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TESTING FOR ACCEPTANCE–REJECTION Now suppose the system designer chooses color informa-
tion as features. To be more specific, the feature extractor

Acceptance-rejection testing, or hypothesis testing, deals with takes the average of pixel values in the picture over red,
the problems of taking measurements and then estimating in green, and blue channels, and forms a three-dimensional vec-
which of a finite number of states an underlying system re- tor x � [xr, xg, xb]T. Moreover, after taking several pictures of
sides. Over the years, numerous theories and algorithms for oranges and apples in the supermarket, the designer finds out
hypothesis testing have been proposed and studied, since the that, while the red and blue values for both apples and or-
problems they intend to solve often play a vital role in many anges are similar (high red values and low blue values), the
scientific or engineering fields. The following are examples green values for oranges tends to be higher than the ones for
where hypothesis testing has been successfully applied: apples. therefore, the designer makes the feature extractor to

send only the green values to the classifier. Now what the
• Image classification or segmentation classifier sees is a one-dimensional feature space x � xg.

Our purpose now is to partition the feature space into two• Object or person recognition in computer vision systems
regions, where all the points in one region correspond to or-• Vector quantization for low data-rate systems
ange, and all points in the other correspond to apple. Since

• Analog information decoding or equalization in digital
now the feature space is only one-dimensional, one mightcommunication systems
classify the fruit to orange if the green channel value x ex-

• Speech recognition ceeds a certain threshold T, and to apple if the value is below
• Sonar or radar signal detection T. To choose T, one can take pictures all the oranges and
• Resonance detection in physical systems apples in the supermarket, and inspect the result.

While this rule appears to do a good job of separating fruits
in the store, one has no guarantee that it will perform as wellSince many textbooks and journals have discussed hypoth-
on new samples. It would certainly be prudent to obtain someesis testing in many aspects, the intention of this article is
more samples and see how many are correctly classified. Thisnot to give another general survey of this widely studied topic.

Instead, the discussion will focus on the applications of data suggests that the problem has a statistical component, and
classification. After giving a basic understanding of hypothe- that perhaps one should look for a classification procedure
sis testing, an efficient and systematic way to build up a that minimizes the probability of error, or, if some errors are
state-of-the art testing scheme for classification applications more costly than others, the average cost of errors. Using the
will be provided. The article is organized in the following way: decision-theoretic terminology, one might say that, as each
the fundamental theory for hypothesis testing, the Bayes de- piece of fruit emerges, nature is in one or the other of the two
cision theory, will be illustrated in the next section. After possible states: either it is an apple or it is an orange. Let �
Bayes theory is introduced, the discussion of how to build up denote the state of nature, with � � �0 for apple and � � �1
a Bayesian classifier is in order. The section Statistical Mod- for orange. Because the state of nature is so unpredictable,
eling will address this issue by describing a recently very pop- consider � to be random variable.
ular model, the probabilistic modular network. Methods and If there are more apples than oranges, one might say that,
algorithms for realizing this classification model, that is, sta- in the next picture, it is more likely to be an apple than an
tistical model selection, model parameter estimation, and pa- orange. More generally, assume that there is some a priori
rameter modification for minimizing classification error, will probability P(�0) that the next one is an apple, and some a
be discussed in the following sections. In the final section of priori probability P(�1) that it is an orange. These a priori
this article will be presented a face recognition system, for probabilities reflect prior knowledge of how likely one is to
the purpose of showing how the proposed technique is applied see ash or birch before the lumber actually appears. In this
to real applications. example, it goes without saying that P(�0) and P(�1) are non-

negative and sum to one. However, a priori probabilities can
be generalized to negative value (1).BAYES DECISION THEORY: AN EXAMPLE

Suppose for a moment that one was forced to make a deci-
sion about the type of fruit that will appear next without be-Bayes decision theory is a fundamental statistical approach
ing allowed to see it. The only information one is allowed toto the problem of hypothesis testing. This approach poses the
use is the value of the a priori probabilities. If a decision mustdecision problem in probabilistic terms, assuming that all the
be made with so little information, it seems reasonable to useinvolved probability values are available. To illustrate some
the following decision rule: Decide �0 if P(�0) 	 P(�1); other-of the types of problems to be addressed, consider the follow-
wise decide �1.ing imaginary and somewhat whimsical example: Suppose

