

where n is the number of bands.
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Figure 5. An example of histogram representation of the training sites to verify their normality, which is an important criterion when
the maximum likelihood classifier is used. If the training sites are well selected, their histograms should be normally distributed. Note
that in band 2, the histogram is bimodal, which suggests that the training site may be composed of two different subclasses, two different
types of the same class, or different illumination conditions (i.e., shadowed versus nonshadowed areas) (from Lillesand and Kiefer, Ref. 4).

The minimum distance algorithm is simple and fast
but insensitive to different degrees of spectral variance
in the spectral response data. For example, in Fig. 7(b),
the minimum-distance classifier would assign the pixel at
point 2 to class “sand” in spite of the fact that the greater
variability in the “urban” class suggests that pixel at point
2 should belong to “urban.” Consequently, this classifier is
rarely used when classes are spectrally close to one an-
other and have high spectral variances. There exist sev-
eral distance measurement techniques among which the
Euclidean and city block distances are commonly used (6).

Parallelepiped Classification Algorithm. This technique
introduces the sensitivity to class variance by considering
the range of values in each training site. This range may
be defined by the lowest and highest digital values of the
training site in each training site. It may also be defined
as a function of the standard deviation (SD) of each class
in each band. This results in rectangular areas called par-
allelepipeds [Fig. 7(c)]. Using a threshold of 1 SD, an un-
known pixel is assigned to a category if its digital number
(DN) falls within the lower limit (µ − 1 SD) and the upper

limit (µ + 1 SD) in each band.

µc,k − SDc,k ≤ DNi, j,k ≤ µc,k + SDc,k (4)

where c = 1, 2, 3, . . . is the class number, k = 1, 2, 3, . . . is the
band number, µc,k − SDc,k is the lower limit (or the lowest
value in band k for a class C), and µc,k + SDc,k is the upper
limit (or the highest value in band k for a class C).

The parallelepiped classification is to classify a pixel
based on the decision region of spectral ranges in which
it lies. Once a pixel is classified to a class, it is blocked
out from consideration for all the other classes. Therefore,
the behavior of this algorithm is influenced by the order
of spectral classes specified in the classification process.
Some combinations of these classification algorithms are
also used in some commercial software (7).

Sometimes, many pixels remain unclassified. In this
case, assigning a pixel to a class may be done by either
increasing range between the lower and upper limits (e.g.,
2 SD or 3 SD) or by using the minimum distance to clas-
sify the pixels. However, the first option (i.e., 2 SD or 3 SD)
may result in an overlap among rectangular areas (i.e., par-
allelepipeds) and pixels that are common to two or more
classes would be difficult to classify. Consequently, there is
a need for an algorithm that takes into account the vari-
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Figure 6. Coincident spectral plot representation of six classes in five bands. This diagram shows the spectral overlap among classes
and helps identify the bands where confusion among classes is minimal. Note that when using multiple bands (i.e., multidimensional
representation), the spectral separability among classes may be highly improved (from Lillesand and Kiefer, Ref. 4).

ability within a class and the covariability between classes.
This algorithm is the maximum likelihood.

Maximum Likelihood. This technique uses the variance
within a class and the covariance between classes to as-
sign a pixel to a category. However, as mentioned earlier,
this method requires a normal (Gaussian) distribution of
the data, which is usually the case in most images. The
normally distributed (bell-shaped) histograms are called
probability density functions, which are used to determine
the belonging of a pixel to a given category. The maximum
likelihood also uses the mean (µc,k ) of each class (C) in the
different bands (k) and the covariance matrix (Vc ) of each
class in the different bands. The decision rule to assign a
pixel X with a digital value of DNi,j ,k in different bands to
a class C is determined as the following (2):

Pixel X belongs to class C if and only if:

PC ≥ Pi where i = 1, 2, 3, . . . , m possible classes

PC = {−0.5 loge[det(VCkl)]} − [0.5(X − MC)T V−1
Ckl (X − MC)] (5)
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Figure 7. Scatter diagram of six classes using bands 3 and 4. (a) Spectral distribution of classes before classification, (b) the minimum
distance classifier assigns a pixel to the closest class mean (represented by “+” without considering the spectral variability within or among
classes, (c) the parallelepiped classifier takes into account the class variance by considering the range of values within a class, but it does
not take into account the variation among classes, which causes the overlap among clases, and (d) the maximum-likelihood classifier takes
into account both the variance within classes and the covariance among classes, which usually produce better results (from Lillesand and
Kiefer, Ref. 4).

where

VCkl = [

covC11 covC12 · · · covC1n

covC21 covC22 · · · covC2n

· · · · · ·
· · · · · ·
· · · · · ·

covCn1 covCn2 · · · covCnn

]

MC[

µC1

µC2

·
·
·

µCk

] and X = [

DNi, j,1

DNi, j,2

·
·
·

DNi, j,k

]

covckl is the covariance value of class C in the band k and
band l, µck is the mean value of class C in band k, DNi,j ,k

is the digital number of pixel i, j in band k, and det is the

determinant of the matrix. X is assigned to the class that
has the highest PC .

