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ity, defined as the probability that an item (system, compo-
nent, part, etc.) performs its specified function. Formally,

Reliability = R = Prob (system functions as specified)

Being a probability, the value of R satisfies the condition 0 �
R � 1. Sometimes R is estimated directly based on data and/
or other available information, but often its value is deter-
mined indirectly through a function that represents a mathe-
matical, logical, or physical model. Such models are typically
written as a function of a set of parameters �:

R = f (�)

Whether directly estimated or developed as a function of
other parameters, estimation of R involves assessing un-
known quantities using relevant information, such as data
from field operation, tests, or engineering analysis and judg-
ment. Bayesian reliability refers to a set of probabilistic and
statistical concepts and methods that are used to estimate the
reliability function and its parameters by using available in-
formation. This article describes some of the basic principles
of Bayesian statistical inference and their relationship to re-
liability. Several examples show how these principles are ap-
plied to typical reliability estimation problems. Further read-
ing on the subject can be found in Refs. 1, 2, and 3, among
a vast literature on reliability applications of Bayesian
methods.

AN INTRODUCTION TO BAYESIAN STATISTICS

Meaning of Probability

There are two schools of thought regarding the meaning, and
consequently the application, of probability: (1) frequentist
and (2) subjectivist. These are also known as the classical and
Bayesian schools, respectively. According to the frequentist
or classical interpretation, probability is the limiting relative
frequency of occurrence of an event when the experiment or
trial, in which the event in question is an outcome, is re-
peated a large number of times. Formally, the probability of
event E is given by

Pr(E) = lim
N→∞

NE

N

where NE is the total number of times that event E occurs,
NE is the total number of trials in which E does not occur,
N � NE � NE is the total number of trials, and Pr(E) is the
limiting ratio if such limit exists.

According to the subjectivist (Bayesian) school, probability
is the degree of confidence in the truth of a proposition. A
proposition is a statement which can, in principle, be proven
true or false. For example the statements, ‘‘It will rain tomor-BAYESIAN INFERENCE IN RELIABILITY
row’’ and ‘‘2 � 2 � 4’’ are both valid propositions subject to
verification by observation, logical reasoning, or experimentalTHE RELATIONSHIP BETWEEN

RELIABILITY AND PROBABILITY or theoretical verification. On the other hand, the statement
‘‘It may rain tomorrow’’ is not a proposition because its truth

Reliability engineering as a technical discipline is concerned or falsehood can never be shown. In general, a proposition is
a statement with a yes or no answer. The degree of confidencewith ensuring that systems perform their function success-

fully. It aims at identifying failures, determining their causes, is a measure of personal belief or an indication of how much
one knows about the proposition or event in question. Asand assessing their probabilities. Therefore, one of the major

topics in reliability deals with assessing the level of reliabil- such, it is subjective and personal. It is a measure of uncer-
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tainty (or certainty) and thus a representation of a state of EXAMPLE. Transistors used by a company are supplied by
three suppliers M1, M2, and M3. The quantities supplied bymind and not the outside world. However, such a measure is

objective in the sense that it encodes an objective state of a each supplier and the corresponding fraction of defective tran-
sistors are as follows:person’s mind and represents a degree of knowledge.

According to the subjectivist school, probability as an ob-
M1 produces 20% of the supply with a defective rate of 0.01,jective entity outside our minds does not exist. However, any
M2 produces 30% of the supply with a defective rate of 0.02,two individuals with the same totality of knowledge, informa-

andtion, and biases will assign the same probability value to the
M3 produces 50% of the supply with a defective rate of 0.05,truth of a proposition. The only requirement is coherence,

that is, one’s subjective probability of an event must be con-
If a transistor is randomly selected from the supply and issistent with one’s body of knowledge and must obey the calcu-

defective, what is the probability that it has been suppliedlus of probability, that is, it must satisfy the axioms of the
by Mi?theory of probability.

