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ues smaller than a certain baseline are set to zero. The values
of the remaining pixels are binarized. The resultant image
contains most of the spatial information existing within the
original image; however, it is represented by fewer pixels and
by only one bit per pixel.

The first category of digital image converters also includes
important algorithms, which are commonly grouped together
under the name image enhancement and include operators
such as edge enhancement, noise filtering, sharpening, and
magnifying. An important technique of image enhancement
is contrast stretching. In this application, each gray level in
the image is mapped by a predetermined rule into another
gray level. A specific example is the histogram equalization
method, where the input gray levels are mapped such that
the output’s gray level histogram is uniform. Such a distribu-
tion of gray levels helps to emphasize details of low contrast
that could have not been seen before this operation took place.
Mathematically such an operation may be described as:

v = f (u) =
u∑

xi =0

h(xi)

L−1∑
i=0

h(xi)

v′ = Int
[

v − vmin

1 − vmin
(L − 1) + 0.5

]

where u represents a pixel value in the original image that
has L gray levels xi (i � 0, 1, . . . L � 1); h(xi) is the histo-
gram of the original image (the number of pixels with gray
level value xi); vmin is the smallest value of v and Int is the
integer value taking operation; v is the output image, which
is approximately uniformly distributed with L gray levels.OPTICAL AND ELECTROOPTICAL The last digital operation for image conversion that weIMAGE CONVERTERS wish to mention in this section is the region of interest (ROI)
finding algorithms. In many applications, including point tar-

An ordinary image is a representation of the luminance distri- get detectors or electrooptical trackers, one needs algorithms
bution of points (or pixels) of objects (for example, ordinary to determine the reduced regions of the image that are rele-
pictures taken by a camera) or a representation of absorption vant to the observer. After allocating the regions of interest,
or reflection distributions of such objects. In this article, an different operations of image conversion may be applied, ac-
image is any two-dimensional function that bears some infor- cording to the specific application discussed. Thus, in these
mation about an object. An image can be stored in many types of applications, a smart digital image converter is in-
ways, for example, as a digital set of numbers in a two-dimen- volved since it first allocates a certain region of interest
sional array in a computer database file or on photographic within the image and then applies a desired operation. These
film as the transmittance of each point. ROI algorithms may belong to the two mentioned categories,

Image converters that perform certain operations on im- depending on the a priori information at hand.
ages may be classified into two main categories. The first cat- The previously mentioned digital image conversion opera-
egory deals with smart digital image processing algorithms. tions and other operations are explained in detail in Refs. 1
The second category is related to coordinate transformations, and 2. In the next sections we address optical and electroopti-
which are usually easily implemented by optical or electroop- cal techniques for image conversions.
tical measures.

The first category includes image transforms such as the
Fourier, Haar, wavelet, Hilbert, and Hartly transforms.

SIMPLE OPTICAL CONVERTERS
These transformations are especially useful for image restora-
tion (noise removal) and image analysis. A special application

Prisms
of image transforms is related to image compression. There
are many techniques of compression; however, the one that The prism is a basic optical element based on the principle of

refraction; that is, light passing through a material gains ais more relevant to image conversion is the discrete cosine
transform (DCT) based method (JPEG). In this method the phase, which is proportional to the path length and the re-

fractive index on that path. By varying the path length alongoriginal image is divided into several kernels (subimages),
whereby each kernel is transformed by a special spatially adjacent trajectories, one may generate a desired phase slope.

A prism is a light-transmitting material having a slantedcompressing transform (for instance, the DCT). The next step
is to perform a threshold operation in which pixels with val- edge that generates a linear phase shape to a light beam
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Thus, the prism element produces a change in the direction
of propagation related to its corner angle � and the index of
refraction n. This simple conversion of light does not have to
be uniform over the entire beam. One may choose a set of
prisms affecting the phase locally according to the relations
previously mentioned and thus create an overall conversion
of the input light-shaped image into a predetermined output
phase front.

Lenses

A thin lens is another example of a basic refractive optical
element that may be used to create optical phase front conver-

z = x = 0 z

x

d(x)

A A′∆

α

θ

sion, resulting in new beam behavior. An illustration of a lensFigure 1. Light passing through a prism.
may be seen in Figure 2.

Since the outer boundaries describing the lens shape are
spherical functions (i.e., x2 � y2 � z2 � R2) the phase gained

passing through it. Mathematically, one may express the path by an impinging plane beam, initially propagating to the z
length within the prism as (see Fig. 1) direction, passing from plane A to A is

d(x) = x tan α (1)
φ = 2π

λ
[�0 + (n − 1)�(x,y)] (8)

We should recall that a plane wave propagating in an arbi-
trary direction in free space may be expressed as:

where

f (r) = A exp[ik · r] (2)
�(x, y) = �0 − (R −

p
R2 − x2 + y2) (9)

where A is a constant coefficient, r � [x, y, z] is the location
vector and k � [kx, ky, kz] is the k vector of that plane wave. Since R (the radius of the spherical surface) is much larger
The k vector points to the direction of propagation, and its than x and y maximal values, one may approximate
length is

z =
p

R2 − x2 − y2 = R

�
1 − x2 + y2

R2
≈ R

�
1 − x2 + y2

2R2

�
(10)|k| = 2π

λ
(3)

which leads towhere � is the wavelength of the propagating light. The phase
front of a beam propagating in the z direction through a prism
(Fig. 1) accumulates a phase up to plane A, given by

φ = −2π

λ

[
x2 + y2

2R
(n − 1) − n�0

]
(11)