Another way to determine the belonging of a pixel to a
class using the maximum- likelihood technique is to com-
pute its likelihood value. This simple technique is generally
preferred.

Likelihood(X) = e
−[ (X−X)2

2(SD)2
]

(6)

where X is the pixel value being evaluated and X is the
mean value of the spectral class under consideration.

Graphically, the maximum-likelihood method results in
ellipsoidal curves that follow the direction of the variability
of the scatter plots [Fig. 7(d)]. This technique is generally
more accurate than the minimum distance and the paral-
lelepiped if the training sites are carefully selected. The
principal drawback of this method is the computation time
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it takes to classify a pixel. This is particularly true when
a large number of bands are involved or a large number of
classes must be differentiated.

In case the analyst has some knowledge (e.g.,percentage
of the total area of each class) about the area to classify, he
or she can employ that information to increase the proba-
bility of accurately assigning a pixel to the correct category.
This technique is known as a priori probability. In this case,
the maximum likelihood of a pixel to belong to a class de-
pends upon the a priori probability of occurrence of that
pixel during the classification process. Let us define some
notations before deriving the maximum-likelihood classi-
fication.

P(ωi ) is the a priori probability of class ωi .
P(ωi /x) is the probability that x comes from class ωi .
P(x/ωi ) is the probability (the likelihood function) of

class ωi .
P(x) is the sum of the probability P(x/ωi ) for all classes.

The decision rule of the maximum-likelihood classifica-
tion is to assign the pixel to the class with the highest prob-
ability (6, 8). To assign a pixel to one of the spectral classes,
we have to compute the probability P(ωi /x) for each class.
Using Bayes’ formula,

P(ωi/x) = P(x/ωi)P(ωi)/P(x) (7)

The P(x/ωi ) can be estimated from the histogram of the
training data for class ωi and P(ωi ) can be estimated from
maps and the a priori knowledge of the area. Since the
P(x/ωi ) is computed from the histogram of each class, it
will use a lot of space in memory for the storage of these
histograms when we implement this classification using
a computer program (6). The estimation of P(x/ωi ) may
be simplified by approximating the histogram with the
Gaussian function.A multivariate Gaussian function of the
P(x/ωi ) is defined as

P(x/ωi) = 1
(2π)n/2|Ci|1/2

exp[−1
2

(x − mi)T C−1
i (x − mi)],

i = 1, 2, . . . , M (8)

where mi is the mean vector of class ωi and Ci is the co-
variance matrix of class ωi . These parameters can be calcu-
lated from the histogram of each class. Substituting P(x/ωi )
in Eq. (5) into Eq. (7), taking the natural logarithm of Eq.
(7), and dropping the constant terms (8), we will have

P(ωi/x) = ln P(ωi) − 1/2 ln|Ci| − 1
2

[(x − mi)T C−1
i (x − mi)],

i = 1, . . . , M (9)

where T is the transpose of the vector and C−1
i is the inverse

covariance of Ci . Equation (13) is the decision function used
in the maximum-likelihood classification in which the pixel
will be classified to the class having the minimum P(ωi /x).

Selection of a classification algorithm depends on many
factors that the analyst should evaluate before initializing
the classification procedure. These factors may include, for
example, considerations such as

� Type of the data
� Type of the final product
� Type of application
� Means available
� Accuracy requirement
� Production cost versus accuracy

HYBRID CLASSIFICATION

This technique involves both unsupervised and supervised
classification methods. It incorporates the advantages of
both methods while minimizing their disadvantages. Hy-
brid classification uses the unsupervised classification to
generate unbiased and homogeneous training sites and the
supervised method to assign pixels to spectral classes. This
technique is usually more accurate than unsupervised or
supervised techniques used alone.

There are several training algorithms used in hybrid
classification. These algorithms attempt to define the op-
timal number of spectral classes by exploring the intrinsic
and natural structure of a representative data set. This
data set is sampled from the images. Many statistical clus-
tering algorithms such as the K-means and ISODATA (8)
have been widely used as unsupervised training methods.
Although K-means clustering has a strong tendency to local
minima and its clustering result is heavily dependent on
its initial cluster distribution (9), it is a simple and widely
used algorithm. The K-means algorithm is to minimize a
performance index, which is based on the measurement
of Euclidean distance. The algorithm is repeated several
times until it converges or is already in the limit of the
convergence tolerance. We assume that there are M pixels
in the training data set and each pixel is represented as X.
The algorithm is sketched in the following:

Step 1.Choose the number of clusters, K, and the con-
vergence tolerance, δ.

Step 2.Generate K cluster centers C1(1), C2(1),. . . , Ck (1)
arbitrarily.

Step 3.Distribute the samples among K clusters C1(i),
C2(i),. . . , Ck (i) at the ith iteration by the minimum
distance criterion using the Euclidean Distance mea-
sure and update the centroid of each cluster for the
next iteration, i.e. C1(i+1), C2(i+1),. . . , Ck (i+1).