This may seem like a strange procedure, in that one al-that a supermarket wants to automatically pick up misplaced
ways makes the same decision, even though one knows thatoranges from a pile of apples. A system to perform this very
both types of fruit will appear. How well it works dependsspecific task might well have the form of the following: the
upon the values of the a priori probabilities. If P(�1) is verycamera takes a picture of the fruit and passes the picture on
much greater than P(�0), the decision in favor of �1 will beto a feature extractor, whose purpose is to reduce the data by
right most of the time. If P(�1) � P(�0), one has only a fifty-measuring certain ‘‘features’’ or ‘‘properties’’ that distinguish
fifty chance of being right. In general, the probability of errorpictures of oranges from pictures of apples. These features
is the smaller of P(�1) and P(�0), and it shall be seen later(or, more precisely, the values of these features) are then
that, under these conditions, no other decision rule can yieldpassed to a classifier, which evaluates the evidence presented

and makes a final decision about the fruit type. a smaller probability of error.
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In most circumstances, one is not asked to make decisions
with so little evidence. In the example, one can use the green
color measurement x as evidence. Different samples of fruit
will yield different green color readings, and it is natural to
express this variability in probabilistic terms; one considers x
to be a continuous random variable, whose distribution de-
pends on the state of nature. Let p(x��j) be the state-condi-
tional probability density function for x, the probability den-
sity function for x given that the state of nature is �j. Then
the difference between the mean of p(x��0) and that of p(x��1)
describes the average difference in brightness between apples
and oranges.
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Suppose both the a priori probabilities P(�j) and the condi-

Figure 1. The estimated probability distributions of hypothesis �0tional densities p(x��j) are known. Suppose further that one
(p̂(x��0)) and hypothesis �1 (p̂(x��1)). The x axis indicates the normal-measures the average green color value in the fruit picture
ized green color intensity value ranging from 0 to 10. Here p̂(x��0) �

and discover the value of x. How does this measurement in- N(2; 1) and p̂(x��1) � N(6; 1). (b) The decision boundary (the thick
fluence one’s attitude concerning the true state of nature? The straight line at x � 4) generated by estimated posterior probabilities
answer to this question is provided by Bayes Rule: P̂(�0�x) and P̂(�1�x). Here, assume that the prior probabilities P(�0) �

P(�1). The input pattern is classified as �1 if P̂(�1�x) � P̂(�0�x); other-
wise it is classified to �0.P(ω j|x) = p(x|ω j )P(ω j )

p(x)
(1)

where
Some additional insight can be obtained by considering a

few special cases. If for some x, p(x��1) � p(x��0), then that
particular observation gives no information about the state ofp(x) =

2∑
j=1

p(x |ω j )P(ω j ) (2)

nature; in this case, the decision hinges entirely upon the a
priori probabilities. On the other hand, if P(�1) � P(�0), then

Bayes rule shows how observing the value of x changes the the states of nature are equally likely a priori; in this case
a priori probability P(�j) to the a posteriori probability the decision is based entirely on p(x��j), the likelihood of �j
P(�j�x). If one has an observation x, for which P(�1�x) is greater with respect to x. In general, both of these factors are impor-
than P(�0�x), one would be naturally inclined to decide that tant in making a decision, and the Bayes decision rule com-
the true state of nature is �1. To justify this procedure, calcu- bines them to achieve the minimum probability of error.
late the probability of error whenever one makes a decision.
Whenever one observes a particular x,

STATISTICAL MODELING

Now that it is known that posterior probability (or, more gen-
P(error|x) = P(ω1|x) if one decides ω0

P(error|x) = P(ω0|x) if one decides ω1
(3)

erally, any monotonically increasing functions of posterior
probability) is theoretically the best candidate to serve as the

Clearly, in every instance in which one observes the same discriminant function for classifying data points, the next
value for x, one can minimize the probability of error by decid- task is to estimate that probability that lies under the system.
ing �1 if P(�1�x) 	 P(�0�x), and �0 if P(�0�x) 	 P(�1�x). Over the past years many parametric or nonparametric meth-

ods have been proposed and utilized to perform this task (2–
7). Recently, a method called finite mixture distributions orDecide ω1 if P(ω1|x) > P(ω0|x); otherwise decide ω0 (4)