φ = 2π

λ
{nd(x) + [� − d(x)]} (4)

The elimination of the constant phase factor yields

where n is the refractive index of the prism’s material. Taking
out constant phase terms and rewriting the last expression φ = −2π

λ

[
x2 + y2

2R
(n − 1)

]
= −π(x2 + y2)

λF
(12)

yields

φ = 2π

λ
(n − 1)d(x) = 2π

λ
[(n − 1) tanα]x = kxx (5)

The kx term expresses the k vector projection into the x direc-
tion of the outgoing beam. Thus, if before the entrance into
the prism the light had a k vector pointing only to the z direc-
tion, now a component of propagation to the x direction is
developed. Denoting by � the angle of propagation into the x
direction (Fig. 1), one may write

kx = 2π

λ
sin θ (6)

where sin � � (n � 1) tan �. The k vector into the z direction
now becomes

∆(x,y)

zx

y
y

∆0A A′

(a) (b)

Figure 2. Lens profile: (a) x–y plane cross section, (b) y–z plane
cross section.

kz = 2π

λ
cos θ (7)



206 OPTICAL AND ELECTROOPTICAL IMAGE CONVERTERS

u

F

v

β

α

d

β

α

Figure 3. Imaging lens. Figure 5. Diffraction grating.

where F is the focal length of the lens. Thus, apart from a partially reflect illumination. The uniqueness of a mirror is
that it reflects almost all the light that illuminates it. Theconstant phase multiplier, the phase transformation gained

by the lens may be written as precise amount of reflection and transmission (Fresnel’s coef-
ficients) depends upon the polarization of the incident beam
(polarization implies the direction of the electric component
of the electromagnetic field with respect to the reflecting sur-

t1(x, y) = exp
[
−i

k
2F

(x2 + y2)

]
(13)

face and the propagation direction), angle of incidence, and
Using geometrical ray considerations, or the Fresnel ap- material’s properties.

proximation from the theory of diffraction, which character- Once again, by forming an array of mirrors one may direct
izes the propagation of light in free space, one may determine the light reflections in a predesigned manner and form a de-
that a plane wave illuminating a lens is focused into a bright sired image conversion.
spot of light at distance F from the lens. The size of the spot
is inversely proportional to the lens diameter. The plane at
which this spot is obtained is called the back focal plane. The OPTICAL COORDINATE TRANSFORMATION—ANALYTICAL
use of this property of the lens is most important for the de- APPROACHES
sign of optical image converters. First, by using an array of
small lenses one may generate an array of spots obtained in An important feature of image conversion is the use of optical
the back focal plane of such composite lens. Second, a lens coordinate transformation techniques. By performing a de-
may be used as an imaging device. An object located at a dis- sired coordinate transformation, a desired image conversion
tance u from the lens plane is imaged in a plane located a is obtained. In this section we describe four major analytical
distance v behind the lens (see Fig. 3), where v satisfies the approaches to obtain coordinate transformations using optical
following relation: or electrooptical modules. Then, we compare the techniques.

Multifacet

1
u

+ 1
v

= 1
F

(14)

The multifacet approach (3,4) is a technique based on the factAn important feature of imaging, which is also seen in Fig-
that light passing through a grating changes its direction ofure 3 is that the image is inverted; that is, an object whose
propagation according to the following equation:intensity profile is f (x, y) is imaged as f (�x, �y). Thus, an

image conversion of 180� rotation is obtained.
d sinβ ± mλ = d sinα (15)

Mirrors

where m is an integer number, d is the period of the grating,A mirror is a light-reflecting element (see Fig. 4). Actually
� is the angle of incidence, and � is the angle of the newmost of the existing elements in nature have the ability to
direction of propagation (see Fig. 5).

Note that, in contrast to prisms, which also change light’s
direction of propagation, the grating is an element based on
diffraction rather than refraction. The change in the propaga-
tion direction is not due to the thickness of the element but
rather to its spatial frequency.

A far-field approximation of the Fresnel diffraction formula
(also called a Fraunhofer approximation) may be expressed
(apart from a constant multiplier and quadratic phase factor)
as

�
�
�
�
�

Figure 4. Mirror.
g(x; z) =

∫ ∞

−∞
g(x0, z = 0) exp

�−2πixx0

λz

�
dx0 (16)
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where g(x; z) is the far-field Fraunhofer approximation and z
is the distance between the output plane and the input plane.
Since one recalls that the Fourier transform definition is

G(ν) =
∫ ∞

−∞
g(x) exp(−2πixν) dx (17)

where g(x) is the input function and G(�) represents its Fou-
rier transform, it is readily observed that the Fraunhofer ap-
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proximation is a scaled Fourier transform of the input plane

Figure 6. Multifacet board.
g(x; z) = G

� x
λz

�
(18)

above-mentioned board of gratings is coined a multifacetIf we examine the far-field expression for a plane wave illumi-
board and it can be seen schematically in Figure 6.nating a diffraction grating having a period of d and a trans-