Step 4.If |Cj (i+1) − Cj (i)| ≤ δ for j = 1, 2, 3,. . . , K, the
algorithm converges. Otherwise, repeat steps 2 to 4.

From steps 3 and 4, the optimal clustering result is ob-
tained by minimizing the objective function

σ = 1
M

√√√√
K∑

i=1

∑
x ∈ Ci

(x − Ci)2 (10)

which is the standard deviation function. The function is
minimized when each pixel is equal or very close to its as-
signed cluster center. The ISODATA algorithm is an iter-
ative, complex procedure, which is similar to the K-means
algorithm in principle. However, the ISODATA is capable
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of merging and merging clusters (8). The user needs to de-
termine a few numbers of input parameters for the ISO-
DATA algorithm.

The hybrid training is a combination of supervised and
unsupervised training methods. If the analyst does not
have a complete knowledge about the ground truth, some
spectral classes are created using a supervised training ap-
proach and some spectral classes may be established using
an unsupervised training method (7).

MULTIPLE CLASSIFIER SYSTEMS

Multiple classifier systems (MCS) exploit the complemen-
tary discriminatory information between each classifier
and results in the better performance than that of a sin-
gle classifier. Combining classifiers can further reduce the
classification error by using perturbation, reweighting and
combination techniques (47). The design of a MCS involves
two main phases: the design of the classifier ensemble and
the design of the combination function. The purpose of the
first phase is to generate a set of mutually complemen-
tary classifiers. Three popular techniques are available for
this purpose–bagging, boosting and the random subspace
method (44–46). The principle of these techniques is to
train each classifier on a different subset of the training
data. The subset of the training data is generated by using
some sampling techniques.

In the design of the combination function, many com-
bination techniques have been proposed (45–49). Methods
for classifiers combination include the fusion of label out-
puts, naïve bayes combination, Dempster-Shafer method,
etc. (46). In many application areas, such as information re-
trieval, image processing and computational biology,analy-
sis of high dimensional datasets is frequently encountered.
For high dimensional data classification, feature extraction
technique is usually applied to reduce the dimensionality.
But most papers using bagging, boosting or random sub-
space methods to design classifiers do not discuss the effect
or impact of applying feature extraction as a preprocessing
step.

Some hybrid algorithms based on bagging (BG) and ran-
dom subspace method (RSM) have been proposed (48). The
effect of using original data and transformed data in bag-
ging, random subspace was also investigated. Two classi-
fier overproduction techniques, bagging and random sub-
space methods, are briefly introduced.

Bagging

1. Repeat for b = 1,2,. . . ,B:

a. Take a bootstrap replicate Xb of the training data
set X.

b. Construct a classifier Cb(x) (base classifier) on Xb .

2. Combine classifiers Cb(x), b = 1,2,. . . ,B, by simple ma-
jority voting (the most often predicted label) to a final
decision rule

Random Subspace Method

1. Repeat for b = 1,2,. . . ,B:

a. select an r-dimensional random subspace X̃
b from

the original p-dimensional feature space.
b. Construct a classifier Cb(x) in X̃

b.

2. Combine classifiers Cb(x), b = 1,2,. . . ,B, by simple ma-
jority voting to a final decision rule.

The performances of bagging and random subspace
methods have been explored (48). It shows that random
subspace method is good when the training sample size is
less or close to the dimensionality and bagging is useful
when the training sample size is greater than and close to
the dimensionality (critical condition). If the training sam-
ple size is much greater than dimensionality, then both
overproduction methods is useless.

CLASSIFICATION ACCURACY ASSESSMENT

Classification accuracy assessment of digital images re-
quires a comparison between a classified image and a ref-
erence image called ground truth (2). Ground truth image
may be generated from field data using a sampling strategy
or by interpreting large-scale aerial photographs. Often,
the latter method is used. The result is an image assumed
to represent the ground truth correctly. Then, the classi-
fied and the reference images must be perfectly registered,
having the same scale, referenced in the same coordinate
system, and having the same class numbering.

Classified image Reference image

Class 1 Class 1
Class 2 Class 2
Class 3 Class 3
· ·
· ·
Etc. Etc.

Two methods may be used to assess classification accu-
racy:

� Comparison by total area
� Comparison by pixel

Comparison by total area requires the knowledge of the
total area of each class in the reference and the classified
images. Then, the total area of each class in the classified
image is compared to the total area of the class in the ref-
erence image.