probabilistic modular networks has been reported to have con-
The above is the Bayes decision rule. Figure 1 illustrates the siderable success in data quantification and classification
decision boundary generated by Bayes rule. Bayes rule can (3,5,6,8,9). Finite mixture distribution model assumes that
easily be extended to handle cases with more than two states the data points xi in a database come from M classes ��1,
of nature; if there are M states �j, j � 1, 2, . . ., M, . . ., �r, . . ., �M�, and the data distribution of each class

consists of Kr clusters ��1, . . ., �k, . . ., �Kr
�, where �r is the

model parameter vector of class r, and �k is the kernel param-Decide ωi if P(ωi|x) > P(ω j|x); ∀ j �= i (5)
eter vector of cluster k within class r. It further assumes that,
in the training data set (which should be a representativeNote that p(x) in Eq. (1) is unimportant, as far as making a
subset of the whole database), each data point has a one-to-decision is concerned. It is basically just a scaling factor that
one correspondence to one of the classes, denoted by its classassures that P(�1�x) � P(�0�x) � 1. By eliminating this scaling
label l*ir, defining a supervised learning task, but the truefactor, one obtains the following completely equivalent deci-
memberships of the data to the local clusters are unknown,sion rule:
defining an unsupervised learning task.

For the model of local class distribution, since the true
cluster membership for each data point is unknown, one can
treat cluster labels of the data as random variables, denoted

Decideω1if p(x |ω1)P(ω1) > p(x |ω0)P(ω0);
otherwise decide ω0 (6)
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by lik (1). By introducing a probability measure of a multinom- mance can be achieved. The section Parameter Modification
for Minimizing Classification Errors will address this issue.ial distribution with an unknown parameter �k to reflect the

distribution of the number of data points in each cluster, the
relevant (sufficient) statistics are the conditional statistics for

STATISTICAL MODEL SELECTIONeach cluster and the number of data points in each cluster.
The class conditional likelihood density for any data point in-

One conventional approach for doing statistical model selec-side the class r, that is, the standard finite mixture distribu-
tion is to use a sequence of hypothesis tests (7,10,17). Thetion (SFMD), can be obtained by writing down the joint proba-
problem in this approach, however, is the subjective judge-bility density of the xi and lik, and then summing it over all
ment in the selection of the threshold for different tests.possible outcomes of lik, as a sum of the following general
Recently there has been a great deal of interest in usingform:
information-theoretic criteria, such as Akaike information cri-
terion (AIC) (10) and minimum description length (MDL) (11)
to solve this problem. The major thrust of these approachesp(uuu|ωrωrωr) =

Kr∑
k=1

πk g(uuu|θθθ k) (7)
has been the formulation of a model-fitting procedure, in
which an optimal model is selected from the several compet-

where �k � P(�k��r) with a summation equal to one, and ing candidates, such that the selected model best fits the ob-
g(u��k) is the kernel function of the local cluster distribution. served data. For example, AIC considers the number of local
Several observations are worth reiterating: (1) all data points clusters as an adjustable parameter. While maximizing the
in a class are identically distributed from a mixture distribu- likelihood function, AIC will penalize the models that contain
tion; (2) the SFMD model uses the probability measure of too many clusters. From a quite different point of view, MDL
data memberships to the clusters in the formulation instead reformulates the problem explicitly as an information coding
of realizing the true cluster label for each data point. problem, in which the best model fit is measured, such that it

In the finite mixture distribution model, the Bayesian assigns high probabilities to the observed data, while at the
prior P(�r) in Eq. (1) is an intrinsically known parameter and same time the model itself is not too complex to describe. Dif-
can be easily estimated by P(�r) � 	N

i�1l*ir /N, since defining a ferent from AIC, the penalty term in MDL not only has a
supervised learning requires information of l*ir. Therefore, the term for number of clusters, but it also takes into account the
only uncertainty comes from class likelihood function number of observed samples (11). The drawbacks of MDL and
p(u��r), which should be the key issue in the follow-on learn- AIC are that: (a) the justifications for the optimality of these
ing process. For simplicity, in the following context, omit class two criteria, with respect to data quantification or classifica-
index r in the discussion, when only single class distribution tion, are somewhat indirect and remain unresolved (8); and
model is concerned, and use � to denote the parameter vector (b) none of these approaches have directly addressed the prob-
of regional parameter set �(�k, �k)�. lem of kernel shape learning (4).