To answer this question we use Bayes’s theorem as follows:Bayes’s Theorem

A simple but extremely powerful relationship known as
Bayes’s theorem (4) is developed on the basis of the notion of Pr(Mi|D) = Pr(D|Mi)Pr(Mi)

Pr(D)
i = 1, 2, 3

conditional probability:
where Pr(D) � �3

i�1 Pr(D�Mi)Pr(Mi), where Pr(Mi) is the prior
probability that a randomly selected transistor is supplied by
supplier i. Based on the information provided, Pr(M1) � 0.2,

Pr(A|E) = Pr(E|A)Pr(A)

Pr(E)

Pr(M2) � 0.3, and Pr(M3) � 0.5.
Pr(D�Mi) is the probability that a randomly selected tran-Pr(A�E) is the posterior probability of A given evidence that

sistor is defective when it is known that it is supplied by Mi.event E has occurred, and Pr(E�A)/Pr(E) is the relative likeli-
The data provided give Pr(D�M1) � 0.01, Pr(D�M2) � 0.02,hood of the evidence (or occurrence of event E) assuming the

and Pr(D�M3) � 0.05. Therefore,occurrence of A, and Pr(A) is the prior probability of event A.
In this formulation Pr(E) � Pr(E�A)Pr(A) � Pr(E�A)Pr(A).

Interpreted in the language of a subjectivist, Pr(A�E) is the
posterior or ‘‘updated’’ degree of confidence in the occurrence
of A knowing that E has occurred, that is, the degree to which

Pr(D) = Pr(D|M1)Pr(M1) + Pr(D|M2)Pr(M2)

+ Pr(D|M3)Pr(M3)

= (0.01)(0.2)+ (0.02)(0.3)+ (0.05)(0.5) = 0.033
one believes that A is true when proposition E is true. In this
context Pr(A) is the degree of confidence prior to receiving or Thus according to Bayes’s theorem,
incorporating evidence E (proposition E is true). Therefore,
Bayes’s theorem provides the mechanism for updating one’s
degree of knowledge about a proposition (e.g., occurrence of

Pr(M1|D) = (0.01)(0.2)

(0.033)
= 0.061

an event) in the light of new evidence.
Similarly

Updating Probability Distributions

The current state of knowledge or degree of belief about an Pr(M2|D) = (0.02)(0.3)

(0.033)
= 0.182

unknown quantity X represented by a probability distribution
may change in light of new evidence E. Bayes’s theorem is and
used to obtain the ‘‘updated’’ or posterior state of knowledge,
given the new information. Pr(M3|D) = (0.05)(0.5)

(0.033)
= 0.757

Updating Discrete Probability Distributions. If the prior dis-
Note that Pr(M1�D) � Pr(M2�D) � Pr(M3�D) � 1, as expected.crete probability distribution of an unknown quantity X is

Pr0(xi) for i � 1, . . ., m, then the posterior probability distri-
Updating a Continuous Probability Distribution. The priorbution, given evidence E, is obtained from

probability distribution of a continuous unknown quantity
Pr0(x) can be updated to incorporate new evidence E as fol-
lows:Pr(xi|E) = Pr(xi|E)Pr0(xi)

Pr(E)
where i = 1, . . ., m

and Pr(E�xi) is the likelihood of the evidence when the random Pr(x|E) = 1
k

L(E|x)Pr0(x)

variable takes the value xi. The quantity
where Pr(x�E) is the posterior or updated probability distribu-
tion of the unknown quantity X, given evidence E, L(E�x) is
the probability of the evidence assuming the value of the un-

Pr(E) =
m∑

i=1

Pr(E|xi)Pr0(xi)

known quantity is x, and
is the total probability of E based on the prior distribution
of X. k = ∫

L(E|x)Pr0(x) dx



252 BAYESIAN INFERENCE IN RELIABILITY

EXAMPLE. A reliability engineer’s initial assessment of the Depending on the prior information, our assessment of the
value of p varies. Note that 0 � p � 1. Our state of knowledge,range of possible values of the failure rate of a component � is

summarized in form of the following probability distribution: or degree of belief, or uncertainty, is represented by our prob-
ability distribution �(p) on possible values of p. Some possible
situations are illustrated in the following:Pr0(λ) = (2000)2λe−2000λ 0 ≤ λ ≤ ∞

The component is operated for 10,000 h during which it fails 1. If we believe that the coin is fair, then Pr(H) � Pr(T) �
once: 0.5 with 1 (or 100%) as the level of confidence in p � .5

[see Fig. 1(a)].
E = {1 failure in 10,000 hg 2. If someone tells us that the coin is very likely (but not

certain) to be fair, then our prior distribution of p may
look like the curve shown in Fig. 1(b).