The main advantage of the above approach for obtainingmittance given by the phase function exp(2�ix0/d), one may
the image conversion is that it can provide any desired con-easily obtain (when ignoring the finite extent of the grating):
version. Its disadvantage lies in its relatively low resolution
of conversion (because within each pixel a grating should be
associated and realized). It is important to note that the
above-mentioned conversion is obtained in the far field. When

g(x; z) =
∫ ∞

−∞
exp

�2πix0

d

�
exp

�−2πixx0

λz

�
dx0 = δ

� x
λz

− 1
d

�

(19)
monochromatic plane wave illumination is used, the far-field
distribution (a Fourier transform) can also be obtained in thewhere �(x) is Dirac’s delta function, which vanishes every-
back focal plane of a lens (5). In this case, all the formulationswhere except for x � 0 where it tends to infinity such that its
previously introduced are valid except that F should substi-area remains equal to unity. In our case the spot of light ap-
tute z.pears at x � �z/d. The chosen input grating pattern has a

phase dependence that varies linearly with the coordinate x,
Saddle Point Integration Approachthus physically representing a prism. An arbitrary periodic

object that has a periodicity d can be expanded via Fourier The saddle point integration approach is an approximation
expansion series into terms exhibiting phase dependence technique that achieves a desired image conversion by at-
exp(2�imx0/d), so that the far-field approximation consists of taching a phase plate to the image plane and observing the
contributions appearing at light distribution at the back focal plane of a lens. This is

particularly attractive when the desired image conversion
(transformation) is an analytic expression.

Let us attach a phase transmission mask having the form
x ≈ z sinαm = λzm

d
→ d sinαm = λm, m = · · · − 2,−1, 0, 1, 2, . . .

(20)
of exp[i�(x, y)] to the input image. As previously mentioned,
in the back focal plane of a lens, the Fourier transform of theNote that Eq. (20) coincides with Eq. (15) when � � 0.
input plane is displayed. Thus:We now examine the two-dimensional case; a plane wave

impinging upon a two-dimensional diffractive grating defined
by a phase function exp�2�i[(x/dx) � (y/dy)]�, becomes in the
far-field,

F(u, v) = ∫∫
H(x, y) exp[iφ(x,y)] exp

[
−2πi

xu + yv
λF

]
dx dy

(22)

where H(x, y) is the input image (see the suggested configu-
ration in Fig. 7).

Note that F is the focal length of the lens and F(u, v) is the
desired output field distribution. The choice of �(x, y) will be

g(x, yz) = ∫∫
exp

[
2πi

�
x0

dx
+ y0

dy

�]

exp
[
−2πi

x0x + y0y
λz

]
dx0 dy0

= δ

�
x
λz

− 1
dx

,
y
λz

− 1
dy

�
(21)

The last expression means that light illuminating a certain
grating is converted into a bright spot located at x � �z/dx,
y � �z/dy. Note that the shift amount x � �z/dx, y � �z/dy is
determined by the spatial periods of the grating in the hori-
zontal and vertical axes, dx and dy, respectively.

Assigning a different grating to each pixel in the input
scene, image conversion may thus be obtained. This is due to
the fact that associating a grating (dx, dy) to a pixel located

H(x,y) F(u,v)F

F

exp[i   (x,y)]φ

Fin (xm, ym) will result in a bright spot located in the output
plane (the far field) at (�z/dxm, �z/dym) when dxm and dym are Figure 7. Optical display of the Fourier transform (in the back focal

plane of a lens).the periods of the assigned grating in the (m, n) pixel. The
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determined by the desired transformation. By combining the posed to the very high capabilities of optical transmission
lines (free space, fibers, or waveguides).two exponential terms, the last equation may be rewritten in

the form of Numerous studies concerning all-optical switching and in-
terconnection networks have been carried out. These studies
can be divided into three main trends: channeled guided-waveF(u, v) = ∫∫

H(x, y) exp[−iq(x,y)] dx dy (23)
networks, slab waveguide and slab substrate mode intercon-

where nections, and three-dimensional free space architectures (9–
11). The first two approaches require a physical channel to
propagate. The resulting structures are two dimensional andq(x, y) = −φ(x, y) + 2π

λF
(xu + yv) (24)

are limited to small-scale systems. Free space architectures,
on the other hand, enable three-dimensional arrangements,

When the phase term is highly oscillatory, the integration op- thus providing the means for a dense system with a large
eration can be approximated by the saddle point integration number of parallel communications channels. This type of op-
method (6,7), which specifies that the main contribution is tical image converter can be used for large-scale free space
provided at the point for which switches or for compact intracomputer communications

systems.

Multistage Interconnect Networks. The most common

∂q(x,y)

∂x

∣∣∣∣
xs ,ys

= ∂q(x,y)

∂y

∣∣∣∣
xs ,ys

= 0 (25)

switching network is based on cross-bar techniques. These
Applying these relations leads us to the following set of differ- structures are simple, wide-sense nonblocking switches. Their
ential equations: major fault lies in the fact that the required number of

switching elements increases proportional to N2 (N � the
number of inputs/outputs). One can overcome this deficiency
by using multistage interconnection networks (MINs) (12,13).
The goal of the MIN is to divide the switch into several cas-
cading stages, each stage consisting of a number of smaller

∂φ(x, y)

∂x
= 2πu

λF
∂φ(x, y)

∂y
= 2πv

λF

(26)

switches that perform a limited switching action. This archi-
For instance, when seeking the transformation from tecture has three main advantages. First, using the MIN en-

Cartesian (x, y) into polar coordinates (lnr, �) one requires: ables one to achieve a large range of implementations by the
same switch structure, hence by achieving different connec-
tivity levels (from fully connected switches through re-
arrangeable nonblocking switches up to strictly nonblocking
switches) by using the same switch. The second advantage of

u(x,y) = lnr = 1
2

ln(x2 + y2)

v(x,y) = θ = tan−1
�y

x

� (27)

the use of MIN structures for implementing the extreme case
of strictly nonblocking switches is the requirement of a num-

which leads into ber of elements proportional only to N1.5. As a result, one ob-
tains a significant reduction in the number of elements re-
quired for switching a large number of channels. Last, but of
no less importance, is the fact that MINs can be implemented
recursively. Smaller MINs up to a point where basic, small

∂φ

∂x
= 2π

2λF
ln(x2 + y2)

∂φ

∂y
= 2π

λF
tan−1

�y
x

� (28)

size switches are used can implement the switches in each
stage of the MIN. These advantages of the MIN are accompa-Upon solving for �, one gets the phase mask
nied by two disadvantages: the fixed interconnection between
the stages and the complicated switching control algorithms.