Wang et al. (12) present another formulation of the infor-
mation-theoretic criterion, minimum conditional bias/vari-METHODS AND ALGORITHMS
ance (MCBV) criterion, to solve model selection problem. The
approach has a simple optimal appeal, in that it selects aThere are mainly two issues in the design of the finite mix-
minimum conditional bias and variance model, that is, if twoture distribution model: what is the proper statistical model
models are about equally likely, MCBV selects the one whose(i.e., number of kernels, the shape of the kernel), and how to
parameters can be estimated with the smallest variance. Theestimate the parameters in the model. These two issues will
formulation is based on the fundamental argument that thebe addressed in the following sections. The motivation of se-
value of the structural parameter cannot be arbitrary or infi-lecting the proper statistical model is driven by various objec-
nite, because such an estimate might be said to have lowtives and requirements in the real applications. For example,
‘bias,’ but the price to be paid is high ‘variance’ (13). Inspiredin the application of medical image quantification, the struc-
by the joint entropy of observations x and model parameterture of the disease patterns for a particular patient or for a
estimate �̂, the MCBV criterion is defined asparticular type of cancer may be arbitrarily complex and,

moreover, the prior knowledge on the true database structure
is generally unknown, that is, the number and the kernel
shape of the local clusters are not available beforehand. In

MCBV(K ) = − log(L (xxx |θ̂θθML)) +
K∑

k=1

H(θ̂θθkML) (8)

such cases, statistical model selection is required and particu-
larly critical in the procedure of data classification (4). Statis- where the subscript ML represents maximum likelihood and
tical model selection will be discussed in the section Statisti- K is the structual parameter indicating the number of clus-
cal Model Selection. Once the model is selected, one can apply ters. The log-likelihood �log(L (x��̂)) in the first term is the
parametric estimation technique to obtain cluster parame- conditional bias, and the entropy of the parameter estimate
ters. The section Model Parameter Estimation will describe 	K

k�1 H(�̂k) is served as the conditional variance of the model.
several estimation approaches. Sometimes the estimated pa- As both two terms represent natural estimation errors about
rameters, although they reach optimal values in the informa- their true models and should be treated on an equal basis,
tion theoretic sense, do not generate a satisfactory classifica- a minimization leads to the following characterization of the
tion result, due to the reason of insufficient training samples optimum estimation:
or the nonperfectly selected statistical model. For such cases,
the parameters in the classifier need to be further fine-tuned,
so that a better classification result and generalization perfor-

K0 = arg{ min
1≤ K≤ KMAX

MCBV(K )} (9)
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Figure 2. Original test image (K0 � 4, SNR � 10 dB) and the AIC/MDL/MCBV curves in model
selection (left to right: � � 3, 30, 300). (Courtesy: Wang et al., Data Mapping by Probabilistic
Modular Networks and Information Theoretic Criteria, IEEE Trans. Signal Processing (12)).

That is, if the cost of model variance is defined as the entropy MODEL PARAMETER ESTIMATION
of parameter estimates, the cost of adding new parameters to
the model must be balanced by the reduction they permit in As the counterpart for adaptive model selection, there are

many numerical techniques to perform ML estimation of clus-the ideal code length for the reconstruction error (the first
term). A practical MCBV formulation with code-length ex- ter parameters (8). For example, EM algorithm first calcu-

lates the posterior Bayesian probabilities of the data throughpression is further given by
the observations and the current parameter estimates (E-
step), and then updates parameter estimates using general-
ized mean ergodic theorems (M-step). The procedure cyclesMCBV(K ) = − log(L (xxx|θ̂θθML)) +

K∑
k=1

1
2

log 2πeVar(θ̂θθkML) (10)

back and forth between these two steps. The successive itera-
tions increase the likelihood of the model parameters. The fol-However, the calculation of H(�̂kML) requires the true values
lowing are the operations taken in an iteration of the EMof the model parameters that are to be estimated. It has been
algorithm for Gaussian mixture distribution: at iteration j,shown that, if the number of observations exceeds the mini-

mal value, the accuracy of the ML estimation tends quickly
(1) E-step: First compute the conditional posterior probabili-to the best possible accuracy determined by the Cramer–Rao
ties h(j)

k (t) for all clusters k in class �, using training sampleslower bounds (CRLB), as has been well studied theoretically
x(t), t � 1, . . ., N:in (3). Thus, the CRLB of the parameter estimates are used

in the actual calculation representing the ‘‘conditional’’ bias
and variance (3).

