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MAXIMUM LIKELIHOOD DETECTION

The task involved in pattern detection or Recognition is that
of making a decision about the unknown, yet constant, nature
of an observation. In this context, an observation could be a
single scalar or a multidimensional vector, and the nature of
such observations is related to their classification according
to some criteria specific to the application. For instance, in a
face detection scenario, the observations are images, and the
overall goal of a system is to select those containing human
faces.
The maximum likelihood principle states that in a given

object classification scenario, one should pick the object class
for which the observation in question is most likely to happen.
For instance, if we knew that in some place most summer
days are sunny and most winter days are cloudy and we are
asked to guess the season based solely on the fact that one of
its days is sunny, our best guess should be that it is summer.
For the purpose of object detection, we use as much of any

available information as we can about the underlying pattern
structure of the observations. In most cases, all available in-
formation comes in the form of examples whose classification
is known beforehand. We refer to them as the training set.
Although the basic idea of the maximum likelihood principle
is simple, the estimation of the probability distributions of the
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observations from the training set could be rather complex. BAYES DECISION RULE
Therefore, two different approaches have been taken to deal

Assuming that the nature of the observations is well knownwith this, parametric versus nonparametric probability esti-
and therefore that the conditional probability densities of themators.
observations for each object class are given, then the BayesIn this article we deal mainly with object detection in the
Decision Rule yields the minimum error (4). This error,context of computer vision and image understanding. How-
known as the Bayes error, is a measure of the class separa-ever, maximum likelihood detection and many other ap-
bility.proaches in pattern recognition have much wider scope and
Let �1, �2, . . ., �L be the object classes and O be the obser-applicability in a number of different scenarios. In the follow-

vation variable. Then, the a posteriori probability function ofing sections we describe a visual object detection setup, the
�i given O, is obtained using the Bayes Formula asaforementioned approaches for maximum likelihood detec-

tion, and an automatic face detection system based on non-
parametric probability models. P(ωi | O) = p(O | ωi)P(ωi)

p(O)

where p(O��i) is the conditional probability density of the ob-VISUAL OBJECT DETECTION
servation and p(�i) is the a priori probability for the ith object
class and p(O) is the probability of the observation.Most object detection techniques by themselves are not in-
The Bayes decision rule states that we should pick the ob-variant to rotation, scale, illumination changes, object pose,

ject class �*i with maximum probability, given the observa-and so on. To overcome this limitation, the training examples
tion. If we pickare normalized in illumination, scale, rotation, and position

before they are used in the learning procedure. The result of
this learning procedure is a pattern recognition module capa- ωi = arg max

ωi

{p(O | ωi)P(ωi)}
ble of detecting the objects in question within a limited range
of variation in scale, rotation, and illumination. for the observation in question, we obtain the maximum a
Let us assume that a test image is given and that we are posteriori (MAP) decision rule. However, in most cases, the a

to detect objects on it. In the detection procedure, a collection priori probabilities for the classes p(�i) are unknown, and
of rescaled and rotated images is computed from the test im- therefore, for practical purposes, they are set equal. Then, the
age according to the desired range of detection capability. obtained rule
Then, each subwindow within these images is normalized for
illumination and tested with the aforementioned pattern rec-
ognition module to decide whether the desired object is in this

ω∗
i = arg max

ωi

{p(O | ωi)}

subwindow. As a result, a new collection of images is ob-
is known as the maximum likelihood (ML) decision rule.tained. In these, the pixel value of each position is the result

of the pattern recognition module for the corresponding sub-
window position. For example, each pixel value could be pro- PROBABILITY MODELS
portional to the likelihood that this subwindow contains the
object. Further analysis of these images is carried out to pro- In reality, the most serious limitation of the Bayes decision
duce a robust list of candidates of the object being detected. rule is the difficulty of estimating the probability distribu-
Figure 1 illustrates the case in which faces of different sizes tions needed for its application. In most cases, the informa-
are detected using a pattern recognition module that com- tion or knowledge about the object classes is available in the
putes the likelihood that there is a face in a subwindow of form of examples, that is, a set of observations that have been
size 17  14 pixels. classified beforehand, usually called the training set, are
The overall performance of the detection system depends given, and the goal of the learning procedure is to find a dis-