Example

Type Reference image Classified image

Forest 35 % 32 %
Bare soil 27 % 29 %
Water 15 % 13 %
Agriculture 23 % 26 %

If we know in advance the percentage of each category in
the classified area (reference image) as specified in the pre-
ceding example, then, we may calculate the percentage of
individual or total accuracy of our classification. However,
this computation will not be accurate if we do not know the
location of these classified areas. For example, 32 % forest
may be 20 % forest and 12 % something else. The same may
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Figure 8. Confusion or error matrix.

be true for the other classes.
Pixel by pixel comparison is the most used technique

in digital image classification accuracy assessment. This
technique requires a reference image to which the clas-
sified image is to be compared. The reference image may
be obtained from existing data (maps, aerial photographs,
etc.) or by sampling a number of pixels on the classified
image and then verifying them on the ground using GPS
techniques, for example. The number of pixels to be sam-
pled is critical to meet the required accuracy. Fitzpatrick-
Lins (10), suggests that the minimum sample size N to be
used to evaluate the accuracy of a land-use classification
map is determined from the binomial probability theory as

N = Z2( p)(q)
E2

(11)

where p is the expected percent accuracy, may be deter-
mined using a random sample of pixels, q = 100 − p, E is
the allowable error, and Z = 2 from the standard normal
deviation of 1.96 for 95% two-sided confidence level.

For example, if we want to be 95 % confident that our
expected classification accuracy will be 85 %, then we need
at least N sample points, computed as:

N = 22(85)(15)
52

Usually, more points need to be sampled to be able to draw
reliable conclusions on the classification accuracy.

Once, we have our reference data, we may compare it
to the reference data. This results in a matrix called the
confusion or error matrix. The diagonal of the matrix rep-
resent the pixels well classified and the rest of the matrix
represent the pixels wrongly classified as shown in Fig. 8.

Error matrices provide valuable information on the type
of errors and the confusion between classes committed dur-

Figure 9. κ statistics computed from the error matrix.

ing classification. For example, 14 pixels of the forest area
were confused with soil, but only 4 soil pixels were confused
with forest area. Also, forest and water are often confused
due to the similarity in their spectral characteristics. This
suggests a very careful selection of the training sites, par-
ticularly when the categories to classify have close spectral
responses.

The classification accuracy may be evaluated by com-
paring it to that of a random classification. The parameter
used to do this evaluation is called k statistics computed
from the error matrix as shown in Fig. 9. This means that
our classification is 32% better than if the image was ran-
domly classified.

NEURAL NETWORKS AND GENETIC ALGORITHMS

Artificial neural networks (ANNs), a brain-style computa-
tion model, have been used for many years in different ap-
plication areas such as vector quantization, speech recog-
nition and pattern recognition (12, 13). In general, ANN
is capable of tolerating the noise, distortion, and incom-
pleteness of data taken from the practical applications. Re-
searchers have developed several different paradigms of
ANNs (13). These paradigms are capable of detecting vari-
ous features represented in input signals. An ANN is usu-
ally composed of many nonlinear computational elements.
These computational elements operate in parallel to sim-
ulate the function of the human brain. An ANN is char-
acterized by the topology, activation function, and learn-
ing rules. The topology is the architecture of how neurons
are connected, the activation function is the characteris-
tics of each neuron, and the learning rule is the strategy
for learning (14). ANN is also well suited for parallel im-
plementations because of the simplicity and repetition of
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Figure 10. The X1, X2, . . . , Xi , . . . , XN are inputs, one for each
component of the pixel vector corresponding to N multispectral
bands. A circle denotes a neuron. Neurons are interconnected
in the two-dimensional competitive layer. Each neuron defines a
spectral class where its center values are stored in the connections
between the inputs and the neurons.

the processing elements.
One type of these networks that possess the self-

organizing property is called competitive learning net-
works. Three different competitive learning networks, the
simple competitive learning network (SCL), Kohonen’s
self-organizing feature map (KSFM) and the frequency-
sensitive competitive learning (FSCL) network, were pro-
posed as unsupervised training methods in the hybrid im-
age classification system (15). Similar to statistical clus-
tering algorithms, these competitive learning networks are
able to find the natural groupings from the training data
set. The topology of the Kohonen self-organizing feature
map is represented as a two-dimensional, one-layered out-
put neural net as shown in Fig. 10. Each input node is
connected to each output node. The dimension of the train-
ing patterns determines the number of input nodes. Un-
like the output nodes in the Kohonen’s feature map, there
is no particular geometrical relationship between the out-
put nodes in both the simple competitive learning network
and the frequency-sensitive competitive learning network.
During the process of training, the input patterns are fed
into the network sequentially. Output nodes represent the
trained classes and the center of each class is stored in the
connection weights between input and output nodes.

The following algorithm outlines the operation of the
simple competitive learning network as applied to unsu-
pervised training. Let L denote the dimension of the input
vectors, which, for us, is the number of spectral bands. We
assume that a two-dimensional (N × N) output layer is
defined for the algorithm, where N is chosen so that the
expected number of the classes is less than or equal to N2.

Step 1: Initialize weights wij (t) (i = 1,. . . , L and j = 1,. . . ,
N × N) to small random values. Steps 2–5 are re-
peated for each pixel in the training data set for each
iteration.

Step 2: Present an input pixel X(t) = (x1,. . . , xL ) at time
t.

Step 3: Compute the distance dj between the xi and each
output node using

dj =
L∑

i=1

(xi − wi j(t))2

where i, j, L, wij and xi are similarly defined as in
steps 1 and 2.