φ(x, y) = 2π

λF

[
ln(x2 + y2)

2
− y tan−1

�y
x

�
− x

]
(29)

Multistage Interconnect Networks Classification. One of the
basic attributes used to characterize MINs is their connectiv-

Note that such a phase mask filter can be easily manufac- ity level. The connectivity of the network fits into one of sev-
tured by known computer-generated holographic methods (8). eral broad classes. A brief description of these classes is pre-

sented hereafter.
Multistage Approaches

1. Partial Connection. This class of connectivity meansOptical coordinate transformation also can be achieved by us-
that at least one of the inputs may not be connected toing multistage approaches. The use of more than a single
at least one of the outputs. In other words, any twostage provides the opportunity to design a system that is
points chosen at random have a probability of less thanbased on very simple components. An important advantage of
one of being connected. Even though this type of net-this approach is that it is useful for communications pur-
work has limited function, sometimes-larger networksposes. At present, more and more communications channels
can be constructed from such subnetworks.rely on optical links, whereas communications switching re-

mains entirely electronic. This combination has two main 2. Fully Connected (Also Known as Reduced State). In this
type of network, any single input may be connected toflaws. The first is the necessity to convert photons to electrons

(and vice versa), whereas the second is the limitation of the any (arbitrary) output. However, once this is achieved,
it may prevent other connections from being imple-electronic devices in terms of throughput and bit rate as op-
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mented. This condition is known as a block. Not all per-
mutations are achievable. This type of network is rather
popular, due to its relative simplicity. In many cases,
the limitation of the reduced states is acceptable.

3. Rearrangeably Nonblocking. This type of network
allows any permutation of input-to-output connection to
be established. However, if a new connection has to be
made, some or all of the existing connections have to be

In Out In Out

(a) (b)disconnected and rearranged, thus introducing a tempo-
rary channel interruption until the rearrangement is Figure 9. (a) Crossover network. (b) Banyan network, for eight
completed. This type of networks is also one of the more inputs/outputs.
popular types.

4. Wide-Sense Nonblocking. This means that new connec-
tions may be established without disturbing any of the

switch is also known as bypass-exchange switch. A certainexisting ones.
implementation of such switch is displayed in Figure 10.5. Strictly Nonblocking. If a network is strictly non-

Two incoming signals A and B are set to linear polarizationblocking, any idle input may be connected to any idle
in orthogonal directions. Both signals enter the calcite crystaloutput, no matter how many other connections are es-
with polarization directions aligned with the crystal’s orienta-tablished, and no matter how the other connections
tion (ordinary and extraordinary). The crystal length provideswere put up. This type of network is complicated, ex-
a displacement that equals the distance between inputs Apensive, and requires a large number of switches.
and B, guaranteeing that both signals emerge from the calcite
as one ray with two orthogonal polarizations, representingThere are many types of realizations for any of the connec-
signals A and B. The orthogonally polarized signals passtivity types (10). Some of the more popular ones are the Clos
through a controllable �/2 device. If the device is activated,network (strictly nonblocking), the crossbar network (wide
the two orthogonal signals will undergo a 90� rotation, so thatsense nonblocking), and the Benes network (rearrangeably
the two signals A and B will exchange their polarization state.nonblocking). An interesting type of fixed interconnection is
The signals will then split by the second calcite crystal. Inthe Omega network (perfect shuffle). Using the perfect shuffle
view of the rotated polarizations, the two signals A and B,to connect layers of switches, one may get networks from par-
emerging from the switch in an exchange position, will inter-tially connection through wide-sense nonblocking, depending
change. Not activating the �/2 device, the ray will passon the number of layers applied. The reduced (fully con-
through without undergoing polarization rotation, and thenected) and the nonreduced (rearrangeably nonblocking) net-
two signals A and B will emerge after the second calcite, inworks are among the achievement capabilities of this type of
the same course as they entered the switch.connection.

The one-dimensional perfect shuffle (taking its name from
Basic 4 � 4 Optical Switch. The 4 � 4 FSOS is the corner-the shuffling of a pack of cards) method is carried as follows:

stone for large MIN systems. The reduced (fully connectedthe input is divided into two halves, and thereafter the first
blocking) 4 � 4 FSOS consists of four independently con-half is connected to the odd outputs and the second half to
trolled bypass-exchange switches. The 4 � 4 FSOS consists ofthe even ones in sequence. The result is an interlaced connec-
four 2 � 2 switches depicted in Figure 11. It is simply de-tion. The result for eight inputs/outputs is depicted in Figure
signed and highly symmetric, thus accomplishing a small-8. If two-dimensional MINs are to be implemented, then a
scale switch, with easy alignment and high light efficiency,two-dimensional perfect shuffle should be used. The two-di-
while using low number of switches.mensional extension of the perfect shuffle is straightforward,

The 4 � 4 FSOS is a two-stage omega MIN, fully connectedalong the same lines.
switch (i.e., enabling one single input to connect to any out-Another important types of fixed interconnections are the
put). Yet, some connections will be impossible to create ifcross-over and the Banyan networks. Those networks for
other connections already exist (Fig. 12). Furthermore, it iseight input/outputs are illustrated in Figure 9.
seen that the 4 � 4 FSOS implements the two-stage MIN
in a two-dimensional structure. The points mentioned aboveA 2 � 2 Optical Switch. The basic building block for the
enhance the certainty that the 4 � 4 FSOS is a suitable solu-MINs is the 2 � 2 free space optical switch (FSOS). This
tion for a small-scale switch of larger three-dimensional opti-
cal MINs.