on the choice of scale factors, rotation angles, illumination criminant function capable of classifying these observations
normalization algorithms, and the size of the detection sub- and also others not available for training.
window. The narrower these ranges are set, the more consis- In this general approach, the training set is used to esti-
tent the patterns that are fed to the detection module in the mate the probability functions for each object class. The goal
learning procedure. However, a larger search space is also re- of the learning technique is determining the best set of pa-
quired in the detection procedure to cover a similar range of rameters for the probability estimators. As is usual in data
detection capability. fitting problems, estimating the probability from a set of ex-
Different techniques can be used in the recognition module amples faces a number of issues, such as the completeness of

(1,2). The approaches of particular interest here are those the training set, the generalization properties of the models,
based on the Bayes decision rule (3). These approaches take the optimization criteria, etc.
each subwindow and try to estimate the probability that it Probability distributions are usually modeled with para-
belongs to each of the object classes in question. Then, using metric functions, for instance, Gaussian mixture densities.
the value of the probability as a confidence level, the class Another approach, based on the assumption that the observa-
with highest probability is selected to describe the object in tions are of a discrete nature, is to model the probability func-
the subwindow. These approaches are known as probabilistic tions using the statistical averages. We call the former para-
reasoning techniques and include both maximum likelihood metric probability models and the latter nonparametric

probability models. Once the probability functions are ob-and maximum a posteriori detection setups.
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Figure 1. Scheme of a multiscale, maximum likelihood face
detection setup. Each subwindow of the scaled version of the
test image is tested, and the likelihood that it contains a face
is displayed in the likelihood images from which the face can-
didates are obtained.
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tained, they are used in a ML or MAP setup for object detec- their work, the parameter estimation is carried out using the
expectation-maximization (EM) algorithm.tion. In the following section we briefly describe an example

of a parametric ML face detection system. However, in the
rest of this article we concentrate our effort on a nonparamet-

INFORMATION-BASED MAXIMUM DISCRIMINATIONric ML face detection system.

The detection process described in this article is carried out
Parametric Probability Models

as a classification using the Bayes decision rule. We mainly
compute the likelihood ratio of an observation using the prob-In modeling probability functions or distributions of multidi-

mensional random variables, one encounters a difficult issue. ability models obtained from the learning procedure and com-
pare it to a fixed threshold to make the decision. We use sta-There is a compromise between the complexity of the model

and the procedure used to fit the model to the given data. tistical averages to construct nonparametric probability
models, and the learning procedure is turned into an optimi-Extremely complex models would have to be used to consider

all of the underlying dependency among all of the variables zation whose goal is to find the best model for the given train-
ing data. From information theory we borrow the concept ofand to fit the model well to the training data.

The Karhunen–Loeve transform (5) is often used to reduce Kullback relative information and use it as the optimization
criteria that measure the class separability of two probabil-the dimensionality of the data and to overcome the limitation

imposed by the dependency among the variables. Rather than ity models.
Let the observed image subwindow be the vector X � IN,estimating the probability densities on the original space, the

observations are projected to the eigenspace in which the en- where I is a discrete set of pixel values. Let P(X) be the proba-
bility of the observation X given that we know that it belongsergy is packed to a subset of the components and the compo-

nents are uncorrelated. Then, in this new space, the probabil- to the class of objects we want to detect, and let M(X) be the
probability of the observation X, given that we know that itity of the observation is often estimated using a Gaussian

distribution or a mixture of Gaussian densities with diagonal belongs to other classes.
We use the likelihood ratio L(X) � P(X)/M(X) to decidecovariance matrices (6).