Step 4: Select an output node j∗ which has minimum
distance (i.e. the winning node).

Step 5: Update weights of the winning node j∗ using

wi j(t + 1) = wi j(t) + η(t)(xi − wi j(t)), i = 1, . . . , L

and 1 ≤ j ≤ N × N,

where η(t) is a monotonically slowly decreasing func-
tion of t and its value is between 0 and 1.

Step 6: Select a subset of these N2 output nodes as spec-
tral classes.

The J-M distance (16), which is a measure of statistical
separability of pairs of classes is employed to evaluate the
capability of the proposed methods (15).

Competitive learning provides a way to discover the
salient general features that can be used to classify a set
of patterns. However, there are some problems associated
with competitive learning neural networks in the appli-
cation of remotely sensed data. Among them are (1) the
underutilization of some neurons (13), (2) the fact that the
learning algorithm is very sensitive to the learning rate,
η(t), in remotely sensed data analysis, and (3) the fact that
the number of output nodes in the network must be greater
than the number of spectral classes embedded in the train-
ing set. Ideally, the number of output nodes should be dy-
namically determined in the training (learning) environ-
ment instead of being specified a priori. An unsupervised
training approach combining a genetic algorithm with the
K-means clustering algorithm was proposed in Ref. 17.

The genetic algorithm is used to prevent fixation to the
local minima.A genetic algorithm is a global search method
simulating natural evolution. This evolutionary computing
approach has several applications (18, 19). Evolution be-
gins with a population of randomly selected chromosomes
(candidate solutions). Chromosomes compete with one an-
other to reproduce based on the Darwinian principle of sur-
vival of the fittest in each generation of evolution. After a
number of generations in evolution, the chromosomes that
survived in the population are the optimal solutions. With
the genetic algorithm approach, it turns out that establish-
ing initial parameters in K-means clustering for unsuper-
vised training is not terribly important. A similar approach
has been applied to the problem of color image quantiza-
tion (20). A simple genetic algorithm consists of four basic
elements: namely, (1) generation of populations of chromo-
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somes, (2) reproduction, (3) crossover,and (4) mutation.The
operation of crossover and mutation is to move a popula-
tion around on the landscape defined by the fitness func-
tion. The genetic K-means algorithm consists of the follow-
ing steps. We assume that the string with the lowest mean
square error (MSE∗) is the optimal solution. The algorithm
will search such a string for the solution.

Step 1. Choose the number of clusters, K.
Step 2. Generate P sets of cluster centers. i.e. S1 = {C1,

C2,. . . , Ck}, S2 = {C1, C2,. . . , Ck}, S3 = {C1, C2,. . . ,
Ck},. . . , Sp = {C1, C2,. . . , Ck}. Each set having differ-
ent cluster centers.

Step 3. Reproduction: Formulate a string for each set,
hence P strings are generated. The inverse of the
mean squared error (MSE) is used as the fitness func-
tion for each string. All strings are pairwise com-
pared. In each comparison the string with the lowest
MSE will be retained and the other one will be dis-
carded and replaced by the first one or a new random
cluster. In other words, only half of the strings in a
population remains and the other half is either re-
placed by the remaining half or regenerated by new
random clusters.

Step 4. Apply K-means algorithm: Distribute the sam-
ples among K clusters by the minimum distance
criterion using the Euclidean Distance measure for
each string separately and update the centroid of
each cluster. Store the string with the lowest MSE
(MSE∗) out of these P strings as the solution.

Step 5. Crossover: For each string, one-point crossover is
applied with probability pc . A partner string is ran-
domly chosen for the mating. Both strings are cut into
two portions at a randomly selected position and the
portions are mutually interchanged as shown in the
following.

Sk = {u1, . . . , um} → {u1, . . . , u j, v j+1, vm}
Sl = {v1, . . . , vm} → {v1, . . . , v j, u j+1, um}

Step 6. Mutation: Mutation with probability pm is done
on a component for each string. Either −1 or 1 is se-
lected randomly with probability 0.5 and added to the
chosen component. The mutation operation is used to
prevent fixation to the local minimum.

Step 7. Repeat steps 3 to 6 for several generations.

TEXTURAL, CONTEXTUAL, AND NEURAL NETWORKS
CLASSIFIERS

Per-pixel classifiers use spectral information to classify
each pixel in the image. These classifiers tend to gener-
ate a salt-and-pepper appearing classified image. One of
the main drawbacks of these methods is that each pixel
is treated independently of its neighbors. Remotely sensed
images may be regarded as samples of random processes
because of the variations of object characteristics and noise
(21). Thus, each pixel in the image can be regarded as a
random variable. This indicates that the per-pixel classi-
fier may not be reliable by looking at each individual pixel