To see how this new data changes the reliability engineer’s
3. If on the other hand, we are told that the coin is biasedestimate of �, we use Bayes’s theorem as follows:

(same face on both sides) without being told about the
direction of bias, our prior distribution would look more
like Fig. 1(c). In other words Pr(H) � 1, if both sidesPr(λ|E) = L(λ|E)Pr0(λ)

L(E)
are H. When both sides are T, then Pr(H) � 0. We note
that the expected value of p in this case is p � .05(0) �A logical model for the likelihood function L(E��) in this case
.05(1) � .05.is the Poisson distribution:

4. If we are told that the coin is most likely biased (mean-
ing that there is some likelihood that it is not biased),L(1 failure in 10,000 h|λ) = (10,000)λe−(10,000)λ

then a possible form of the prior distribution of p is
what is shown in Fig. 1(d).Using this likelihood function and the prior distribution, the

quantity L(E) in the denominator of Bayes’s theorem is calcu- 5. If we do not know anything about the coin, we probably
lated as follows: assign a flat (equal likelihood, or noninformative) prior

distribution to express our opinion about likely values
of p, as shown in Fig. 1(e).

6. Finally, with perfect information, we would assign a �-
function centered about p � p0 [see Fig. 1(f)]. As we will
see later, this should be the long-term frequency of

L(E) =
∫ ∞

0
L(E|λ)Pr0(λ) dλ

=
∫ ∞

0
(4 × 1010)λ2e−12,000λ = 0.0463

heads in a very large number of trials.
The resulting posterior distribution using Bayes’s theorem is
given by

Pr(λ|1 failure in 10,000 h) = (12,000)3λ2

2
e−12,000λ

The mean value of this distribution is � � (3/12,000) �
0.00025 failure/h, compared with the mean value of the prior
distribution at � � (2/2,000) � 0.001 failure/h.

APPLYING BAYESIAN THINKING
IN PROBABILISTIC INFERENCE

A number of useful concepts and implications of the Bayesian
way of addressing probabilistic situations are demonstrated
by the following example.

Suppose that one is interested in assessing the probability
of heads H in a specific trial of a coin flipping experiment
when the result of a recent experiment with the coin in ques-
tion shows 5 heads in 20 trials. The answer to this question
can be developed step-by-step and through answers to several
more fundamental questions:

What is the Quantity of Interest? The quantity of interest is
the probability of heads in a specific case of flipping a specific
coin. There are two possible outcomes: X � �H, T�. The corre-
sponding probabilities are Pr(H) and Pr(T). Let us assume

(a) (b)

(c) (d)

(e) (f)
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that Pr(H) � p. Clearly, to be coherent, we must have
Pr(T) � 1 	 p. The quantity p is our degree of belief about Figure 1. Different prior distributions repressing different states of

knowledge.the event X � H.
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In all these cases [(1) through (6)] the mean value of p is the
same (.5), but the difference is in the uncertainty distribution
representing different states of knowledge.

What is the Evidence? Other than our prior information, we
are using the fact that in 20 trials of the coin we have ob-
served five heads. The evidence is, therefore, E � �5 heads in
20 trials�. To state the problem more generally, let us assume
that the evidence is E � �NH in N trials� where N � NH �

π (p|n3)

< n1 < n2 < n3

π (p|n2)

π (p|n1)

0 1
p

NT, where NH and NT are the number of cases where the out-
Figure 2. The effect of data strength (sample size) on the spread of

come is heads or tails, respectively. posterior distribution.