Moghaddam and Pentland reported an example of a maxi- whether the observation X belongs to the object class in ques-
tion by comparing it to a threshold value. Setting this thresh-mum likelihood detection system using this approach (7). In
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old to 1 leads to the Bayes decision rule. However, different indices S � �S1, . . ., ST� is obtained from
values are used depending on the desired correct-answer-to-
false-alarm ratio of the detection system. HP‖M(SSS) =

∑
i=1,...,T

HP‖M
�
XSi

| XSi−1
�

Kullback Relative Information
where

Kullback relative information, also known as Kullback diver-
gence or cross-entropy, measures the ‘‘distance’’ between two
probability functions, and therefore it measures the discrimi-
natory power of the likelihood ratio of these probability func-

HP‖M (Xj | Xk) =
∑

X j ,Xk

P(Xj, Xk) ln
P(Xj | Xk)

M(Xj | Xk)

tions under the Bayes decision rule (8,9).
The divergence of the probability function P with respect is the divergence of each pair of pixels within the image sub-

to the probability function M is defined as window, and is obtained from the training set using histo-
gram counts and statistical averages.
Then, we treat our optimization as a minimum-weight

spanning-tree problem in which the goal is to find the se-
HP‖M =

∑
XXX

P(XXX ) ln
P(XXX )

M(XXX )

quence of pairs of pixels that maximizes the sum of HP�M(S).
Finally, we use a modified version of Kruskal’s algorithm toAlthough it does not satisfy triangular inequality, this diver-
obtain suboptimal results (10).gence is a nonnegative measure of the difference between the
Once a solution is obtained, it is used to precompute atwo probability functions that equals zero only when they are

three-dimensional lookup table with the log likelihood ratioidentical. In our context, we use the Kullback divergence as
for fast implementation of the detection test. Given an imagethe optimization criteria in our learning procedure. Basically,
subwindow X � IN, the computation of its log likelihood iswe set up a family of probability models and find the model
carried out as log L(X) � �i�1,...,T L�[i][XSi

][XSi�1], wherethat maximizes the divergence for the given training data.

Modified Markov Model

Dealing with probability models that take full advantage of
L′[i][XSi

][XSi−1
] = log

P(XSi
| XSi−1

)

M(XSi
| XSi−1

)

the dependency of all of the variables is limited by the dimen-
sionality of the problem. On the other hand, assuming com- It is worth noting that such an implementation results in very

fast, highly parallelizable algorithms for visual pattern detec-plete independence of the variables makes the model rather
useless. In between these extremes, we use a modified Mar- tion. This is particularly important when we consider that the

likelihood ratio is computed for each of the image subwindowskov model. This family of models is well suited for modeling
our random processes and also easy to handle mathemati- obtained from the tested image.
cally.
We compute the probability of the modified kth order Mar-

FACE AND FACIAL FEATURE DETECTION AND TRACKINGkov model as

We tested the previously described learning technique in the
context of face and facial feature detection. Examples of faces

P(XXX ) =
∏

i=1,...,T
P
�
XSi

| XSi−1
, . . ., XSi−k

�

were obtained from a collection of ‘‘mug shots’’ from the
FERET database (11) using the locations of the outer eye cor-where S � �S1, . . ., ST� is a list of indices (e.g., each Si de-
ners as a reference to normalize the face size and positionnotes the pixel location), and the Kullback divergence be-
within the image subwindows. As negative examples, we alsotween the probability functions P(X) and M(X) of such ran-
used a collection of images of a wide variety of scenes with nodom processes as
frontal-view faces.
We used the likelihood model obtained with the training

set in a ML detection setup to locate face candidates in the
HP‖M

�
SSS) =

∑
i=1,...,T

HP‖M(XSi
| XSi−1

, . . ., XSi−k
�

test images. Several scaled and rotated images are obtained
from the input image and tested with this face detection mod-

Information-Based Learning
ule according to the desired range of detection capability. In
addition to locating the face candidates, the system furtherThe key idea behind this learning technique is to restate the

learning problem as an optimization in which the goal is to tests those candidates with likelihood models for the right
and left eyes so that the algorithm can accurately locate thesefind the list S* � �S*1 , . . ., S*T � that maximizes the Kullback

divergence HP�M(S) for a given training set. It is clear that the facial features. A detailed description of this implementation,
testing procedure, error criteria, performance description, etc.computational requirements of such an optimization problem

are prohibitive. However, we make some simplifications to can be obtained from Refs. (12,13).
A real-time, automatic face and facial feature tracking sys-find a practical solution to this problem.