Comparison Between Approaches

The main advantage of the multifacet approach is its ability
to fulfill any desired coordinate transformation, which results
in any desired image conversion in a relatively simple optical
setup. However, the approach has two main disadvantages.
Since within each image a facet with an appropriate grating

In Out must be inserted, the number of channels that can be ad-
dressed is restricted due to technological production limita-Figure 8. Perfect shuffle for eight inputs/outputs.
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Figure 10. Bypass-exchange switch.
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tions. Nevertheless, the production is quite difficult even OPTICAL COORDINATE TRANSFORMATIONS—NUMERICAL
when the spatial resolution is low. APPROACHES FOR MASK COMPUTATION

The saddle point integration requires a simpler phase
mask, which allows obtaining higher spatial resolution of co- Ping-Pong Based Algorithms
ordinate transformation and easier fabrication. However, the

Complex amplitude masks are often required for optical infor-main disadvantage of this approach, besides its being only
mation processing and coordinate transformation. Becausean approximation, is that not every coordinate transformation
these masks are hard to fabricate and inefficient as a resultrelation may be realized. Reviewing the previously mentioned
of amplitude (absorbing) variations, ways to avoid the use ofequations reveals that an exact solution does not always
such elements by substituting them with phase-only masksexist.
are considered. Numerical approaches for doing so, such as aThe multistage approach is a very promising recently es-
ping-pong algorithm, have become very common recently duetablished technique. This approach allows both fast and
to the increasing computational ability of digital computers.highly resolved image conversions to be achieved. Because it

One of the basic ping-pong techniques is the Gerchberg–is so new, it has not yet been implemented compactly and
Saxton (G–S) algorithm, which was invented and used forefficiently, but future technological progress will no doubt
various applications such as super resolution, phase retrieval,solve this drawback.
and beam shaping (14–21). It is based on numerical iterations
for determining the necessary phase function �(x, y) that can
generate the desired distribution at the output plane (x, y).
The suggested optical setup used for beam shaping implemen-
tations is demonstrated in Figure 13. As illustrated in this
figure, the input field distribution is multiplied by a spatial
phase-only filter, exp[i�(x, y)] and Fourier transformed using
the optical setup previously seen in Figure 7.

Figure 11. 4 � 4 FSOS. Each rectangle represents a bypass-ex-
change switch. Figure 12. Two-stage omega 4 � 4 MIN.
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is Ain(x, y), the amplitude distribution obtained in the Fourier
plane will be approximately the constrained amplitude distri-
bution Aout(x, y). Note that if the input field distribution has a
phase of �g(x, y) in addition to the amplitude Ain(x, y), then
the input phase filter will be exp[�i�g(x, y) � i�in(x, y)].

The phase obtained in the output plane is �out(x, y). Once
the output amplitude constraint is achieved, the phase of the
output field distribution can be corrected, if necessary, by an-
other phase-only filter. The phase filter that has to be placed
at the output plane is exp[�i�out(x, y) � i�d(x, y)] where �d(x,

Input
image

Output
planeF

F

exp[i   (x,y)]

 (x,y)  (x,y)

φ

F y) is the constraint for the output phase.
Figure 13. Gerchberg–Saxton algorithm for beam shaping. As previously mentioned, a Fourier transform is not the

only transformation that ties the input and the output plane.
Other possible transformations that are often used are the
fractional Fourier transform and the Fresnel transform (22–The goal is to achieve a desired amplitude distribution in
24). The main difference between the various types of trans-the output plane. Once this is achieved, after many iterations,
formations is the residual error for the image conversion ob-the final desired phase is generated with a second filter
tained in the output plane and the rate of the numericalplaced in the output plane. The iterative algorithm, which is
algorithmic convergence.applied for calculating the spatial phase filter, is illustrated

in Figure 14. Its goal is to determine �(x, y) such that it will
Simulated Annealing Algorithmsmeet with the desired output amplitude distribution under an

input amplitude distribution constraint. The simulated annealing algorithms (25) are a very general
For the first iteration in the iterative algorithm described type of algorithm used for image conversion for many other

in Figure 14, a random phase �in(x, y) is chosen. A new func- uses, including a comparison condition. The idea behind the
tion f (x, y) � Ain(x, y) exp[i�in(x, y)] is defined, where Ain(x, y) simulated annealing is simple; it was taken from physical
is the actual input amplitude distribution (a constraint). The processes existing within nature. For instance, when a mate-
output plane serves as a certain predetermined transforma- rial is slowly cooled its molecular structure becomes more and
tion of the input plane. For instance, it is common to obtain more organized by the movement of its particles. However,
the output in the Fourier plane. In this case a fast Fourier this movement is reduced monotonically with the decrease of
transform (FFT) of f (x, y) may be performed, in order to shift the temperature. Usually the decrease is exponential with
to the output plane and to examine the field distribution temperature (which is proportional to the time axis):
there:

D = D0 exp
�
− α

T

�
(31)F(x, y) = ∫

f (x, y) exp[−2πi(xx + yy)] dx dy

= Ãout(x, y) exp[iφout(x, y)] (30)
where D is the probability to apply the rule of order and to
switch the position of two states, T is the temperature, and �

The next step is to replace Ãout(x, y) by the constraint for the is a constant.
output amplitude distribution Aout(x, y). After performing an If one desires to organize an image or an array according
inverse FFT over the result (we shift again back to the input to a certain rule of order, then to obtain faster convergence
plane), the obtained phase becomes the input phase �in(x, y) that will not converge to a local minima the rule of order is
for the second iteration. The process is repeated until conver- applied according to a certain probability of distribution that
gence occurs. The input spatial phase filter is exp[i�in(x, y)], changes time. The change in time of the probability to apply
as seen in Figure 13. Thus, if the input amplitude distribution the rule of order may be exponential (remember that T �

T(t), where t is the time base), or it may have any other form
of monotonic decrement with time. At the end of the process,
the probability for a change is close to zero. This property
allows a moderate sorting of the process, which prevents us
from converging to local undesired minima.

Simulated annealing is a very promising algorithm, not yet
used sufficiently in optical image conversions.

APPLICATIONS

Beam Forming and Shaping

In this section we illustrate the use of a modified numerical
Gerchberg-Saxton–based algorithm to obtain an efficient im-
age conversion. To provide the reader with a more substantial
grip on the importance of optical image converters, we detail

Ain(x,y)exp[i   in(x,y)]

Ain(x,y)

φ

A
~

out(x,y)exp[i  out(x,y)]φ

Random   in(x,y)

Transformation

Inverse transformation

φ

Aout(x,y)

A
~

in(x,y)exp[i   in(x,y)]

Aout(x,y)exp[i  out(x,y)]φ

φ

the following application and explore it in a fundamental
manner.Figure 14. Gerchberg–Saxton iterative algorithm.
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Over the years, many efforts at beam-shaping conversion
have been made. A popular example of beam shaping consists
of generating one- or two-dimensional arrays of equal-inten-
sity light spots. In 1971 Dammann and Gortler tried to obtain
such beam shaping in the form of multiple images from one
input object (26). They used periodic special gratings, later
coined Dammann gratings, to achieve their goal. Dammann
gratings are simple binary phase gratings used to generate
arrays of equal-intensity light spots. Later, Dammann and

Phase
filter 1

(DOE1)

Phase
filter 2

(DOE2)
Output
plane

F

Z0 F F
Klotz explained the theory behind the Dammann gratings in

Figure 15. Optical setup for implementing array illuminator.greater detail (27).
Killat et al. (28) and Veldkamp et al. (29) suggested differ-

ent uses of the Dammann gratings. A feasibility study of
Assuming that the input field distribution is denoted byDammann gratings and their important parameters has been

Ain(x, y), the field distribution behind the first diffractive op-done as well (30). Interest in the Dammann gratings in-
tics element (DOE1) iscreased lately, mainly due to new developments in optical dig-

ital computing and infrared computer communications where
f (x′, y′ ) = Ain(x′, y′ ) exp[iφ1(x

′, y′)] (33)arrays of light spots are needed to provide optical beam
sources for a large number of synchronized logic devices. But

where �1(x, y) is an arbitrary plane distribution.the reason that the Dammann gratings were, and still are,
According to this setup, the field propagates in free spacevery popular is due not only to their applicability but also to

from the first DOE (DOE1) to the second DOE (DOE2) over athe fact that they are actually binary phase gratings. This
distance Z0. At that point, right before DOE2, the field distri-

provides high efficiency in view of the high throughput of bution g(x, y) can be mathematically calculated by using the
light energy. The binarization enables the use of fabrication Fresnel diffraction integral:
techniques, such as reactive ion etching and photolithogra-
phy, which have become standard processes in VLSI tech-
nology.

Unfortunately, Dammann gratings have some serious
drawbacks. They cannot generate an arbitrary array of light
spots, being restricted to only an odd number of spots along

g(x, y) =
exp

�2πiZ0

λ

�

iλZ0

∫∫
f (x′, y′ ) exp

{
2πiZ0

λ
[(x − x′)2

+ (y − y′ )2]
}

dx′ dy′ (34)

each axis and equal spacing between two neighboring spots.
Right behind the second phase-only spatial filter the field isFurthermore, Dammann gratings are restricted to structures

with transparencies functions, t(x, y), that can be separated
s(x, y) = g(x, y) exp[iφ2(x, y)] (35)

into the spatial coordinates x and y:

The output plane and the DOE2 plane are connected by a
Fourier transform relation, so thatt(x, y) = t1(x)t2(y) (32)

Hence they cannot produce, for example, light spots arranged S(u,v) = ∫∫
s(x, y) exp

[−2πi
λF

(xu + yv)

]
dx dy (36)

in a circular unequally spaced array. If one tries to generate
an array of more than 40 � 40 spots, problems with the com- One strives that S(u, v) be as similar as possible to the de-
putation of the gratings become dominant (30). Finally, even sired output shape D(u, v):
though Dammann gratings are binary phase filters, their
overall efficiency is relatively low in most cases. D(u,v) = Aout(u,v) exp[iφout(u,v)] (37)

The following approach for the design of a beam-shaping
generator is based upon the numerical Gerchberg–Saxton Denoting by d(x, y) the desired field distribution right behind

DOE2, this function is the inverse Fourier transform of(G–S) algorithm (31). The one and the most common applica-
D(u, v) and can be calculated astion is beam shaping while the desired beam shape is ob-

tained in either the Fourier or in the Fresnel planes.
At this point we would like to mention that the discussion

carried in this subsection is general and the proposed method
d(x, y) = C

∫∫
D(u,v) exp

[
2πi
λF

(xu + yv)