Experiments show that MCBV exhibits a very good perfor-
h( j)

k
(t) =

π( j)
k

g( j) (x(t)|ωωω,θθθk)∑
i π( j)

i
g( j) (x(t)|ωωω,θθθ i)

(12)

mance consistent with both AIC and MDL. Figure 2 depicts
the comparison of these three methods on a simulation that (2) M-step:
uses artifical data generated from four overlapping normal
components. Each component represents one local cluster.
The values for each component were set to a constant value,
the noise of normal distribution was then added to this simu-
lation digital phantom. Three noise levels with different vari-
ance were set to keep the same signal-to-noise ratio (SNR),
where SNR is defined by

SNR = 10 log10
(�µ)2

σ 2 (11)

πππ( j+1)

kkk
= (1/N)

N∑
t=1

h( j)
k

(t)

µµµ( j+1)

kkk
=
�

1
/ N∑

t=1

h( j)
k

(t)

�
N∑

t=1

h( j)
k

(t)x(t)

σσσ ( j+1)

kkk
=
�

1
/ N∑

t=1

h( j)
k

(t)

�
N∑

t=1

h( j)
k

(t)[x(t) − µµµ( j)
k

][x(t) − µµµ( j)
k

]T

(13)

where �k is the mean vector for cluster k and �2
k is the vari-where �� is the mean difference between clusters, and �2 is

the noise power. The AIC, MDL, and MCBV curves, as func- ance vector. A neural network interpretation of EM procedure
was first introduced by Perlovsky (3).tions of the number of local clusters K, are plotted in the same

figure. According to the information theoretic criteria, the EM algorithm has the advantages of guaranteed maximum
likelihood (ML) convergence and nonrequirement of learningminima of these curves indicate the correct number of the

local cluster. From this experimental figure, it is clear that rate parameter. However, as we have shown in Eqs. (12) and
(13), EM needs to store all the incoming observations to up-the number of local clusters suggested by these criteria are

all correct. For larger noise level, the model selection based date the statistical parameters. In other words, EM is prefer-
ably applied in off-line situations. An adaptive learning algo-on the MCBV criterion provides more differentiable result

than the other two criteria. rithm, called probabilistic self-organizing mixture (PSOM)
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algorithm (12) is proposed to alleviate the high memory de- where gk(x(i)) is the generalized Gaussian kernel, represent-
ing the kth local cluster’s pdf defined bymand and to change the parameters immediately after each

data point, allowing for high data rates. Like EM algorithm,
PSOM also provides winner-takes-in probability (Bayesian
‘‘soft’’) splits of the data, hence allowing the data to contribute

gk(x(i)) = αβk

2�(1/α)
exp[−|βk(x(i) − µkµkµk )|α], α > 0 (20)

simultaneously to multiple clusters. For the sake of simplic-
where �k is the mean, �( � ) is the Gamma function, and �k isity, assume the kernel shape of local cluster to be a Gaussian
a parameter related to the variance �k bywith mean �k and variance �2

k. The learning rule of PSOM is
derived from a stochastic gradient descent scheme for min-
imizing the relative entropy (the Kullback-Leibler distance)
(4,12,14), with respect to the unconstrained parameters, �k

βk = 1
σk

[
�(3/α)

�(1/α)

]1/2

(21)

and �2
k (15): given N randomly ordered training samples x(t),

t � 1, . . ., N, It has been shown that, when � � 2.0, one has the Gaussian
pdf; when � � 1.0, one has the Laplacian pdf. When � � 1,
the distribution tends to a uniform pdf; when � � 1, the pdfµµµ(t+1)

kkk
= µµµ(t)

kkk
+ a(t)(x(t + 1) − µµµ(t)

kkk
)z(t)

(t+1)k, k = 1, . . ., K
(14) becomes sharp. Therefore, the generalized Gaussian model is

a suitable model for those data whose statistical properties
are unknown,and the kernel shape can be controlled by se-

σσσ 2(t+1)

kkk
= σσσ 2(t)

kkk
+ b(t)[(x(t + 1) − µµµ(t)

kkk
)2 − σσσ 2(t)

kkk
]z(t)

(t+1)k,

k = 1, . . ., K (15) lecting different � values.

similar to the h(t) in Eq. (12), z(t)
(t�1)k is the posterior Bayesian

probability, defined by PARAMETER MODIFICATION FOR MINIMIZING
CLASSIFICATION ERRORS