How Can the Evidence Be Used to Update Our State of Knowl-
edge? To answer this, we use Bayes’s theorem:

p =
∫ 1

0
pπ( p|E)dpπ(p|E) = L(E|p)π0(p)∫

L(E|p)π0(p) dp

where �(p�E) is the posterior updated distribution of p, given 4. Variance of the posterior distribution is given by
evidence E, L(E�p) is the likelihood function or probability of
observing evidence E, given p, and �0(p) is the prior probabil-
ity distribution of p. var( p) = (NH + 1)(N − NH + 1)

(N + 2)2(N + 3)We note that according to classical statistics, p � limN��

(NH/N), and a ‘‘point estimate’’ for p (for limited values of N)
is given by p̂ � (NH/N). As we can see, as N � �, var(p) � 0. This is shown

graphically in Fig. 2 for three different values of N.
What Is the Form of the Likelihood? The likelihood L(E�p) is 5. By keeping NH/N constant and increasing N, we can see

the probability of observing NH heads in N trials, if p is the that
probability of observing H in any given trial. The total proba-
bility of all sequences of outcomes involving NH heads and
NT tails is given by the binomial distribution (1): lim

N→∞
π( p|E) → δ( p − φ∞)

whereL(E|p) = Pr(NH|N, p) =
[

N
NH

]
pNH (1 − p)N−NH

What Is Our New State of Knowledge Regarding p, Given the
φ∞ = lim

N→∞
NH

N
Evidence? Let us start with the assumption that before the
experiment we had no information about the characteristics Therefore, by increasing the number of trials N, uncertainty
of the coin, that is, our prior distribution of p is flat, i.e., is decreased. Because the spread of distribution reflects our
�0(p) � C � constant. Since the prior distribution is constant, uncertainty about the value of the unknown quantity, a delta

function represents ‘‘perfect knowledge.’’ In this case the re-
sults tell us that our estimate of p should be 
�, that is, inπ( p|E) = L(E|p)(C)∫

L(E|p)(C)dp
= Pr(NH|N, p)∫

Pr(NH|N, p) dp the limit of overwhelmingly strong evidence, the limiting fre-
quency 
�, is the probability of the event H assessed by a

The resulting posterior distribution is given by coherent assessor of probabilities. This establishes the link
between the frequentist (classical) and subjectivist (Bayesian)
interpretations of probability.π( p|NH, N) = (N + 1)!

(NH + 1)!(N − NH)!
pNH (1 − p)N−NH

Some Observations about the Results. CONJUGATE PRIORS

1. The form of the posterior density is different depending There are a number parametric families of distributions
on the values of NH and N. which, when used as priors and in conjunction with a particu-

2. The mode or most likely value of p is determined by lar type of likelihood function in Bayes’s theorem, result in a
maximizing �(p) with respect to p, resulting in p̂ � posterior distribution from the same family. For such distri-
NH/N. butions the parameters of the resulting posterior are simple

functions of the parameters of the prior distribution and the3. The average or expected value is the value which the
likelihood function. Consequently the computations in Bayes’sassessor expects to see, considering all uncertainties in

an aggregated way, and is given by theorem are simplified. These distributions are called conju-
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Table 3. Some Characteristics of Prior and Posterior
Distributions for the Homogeneous Data Example

5th Percentile Mean 95th Percentile

Prior 0.00235 0.0132 0.0311
Posterior 0.000785 0.00150 0.00240

Table 1. Conjugate Distributions

Prior Distribution Likelihood Function Posterior Distribution

Beta Binomial Beta
Gamma Poisson Gamma
Normal Normal Normal
Lognormal Lognormal Lognormal

gate. Most commonly used conjugate distributions are listed
in Table 1. p0 = a0

a0 + b0
= 2

150 + 2
= 0.0132 failure/start

The conjugate properties of some of these distributions are
used in the following sections. Because the components are assumed to have the same fail-

ure rate (homogeneous population), the data from various
tests can be pooled. Therefore the evidence isEXAMPLES OF APPLICATION OF BAYESIAN