]
du dv (38)

may be used for generating other desired amplitude and
where C is a constant.phase distributions. In our application example we concen-

The unknown parameters in the proposed configurationtrate on the case of an arbitrary array generator.
are the distance between the two diffractive optics filters (Z0)
and the phase-only spatial filter distributions �1 and �2,
whose functions are to be calculated. Therefore, the followingLight-Efficient Array Illuminator. The optical setup proposed
questions have to be answered:for implementing a light-efficient array illuminator is given in

Figure 15. The setup includes phase-only elements and thus
How to determine the distance Z0provides maximum throughput of light energy, which yields

high efficiency. How to calculate the two phase only spatial filters
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Figure 16. Optical setup for the creation of image replication.
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Figure 17. The desired beam shape (four equally spaced impulses).
The next section provides answers to these questions.

One should note that the optical implementation of an ef-
ficient array illuminator can be also used for obtaining image values of Z0 may lead to an optimal convergence, hence flexi-
replication as shown in Figure 16. The Fourier transform of bility exists in choosing the parameter Z0. Note that the value
the object f in that we wish to replicate is placed in front of of Z0 affects the rate of convergence of the G–S iterative algo-
DOE2. At the output of the system, the convolution between rithm.
an array of spots and the object f in is obtained; replication is
thus generated. Computer Simulations. To demonstrate the ability of this

application, we present several designs for the generation of
Beam-Shaping Generator—Mathematical Analysis. The de- a two-dimensional array of light spots that can be mathemati-

sired output field distribution D(u, v) should be obtained at cally expressed by
the back focal plane of the lens. Therefore, its inverse Fourier
transform, d(x, y), should appear at the front focal plane of
the lens. d(x, y) can be expressed as

D(u,v) =
∑

n

∑
m

Am,nδ(x − xm, y − yn) (43)

where D(u, v) is the desired output field distribution and Am,n
d(x,y) = Ad(x, y) exp[iφd(x, y)] (39)

is the amplitude of a light spot located in the spatial coordi-
Thus, for a given input field distribution, Ain(x, y), one nate (xm, yn). Thus, behind DOE2 a reconstruction of a series
should calculate the first phase only spatial filter exp[i�1(x, of plane waves is needed.
y)] that will generate at a distance Z0 from that filter the The first simulation treats the generation of an array with
Ad(x, y) distribution. an even number of equally intense light spots. This aim is

The second phase-only spatial filter should provide the de- unachievable by conventional means (26,27). The desired
sired phase of d(x, y). The illuminating source and the first beam shape is presented in Figure 17 and consists of four
DOE [�1,(x, y)], provide at a distance Z0: equally spaced impulses. Figure 18 shows the results

achieved after 100 iterations of the G–S procedure. An ex-
g(x, y) = A0(x, y) exp[iφ0(x, y)] (40) tremely close match is observed between the two figures.

The squared error between the obtained and the desired
Since �1(x, y) is computed in such a way that result is 7.39 � 10�5. Furthermore, the energy loss was found

to be only 1.4 � 10�5 of the total energy; that is, an overall
Ad(x, y) = A0(x, y) (41)

one obtains that the second phase-only filter �2(x, y) should
thus satisfy:

φ2(x, y) = φd(x, y) − φ0(x, y) (42)

To calculate the first filter, the G–S iterative algorithm is
used. The flowchart that illustrates the procedure is similar
to the one of Figure 14, whereby the transform is the Fresnel
transform in this case. In most cases, adequate convergence
occurs after hundreds of iterations. This thus provides the
phase mask exp[i�1(x, y)] represented by the first DOE
placed in the setup of Figure 15.

The free space propagation distance, Z0, between the two
DOEs depends upon two major factors: the input amplitude
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D(u, v). For specific functions Ain(x, y) and D(u, v), several Figure 18. The obtained beam shape (where Fig. 17 is the goal).
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Figure 19. The desired beam shape (an asymmetric array of seven Figure 21. The obtained beam shape for Fig. 17 when additive noise
is introduced.impulses).

efficiency of 0.999986 was achieved. Note that we ignored re- In addition to the high efficiency and flexibility, the sug-
flection and propagation losses of the illuminator. gested method is also advantageous (over the conventional

The second simulation is aimed at producing an asymmet- Dammann plate) in handling noise embedded in the phase of
ric array of equally intense light spots with different spacing the masks. This overcomes the restriction presented in Ref.
between the spots. Figure 19 shows the desired beam shape 30, where the sensitivity to noise is presented as a signifi-
and Figure 20 presents the results achieved by the suggested cant drawback.
procedure after 100 iterations of the G–S algorithm. The
squared error in this case is 6 � 10�3 and the overall efficiency Optical Signal Processing. The techniques presented herein
is 0.999146. The small error in both cases illustrates a good also play a major role in the optical signal-processing field of
convergence of the algorithm and uniformity of the spots. research. Its most significant importance is in implementa-
Note that simulations performed with a larger number of iter- tion of different optical transformations used for image en-
ations (of the G–S iterative algorithm) provide even better re- hancement and noise removal, for superresolution, and for in-
sults. variant pattern recognition. The following sections briefly