First, we requantize the observation vector as part of the tem was implemented on an SGI-ONYX with 12 R10000 pro-
cessors and a SIRIUS video acquisition board. Real-time videoimage preprocessing step so that each pixel has only a few

possible values, for instance, four gray levels Xi � �0, 1, 2, 3� is grabbed from a camera to the computer memory for pro-
cessing and sent back out to a monitor with additional label-for i � 1, . . ., N. Then, using a first-order Markov model, the

divergence of the two probability functions for a given list of ing information, such as the position of the face and the facial
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Figure 2. Block diagram of a face detection
and eye tracking system. Both the initial
face detection and the continuous eye
tracking are implemented using maximum
likelihood detection setups.
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7. B. Moghaddam and A. Pentland, Probabilistic visual learning forfeatures. As illustrated in the block diagram in Fig. 2, the
object representation, IEEE Trans. Pattern Anal. Mach. Intell.,system handles continuous video sequences. Faces and their
19: 696–710, 1997.eyes are first detected in an upright frontal view using our

8. R. M. Gray, Entropy and InformationTheory,New York: Springer-ML setup. Then, the eyes are tracked accurately over the
Verlag, 1990.video sequence under face translation, rotation, and zooming

9. J. N. Kapur and H. K. Kesavan, The Generalized Maximum En-by applying a similar ML detection setup. In the tracking
tropy Principle, Waterloo, Canada: Sandford Educational Press,setup, the predicted position of the eyes is used to limit the
1987.search for eye detection.

10. T. H. Cormen, C. E. Leirserson, and R. L. Rivest, Introduction toThe system operates in two modes. In the detection mode,
Algorithms, New York: McGraw-Hill, 1990.the system constantly carries out an exhaustive search to find

11. P. J. Phillips et al., The FERET September 1996 database andfaces and their outer eye corners. Set up to detect faces in a
evaluation procedure, Proc. 1st Int. Conf. Audio Video-Based Bio-range of sizes (actually, the distance between the outer eye
metric Person Authentication, Crans-Montana, Switzerland,

corners) between 100 and 400 pixels, this detection loop runs March 12–14, 1997.
on 10 processors at about 3 frames per second. Once a face is

12. A. Colmenarez and T.S. Huang, Maximum Likelihood Face De-
successfully detected, that is, when the confidence level of the tection, Int. Conf. Automatic Face Gesture Recognition, Vermont,
detection is above a fixed threshold, the system switches to USA, 1996.
the tracking mode. 13. A. Colmenarez and T. S. Huang, Face detection with information-
In the tracking mode, the predicted positions of the outer based maximum discrimination, CVPR, San Jose, Puerto Rico,

eye corners are used to normalize the incoming video frames. 1997.
A normalized image is obtained for each frame so that the
tracked face lays in an upright position and with the appro- ANTONIO J. COLMENAREZ
priate size. Then, the locations of the eyes are continuously THOMAS S. HUANG
updated by applying the eye detector in these normalized im- University of Illinois at Urbana-

Champaignages. The eye detection module is based on the likelihood
models obtained with the aforementioned visual learning
technique but at a much higher resolution than that used in
face detection. As a result, there is no error accumulation or
inaccuracy over long video sequences, and a wide range of
rotation and zooming can be handled successfully. Whenever,
the confidence level of the eye tracking falls below a prede-
fined threshold, the system switches back to the detection
mode, and this cycle starts over.
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