From the introduction it is known that the Bayesian classifier
z(t)

(t+1)k =
πππ(t)

kkk
g(x(t + 1)|µµµ(t)

kkk
,σσσ 2(t)

kkk
)

p(x(t + 1)|θ )
(16)

is theoretically the ‘‘optimal’’ classifier, and methods to
Note that a(t) and b(t) are introduced as the learning rates, achieve it have been discussed in the previous two sections.

two sequences converging to zero, ensuring unbiased esti- However, in many practical situations, the achieved classifi-
mates after convergence. The idea behind this update rule is ers may perform worse than expected. Two reasons may cause
motivated by the principle that every weight of a network such disappointment: (1) the final statistical model chosen is
should be given its own learning rate and that these learning not the same as the true object probability model, and (2) the
rates should be allowed to vary over time (15). Based on gen- number of training samples is not large enough to form suffi-
eralized mean ergodic theorem (16), updates can also be ob- cient statistics. In order to solve this problem, Lin et al. (5)
tained for the constrained regularization parameters, �k, in propose a modular network called Probabilistic Decision
the SFMD model. For simplicity, given an asymptotically con- Based Neural Network (PDBNN). PDBNN uses the logarithm
vergent sequence, the corresponding mean ergodic theorem, of the likelihood density function p(x��) as the discriminant
that is, the recursive version of the sample mean calculation, function for object class �:
should hold asymptotically (8). From the M-step of EM algo-
rithm, one can write,

φ(x,w) = log p(x|ω) = log

[∑
k

πkπkπk g(x|θk)

]
(22)

πππ(t+1)

kkk
=

t+1∑
i=1

1
t + 1

z(t)
ik = t

t + 1

t∑
i=1

1
t

z(t)
ik + 1

t + 1
z(t)

(t+1)k (17)
where

Then, define the interim estimate of �k by: w ≡ {µkµkµk,σkσkσk,πkπkπk, T} (23)

and T is the threshold of the subnet.πππ(t+1)

kkk
= t

t + 1
πππ(t)

kkk
+ 1

t + 1
z(t)

(t+1)k (18)

Decision-based learning algorithm fine-tunes the decision
boundaries formed by those Bayesian posterior probabilitiesHence the updates given by Eqs. (14), (15), and (18) provide
for different object classes.the incremental procedure for computing the SFMD compo-

Unlike most ML estimation techniques, which estimate pa-nent parameters. Their practical use, however, requires
rameters for class �j by using the training samples belongingstrongly mixing condition (data randomization) and a de-
to �j only, decision-based learning algorithm utilizes ‘‘useful’’caying annealing procedure (learning rate decay). These two
samples from all the object classes to do reinforced and anti-steps are currently controlled by user-defined parameters,
reinforced learning. Given a set of training patterns X �which may not be optimized for a specific case. Therefore, al-
�x(t); t � 1, 2, . . ., M�. The set X is further divided into thegorithm initialization must be chosen carefully and appropri-
‘‘positive training set’’ X� � �x(t); x(t) � �, t � 1, 2, . . ., N�ately. In addition, the data distribution for each class can also
and the ‘‘negative training set’’ X� � �x(t); x(t) 	 �, t � N �be modeled by a finite generalized Gaussian mixture (FGGM)
1, N � 2, . . ., M�. Define an energy functiongiven by (17):

E =
M∑

t=1

l(d(t)) (24)fr(x(i)) =
Kr∑

k=1

πkπkπk gk(xxx(i)) (19)
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optimal, it is believed to lead to better classification results,
in general. For example, significant improvement in classifi-
cation result (e.g., recognition rate from 70% to 90%) contrib-
uted by the fine-tuning process is observed in the face-recog-
nition experiment in (5).