We now investigate the behavior of the suggested optical overview this type of application for image converters.
setup in the presence of noise (added to the phase functions
of the masks) to test the ruggedness of the method. White Image Enhancement and Noise Removal. Previous researches
Gaussian noise (WGN), with zero mean and a standard devia- have demonstrated the importance of different transforma-
tion of two degrees, was added to the phase function of the tions for image enhancement. Many of those transformations
masks. Figure 21 presents the results obtained when an array are based upon image converters. For instance, the Mellin
of four equal intensity light spots is generated under the pres- transform (32) is a well-known transformation used in radar
ence of such noise. The overall efficiency in this case is image-processing applications as well as in optical scale-in-
0.990637. Figure 22 presents the obtained results whereby variant pattern recognition. This transform realizes the con-
an asymmetric array of seven equal-intensity light spots is version from (x, y) into (ln r, �) coordinates. The image conver-
generated in the presence of noise. The overall efficiency in sion using the coordinate transformation is performed by the
this case is 0.989680. techniques described herein.
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Figure 20. The obtained beam shape (where Fig. 19 is the goal). Figure 22. The obtained beam shape for Fig. 19 when additive noise
is introduced.
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Superresolution. Superresolution is perhaps the most fun-
damental research topic in optics (33,34). The meaning of this
term is to improve the spatial resolution seen by an optical
imaging device. Resolution degradation is caused by the finite
apertures of the imaging systems (diffraction resolution re-
striction) and by the finite pixel size in CCD sensing devices.
The way to overcome the diffraction restriction is to syntheti-
cally enlarge the aperture of the lens. This may be done by
methods that multiplex the spatial information existing
within the input image, transmitting it throughout the aper-

Input plane
(SLM) J.T. plane

CCD

F.T. lens

Computer
interface

Frame
grabber

f f

ture and then demultiplexing it back again. The means of Figure 24. Joint transform correlator.
proper multiplexing and demultiplexing often include sophis-
ticated Dammann gratings that create the desired image con-
versions (35,36).

via a lens, a filter is then placed in the Fourier plane, and
then another Fourier transform module leads to the outputInvariant Pattern Recognition. Invariant pattern recognition

is most important in computer vision and automatic target- plane. Thus, convolution or correlation operations between
the input and the impulse response of the filter may be ob-detection systems. Invariant pattern recognition should allow

detection of not only the undistorted reference image but also tained. A somewhat different setup for achieving the same
goal is known as the joint-transform correlator (JTC) (42,43),when it is scaled, projected or rotated (32,37,38), or embedded

in noise (39). If, for instance, we examine the scale invariant which does not require any spatial filter, but a simultaneous
presentation of the reference and the image side by side incase, it is clear that the invariance may be achieved by per-

forming a Cartesian to (ln r, �) coordinate transformation the input plane. Thus it provides some advantages compared
with the conventional 4-f configuration since there is no need(40). If the input object is scaled by a factor of a: r � a � r,

then the coordinate transformation will result by a lateral for a spatial filter that should be positioned with high accu-
racy. The JTC configuration is based on presenting simulta-shift of the transformed image:
neously two patterns at the input plane one beside the other.
The JTC (Fig. 24) contains two steps: The first step is actuallyln(ar) = ln a + ln r (44)
a Fourier transformer obtained by a lens followed by a square

Because the recognition is usually based upon a correlation, law converter device (a device that converts field distribution
which is a shift-invariant operation, scale-invariant pattern to amplitude distribution). The result is fed back to the input
recognition is obtained. This is because we sacrifice the shift- plane (possibly by computer interface). The second step is an-
invariance property of the overall system for achieving the other Fourier transformation such that in the output plane at
scale-invariance property. The desired coordinate transforma- first diffraction orders, correlation between the input and the
tion may be obtained by the above-discussed techniques. reference patterns is obtained.

A similar discussion may be done for projection- or rota- Several approaches for implementing the square-law con-
tion-invariant pattern recognition. Projection invariance version are in use, such as photographic-film (43), spatial
means obtaining invariant recognition for the reference object light modulator (SLM), and liquid crystal light valve (LCLV)
and for the reference object being scaled only in one of the (44,45). Incoherent processing started to be popular when it
axes x or y. In this case a coordinate transformation of (ln x, was shown that the 4-f system performs a convolution/corre-
ln y) may be very efficient because scales in x or in y result in lation operation between the input intensity distribution and
shifts. Due to the shift-invariance property of the correlation the intensity of the filter’s impulse response, when illumi-
operation, a projection invariant recognition may be achieved. nated by a quasimonochromatic, spatially incoherent light

(46).
Coherent and Incoherent Light Processing The intrinsic advantages and applications of using spa-

tially incoherent light for optical signal processing have beenThis subsection discusses the application of optical image con-
intensively discussed (47,48). For the JTC, a white light con-verters in incoherent light processing. Optical information
figuration has been suggested (49). In the following, a spa-processing became feasible when Vander Lugt (41) invented
tially incoherent JTC implementation that provides variouswhat is nowadays called the 4-f correlator (Fig. 23). In this
advantages comparing with other optical processors is sug-system a two-dimensional Fourier transformation is obtained
gested. The suggested implementation is based on the shear-
ing interferometer (50).

By using the shearing interferometer, which includes a
corner prism, the Hartley transform is obtained at the output
plane (51) following the optical configuration of Figure 25.

The Hartley transform was achieved for either spatially
incoherent or coherent illumination. Such a setup, due to the
beam splitter, divides the light coming from the input pattern
into two paths. One optical path contains the information of
the original input reflected from a mirror. The other path is

Input
plane Filter

Output
plane

f f f f

f f

the original input that was returned from the corner prism.
Thus the original pattern rotated by 180� [g(x, y) becomesFigure 23. 4-f correlator.
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