value for the decision purpose. To improve the classifica-
tion accuracy, image classifiers that incorporate nonspec-
tral features have been proposed in the literature (22). Im-
age classifiers have been developed using textural, contex-
tual, and ancillary information. Texture refers to a descrip-
tion of the spatial variability of tones within part of an im-
age. Various methods have been developed to extract sta-
tistical textural features (3). Context is a measure of the
relationships between the pixels in a neighborhood. Con-
textual information has been used in different phases in
the classification process. Kittler and Foglein (23) outlined
four different approaches to incorporating contextual in-
formation in image classification and developed a contex-
tual algorithm using spatial and stochastic information.
The authors also showed that the use of contextual infor-
mation increases the reliability of classification. A brief re-
view of several contextual classifiers was given by Sharma
and Sarkar (24). A spatial classifier uses the sigma prob-
ability of the Gaussian distribution and the connectivity
property was proposed in Ref. 25. The algorithm classi-
fies a pixel by considering those neighboring pixels that
have intensities within an adaptive s range of the pixel.
Any neighboring pixel outside the adaptive s range most
likely comes from a different class and, therefore, should
not be included in the class which is being considered (36).
Connectivity ensures that all the pixels within the sigma
range are not randomly distributed (noise). To determine
whether two pixels are connected, a criterion of similarity
must be established. The 4-neighbors (horizontal and ver-
tical) and 8-neighbors (plus diagonal) are commonly used
in digital image processing. Markov Random Field (MRF)
probability models have been widely studied to incorporate
the contextual information in the image classification and
segmentation process (23).

Many adaptive, non-parametric neural-net classifiers
have been proposed for real-world problems. These clas-
sifiers show that they are capable of achieving higher
classification accuracy than conventional pix-based clas-
sifiers (26); however, few neural-network classifiers which
apply spatial information have been proposed. The feed-
forward multilayer neural network has been widely used
in supervised image classification of remotely sensed data
(27). Arora and Foody (28) concluded that the feed-forward
multilayer neural networks would produce the most accu-
rate classification results. A Feed-forward multilayer net-
work as shown in Fig. 11 is an interconnected network in
which neurons are arranged in multilayers and fully con-
nected. There is a value called weight associated with each
connection. These weights are adjusted using the back-
propagation algorithm or its variations, which is called
training the neural networks (13). Once the network is well
trained, it can be used to perform the image classification.

REDUCTION OF THE COMPUTATIONAL COMPLEXITY

The maximum-likelihood (ML) classifier is an optimal clas-
sification algorithm that has been widely used by the
analyst. However, this classifier requires a tremendous
amount of computational time involving the covariance,
inverse covariance matrices and determinant of the matri-
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Figure 11. Architecture of a feed-forward artificial neural network usually used in multispectral image classification. The network
consists of one input layer, two hidden layers, and one output layer. The number of neurons in the input layer is determined by the number
of multispectral bands used in the training and classification processes. The number of neurons in the output layer depends on the number
of spectral classes. The number of neurons in hidden layers is usually determined by trial and error.

ces. There are several methods, that have been developed
to reduce the computational complexity of this classifier
(29, 30). The canonical analysis is to decompose the in-
verse covariance matrix using the Cholesky factorization
and it saves a significant amount of time for the multiplica-
tions. The canonical analysis of the inverse covariance and
the quadratic form range theorem were used to reduce the
time complexity and improve the speed of the traditional
maximum-likelihood classifier in the three stage ML clas-
sifier (30). It was reported that this algorithm is three times
faster than the traditional ML classifier. The ML classifier
was also implemented on parallel processing architectures
to speed up the processing (31, 32).

FEATURE EXTRACTION AND SELECTION

Feature extraction is to find appropriate feature represen-
tation of an object in the image. The objective of feature
extraction is to extract characteristic features and hence
reduce the amount of data for performing the image classi-
fication. This procedure is critical in high-dimensional hy-
perspectral image classification. The features should carry
a maximum amount of information in representing an ob-
ject, i.e. distinguishing features. The features should also
be able to differentiate among objects. Feature extraction is
essential for any successful applications of image classifica-

tion systems. Figure 12 shows an example of hyperspectral
image classification systems (37).

Several feature extraction methods have been proposed
in the pattern recognition and image classification litera-
ture. These methods include linear discriminant analysis
(LDA), principal component analysis (PCA), factor anal-
ysis, projection pursuit, independent component analysis
(ICA) and transform-based approaches (38, 39). Fourier
transform (FD), Hadamard transform, Haar transform,
and wavelet transform are some well-known transform ap-
proaches. These methods are well explained in some text-
books and review papers (38–40). As the PCA is frequently
used in the remotely-sensed image analysis, the method is
briefly sketched in the following.