APPLICATION EXAMPLE: FACE RECOGNITION

In the final section of this article, a face-recognition system is
used as an example, showing how a hypothesis-testing
scheme can be implemented in real applications. A PDBNN-
based face-recognition system (5) is developed under a collab-

3

2.5

2

1.5

1

0.5

0
–1 0 0.5 1 1.5 2 2.5 3– 0.5

oration between Siemens Corporate Research, Princeton, and
Figure 3. The difference between the penalty functions of a hard- Princeton University. The total system diagram is depicted in
decision DBNN (solid line) and a fuzzy-decision neural network

Fig. 4. All four main modules—face detector, eye localizer,(dashed line).
feature extractor, and face recognizer, are implemented on a
Sun Sparc10 workstation. An RS-170 format camera, with a
16 mm, F1.6 lens is used to acquire image sequences. The

where S1V digitizer board digitizes the incoming image stream into
640 � 480 8-bit gray-scale images, and stores them into the
frame buffer. The image acquisition rate is on the order of 4
to 6 frames per second. The acquired images are then down-

d(t) =
{

T − φ(x(t),w) if x(t) ∈ X+

φ(x(t),w) − T if x(t) ∈ X− (25)

sized to 320 � 240 for the following processing.
The discriminant function �(x(t), w) is defined in Eq. 22. T is As shown in Fig. 4, the processing modules are executed
the threshold value. The penalty function l can be either a sequentially. A module will be activated only when the incom-
piecewise linear function ing pattern passes the preceding module (with an agreeable

confidence). After a scene is obtained by the image-acquisition
system, a quick detection algorithm based on binary template
matching is applied, to detect the presence of a proper sizedl(d) =

{
ζd if d ≥ 0

0 if d < 0
(26)

moving object. A PDBNN face detector is then activated to
determine whether there is a human face. If positive, awhere � is a positive constant, or a sigmoidal function
PDBNN eye localizer is activated to locate both eyes. A sub-
image (approx. 140 � 100) corresponding to the face region
will then be extracted. Finally, the feature vector is fed intol(d) = 1

1 + e−d/ξ
(27)

a PDBNN face recognizer for recognition and subsequent veri-
fication.Figure 3 depicts these two possible penalty functions. The re-

The face detector, the eye localizer, and the face recognizerinforced and anti-reinforced learning rules for the network
adopt the hypothesis-testing scheme. Face detection and eyeare the following:
localization are basically two-state classification problems. If
the input pattern is a face or eye, it will be classified as the
face or eye class (�1), otherwise it is a non-face or non-eye
pattern (�0). Face recognition is M-state or M�1-state classi-

Reinforced Learning: w( j+1) = w( j) + ηl ′(d(t))∇φ(x(t),w)

Antireinforced Learning: w( j+1) = w( j) − ηl ′(d(t))∇φ(x(t),w)

(28)
fication problem. It is an M-state problem if the task is to
recognize one person in an M-people database. It is an M�1-The gradient vectors in Eq. (28) can be computed in the simi-

lar fashion as what was done in PSOM. If the misclassified state problem if the task is not only to recognize one out of M
people, but also to reject persons who are not in the databasetraining pattern is from the positive training set, reinforced

learning will be applied. If the training pattern belongs to the (the ‘‘unknown’’ class). PDBNN is observed to have special
advantage in the M�1-state problem, because it adopts log-so-called negative training set, then only the anti-reinforced

learning rule will be executed—since there is no ‘‘correct’’ likelihood as its discriminant function. Interested readers
should consult (5).class to be reinforced.

Note that, since the linear penalty function imposes too The system built upon the proposed has been demon-
strated to be applicable under reasonable variations of orien-excessive a penalty for patterns with large margins of error,

the network learning may be deteriorated by outlier patterns. tation and/or lighting, and with possibility of eyeglasses. This
method has been shown to be very robust against large varia-In contrast, the sigmoidal function treats the errors with

equal penalty, once the magnitude of error exceeds a certain tion of face features, eye shapes, and cluttered background
(5). The algorithm takes only 200 ms to find human faces inthreshold. This soft decision-making leads asymptotically to a

minimum error classification (18). However, the proper an image with 320 � 240 pixels on a Sun Sparc10 worksta-
tion. For a facial image with 320 � 240 pixels, the algorithmthreshold value � is different from application to application,

so it must be carefully selected. Also note that, although the takes 500 ms to locate two eyes. In the face-recognition stage,
the computation time is linearly proportional to the numberfine-tuning of the decision boundaries may cause the probabil-

ity estimation of an individual object class to be less than of persons in the database. For a 200-person database, it
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Figure 4. System configuration of the
face-recognition system. The face-recogni-
tion system acquires images from a video
camera. The face detector determines if
there are faces inside images. The eye lo-
calizer indicates the exact positions of
both eyes. It then passes their coordinates
to the facial feature extractor, to extract
low-resolution facial features as input by
face recognizer.
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