Principal Component Analysis

Principal component analysis (PCA) is a multivariate sta-
tistical transformation technique, which is based on statis-
tical properties of vector representations. PCA provides a
systematic means of reducing the dimensionality of mul-
tispectral data. PCA has been used in image data com-
pression and pattern classification. To perform the PCA,
a transformation is applied to a set of multispectral im-
age data. This will result in another uncorrelated data set,
in which the axes of the original data set are rotated and
translated. Hence, the coordinates and the pixel values are
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Figure 12. A schematic diagram for hyperspectral image classification.

changed. In other words, PCA is formed through a linear
combination of the input bands. The new axes are parallel
to the axes of the ellipse (in an n-dimensional histogram,
a hyperellipsoid is formed if the distribution of each input
band is normal or near normal) (33). If there is significant
correlation between the original image set, most of the im-
age information will be contained in the first few bands
(principal components) after PCA transformation. These
principal components are uncorrelated and independent.
The first principal component (PC) contains the largest
variation of the information contained in an image, which,
spatially, represents the major axis of the elliptic spectral
distribution of the data. The second PC contains the sec-
ond largest variation of the information in an image. It
represents the minor axis of the spectral ellipse, and it is
orthogonal to the first PC. In n-dimensional representa-
tion, each successive PC is orthogonal to the previous PCs,
describing less amount of variation that was not accounted
for by the preseding PCs.

Mathematically, if XT = (x1, x2,. . . , xn ) is an N-
dimensional random variable with mean vector M and co-
variance matrix C and if A is a matrix whose rows are
formed from the eigenvectors of C, ordered so that the first
row of A is the eigenvector corresponding to the largest
eigenvalue, and the last row is the eigenvector correspond-
ing to the smallest eigenvalue, then the PCA transforma-
tion is defined as:

Y = A(X − M) (12)

where Y = [y1, y2, . . . , yn]T , T is the transpose and each vec-
tor yi is the ith principal component.

As the principal components are independent of one an-
other, a color combination of the first three components

can be useful in providing maximum visual separability of
image features. Therefore, principal components analysis
has been used to generate a new set of data from multiple
sources of data for multispectral image classification (34).
Standarized principal components were also developed to
improve the signal-to-noise ratio for the LANDSAT MSS
data (35).

Hyperspectral sensor systems usually collect more than
a hundred of spectral bands. These numerous bands may
not be needed for a specific application. In addition, it has
been shown that a lower dimensional feature space can
improve the generalization capability of image classifiers
(41). Besides PCA, many feature extraction methods have
been proposed for hyperspectral images (42). Discriminant
Analysis Feature Extraction (DAFE) and Nonparametric
Weighted Feature Extraction (NWFE) are briefly described
below.

Discriminant Analysis Feature Extraction (DAFE)

DAFE is often used for dimension reduction in classi-
fication problems. It is also called the parametric fea-
ture extraction method, since DAFE uses the mean vector
and covariance matrix of each class. Usually within-class,
between-class, and mixture scatter matrices are used to
formulate the criteria of class separability. A within-class
scatter matrix for L classes is expressed by (43):

SDA
w =

L∑
i=1

Pi�i =
L∑

i=1

PiS
DA
wi (13)

where Pi denotes the prior probability of class i, mi is
the class mean and �i is the class covariance matrix. A
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between-class scatter matrix is expressed as

SDA
b =

∑
Pi(mi − mo)(mi − mo)T

=
L−1∑
i=1

L∑
j=i+1

PiPj(mi − mj)(mi − mj)T (14)

where m0 represents the expected vector of the mixture
distribution and is given by

m0 =
L∑

i=1

Pimi (15)

The optimal features are determined by optimizing the
Fisher criteria given by

JDAFE = tr[(SDA
w )−1(SDA

b )] (16)

DAFE has been shown to be equivalent to finding the
ML estimators of a Gaussian model, assuming that all class
discrimination information resides in the transformed sub-
space and the within-class covariances are equal for all
classes. The advantage of DAFE is that it is distribution-
free but there are three major disadvantages in DAFE. One
is that it works well only if the distributions of classes are
normal-like distributions (43). When the distributions of
classes are nonnormal-like or multi-modal mixture distri-
butions, the performance of DAFE is not satisfactory. The
second disadvantage of DAFE is the rank of the between-
scatter matrix is number of classes (L) −1, so assuming
sufficient observations and the rank of within-class scat-
ter matrix is v, then only min(L − 1, v) features can be
extracted. We know (43) that unless a posterior probabil-
ity function is specified, L − 1 features are suboptimal in a
Bayes sense, although they are optimal based on the cho-
sen criterion. In real situations, the data distributions are
often complicated and not normal-like, therefore only using
L − 1 features is not sufficient for much real data. The third
limitation is that if the within-class covariance is singular,
which often occurs in high dimensional problems, DAFE
will have a poor performance on classification.

Foley-Sammon feature extraction and its extension can
help to extract more than L − 1 orthogonal features from
n-dimensional space based on the following:

ri = max
r

rT SDA
b r

rT SDA
w r

, i = 1, 2, . . . , n − 1

subject to rT
i SDA

w r j = 0, i �= j

This third limitation can be relieved by using regularized
covariance estimators in the estimating procedure of the
within-class scatter matrix or by adding Singular Value
Perturbation to the within-class scatter matrix to solve
the generalized eigenvalue problem (37). Approximated
pairwise accuracy criterion Linear Dimension Reduction
(aPAC-LDR) can be seen as DAFE weighted contributions
of individual class pairs according to the Euclidian distance
of respective class means (37).

Nonparametric Weighted Feature Extraction (NWFE)

We know that the “local information” is important and
useful for improving DAFE. The main idea of NWFE is
putting different weights on every sample to compute

the “weighted means” and defining new nonparametric
between-class and within-class scatter matrices to obtain
more than L − 1 features (37). In NWFE, the nonparamet-
ric between-class scatter matrix for L classes is defined as

SNW
b =

L∑
i=1

Pi

L∑

j = 1
j �= i

Ni∑
l=1

λ
(i, j)
l

Ni

(x(i)
l − Mj(x(i)

l ))(x(i)
l − Mj(x(i)

l ))T (17)

where x(i)
l refers to the l-th sample from class i, Ni is train-

ing sample size of class i, Pi denotes the prior probability
of class i. The scatter matrix weight λ

(i, j)
l is a function of

x(i)
l and Mj(x(i)

l ), and defined as:

λ
(i, j)
l = dist(x(i)

l , Mj(x(i)
l ))−1

∑Ni

t=1dist(x(i)
t , Mj(x(i)

t ))−1
, (18)

where dist(a, b) denotes the Euclidean distance from a to
b. If the distance between x(i)

l and Mj(x(i)
l ) is small then its

weight λ
(i, j)
l will be close to 1; otherwise, λ

(i, j)
l will be close

to 0. The sum of the λ
(i, j)
l for class i is 1. Mj(x(i)

l ) denotes the
weighted mean of x(i)

l in class j and defined as:

Mj(x(i)
l ) =

Nj∑
k=1

w
(i, j)
lk x

( j)
k , (19)

where w
(i, j)
lk = dist(x(i)

l , x
( j)
k )−1

∑Ni

k=1dist(x(i)
l , x

( j)
k )−1

. (20)

The weight w
(i, j)
lk for computing weighted means is a func-

tion of x(i)
l and x

( j)
k . If the distance between x(i)

l and x
( j)
k is

small then its weight w
(i, j)
lk will be close to 1; otherwise, w(i, j)

lk

will be close to 0. The sum of the w
(i, j)
lk for Mj(x(i)

l ) is 1.
The nonparametric within-class scatter matrix is de-

fined as

SNW
w =

L∑
i=1

Pi

Ni∑
l=1

λ
(i, j)
l

Ni

(x(i)
l − Mi(x(i)

l ))(x(i)
l − Mi(x(i)

l ))T (21)

NWFE proposes the “weighted mean” (eq. (28)) and using
weighted between- and within-class vector to improve the
nonparameteric discriminant analysis (NDA) (37). The ex-
tracted f features are the f eigenvectors with largest f eigen-
values of the following matrix:

(SNW
w )−1SNW

b

To reduce the effect of the cross products of within-class
distances and prevent the singularity, some regularized
techniques can be applied to within-class scatter matrix.
The within-class scatter matrix is regularized by

SNW
w = 0.5SNW

w + 0.5diag(SNW
w ),

where diag(A) means the diagonal parts of matrix A.
The NWFE algorithm is sketched below

1. Compute the distances between each pair of sample
points and form the distance matrix.

2. Compute w
(i, j)
lk using the distance matrix

3. Use w
(i, j)
lk to compute the weighted means Mj(x(i)

l )

4. Compute the scatter matrix weight λ
(i, j)
l



18 Image Classification

5. Compute SNW
b and regularized SNW

w

6. Compute the eigenvectors of (SNW
w )−1SNW

b as extracted
features

USE OF CLASSIFIED IMAGES IN GEOGRAPHICAL
INFORMATION SYSTEMS

Remotely sensed data is the main source of data input to
geographical information systems (GIS). Because comput-
erized GIS are specialized data systems that manipulate
virtually any geopreferenced digital information, classified
images are usually the primary data sources for these sys-
tems for they are in digital format, thus readily usable.
The main advantage of remotely sensed data is the digital
format and their capability to cover large areas in short
periods, which is very valuable when current and fast data
are required for urgent matters. Although most recent GIS
systems are vector oriented, most of these systems have
the capabilities to convert data from vector to raster and
vice versa. Classified images are usually thematic layers
(e.g., vegetation types, soil types, geology water bodies, and
land use/cover) that can be entered into a GIS for overlay
analysis and modeling.

SOME IMAGE CLASSIFICATION SOFTWARE PACKAGES

Some companies that market software packages for image
classification, which provide some techniques, covered in
this chapter are listed below. This is not an exhaustive list
of all the software products or vendors. A software package,
MultiSpec, has been developed and maintained in Purdue
University.

ERDAS IMAGINE is the commercial product of ERDAS.
Intergraph Corp. Image Analyst is the commercial product for remote sensing applications.
PCI PCI Geomatics provides commercial products for the geospatial industry.
Purdue University The Laboratory for Applications of Remotely Sensing (LARS) provides a software package called MultiSpec.
RSI RADARSAT International (RSI) provides solutions based on satellite-derived data.
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