METHODS IN RELIABILITY

Treatment of Data from Homogeneous Populations

By a homogeneous population we mean identical with respect
to the characteristic of interest. For instance, if all members

k = Total number of failures =
5∑

i=1

ki = 7

N = Total number of tests =
5∑

i=1

Ni = 5850

of a population of components have the same failure rate, the
population is regarded as homogeneous in failure rate. One Now this data can be used in Bayes’s theorem to obtain the
can perform a sequential updating in which data from one posterior state-of-knowledge distribution of p. Using the bino-
subset of the population are used to update the state of mial distribution as the likelihood function, we can benefit
knowledge obtained based on data from another subset of the from the simplicity of a conjugate beta prior and obtain a beta
population. This process continues until data from all subpop- posterior distribution B(p�a, b) with parameters
ulations are incorporated into the state-of-knowledge distri-
bution on the quantity of interest. By contrast, the data from a = a0 + k = 2 + 7 = 9
all subpopulations can be added together and used in one ap-
plication of Bayes’s theorem to obtain the posterior state of and
knowledge representing the cumulative information. The two
results are identical provided that the data represent the b = b0 + N − k = 150 + 5850 − 7 = 5993
same characteristics of subpopulations of a homogeneous pop-
ulation. The posterior mean is given by

EXAMPLE. Consider the case where 50 identical engines are
tested by five independent laboratories. The test results are

p = a
a + b

= 9
9 + 5993

= 0.0015 failures/engine start

summarized in Table 2.
The main characteristics of both the prior and posterior prob-
ability distributions are shown in Table 3.Assume that all components tested have the same failure

Note that by adding more data from subpopulations or byrate. To estimate this rate, we start with a prior distribution
increasing the number of subpopulations, the posterior distri-that expresses our initial state of knowledge based on infor-
bution becomes narrower and centered about the pointmation other than the test data. Let this prior be a beta dis-

tribution with parameters a0 � 2 and b0 � 150:

pt = k
NPrior : B( p|a0 = 2, b0 = 150)

That is, by assuming that all data are relevant and that therewhere p is the probability of failures per test. We note that
is one underlying parameter pt (the true, but unknown proba-the mean of p is given as
bility of failure), which is the same for each of the components
in the population, the spread of the posterior distribution de-
creases as the amount of data (ki’s and Ni’s) increase. In the
limit, the true value of p (i.e., pt) becomes known because the
posterior distribution becomes a �-function about pt. Again
this is true only for homogeneous populations.

Treatment of Data from Nonhomogeneous Populations

Basic Definitions and Concepts. Often, because of several
reasons such as environmental factors, design differences,
and operational variations, the components or systems in dif-

Table 2. Summary of Engine Tests

Engines Engine Starts Number of Failures
Lab. tested (Ni) (ki)

1 10 1000 2
2 2 250 1
3 20 3000 1
4 10 600 2
5 8 1000 1
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Again the location of pi’s and the magnitude of the corre-
sponding probabilities are dictated by the reliability charac-
teristics and the size of the subpopulations. As such, this
probability distribution is real and in principle measurable,
that is, by knowing the exact values of pi’s and the fraction of
components in each subpopulation, everything will be known
about this distribution, which we call the population variabil-
ity distribution.

Given the previous population variability distribution, the
expected value of the failure probability of an engine selected

Table 4. Assumed True Failure Probabilities for the
Nonhomogeneous Data Example

Subpopulation Fraction of Engines in True Probability of
(i) Subpopulation (%) Failure to Start (pi)

1 20 0.001 /start
2 4 0.008 /start
3 40 0.0003/start
4 20 0.002 /start
5 16 0.0006/start

at random from these engines is given by

ferent subpopulations exhibit different reliability characteris- p =
5∑

i=1

piP( pi) = 0.00114 failure/start

tics, that is, they may have different failure modes, failure
rates, and repair times. The most probable value of p is 0.0003 because the corre-

In such cases, it is not realistic to assume that all members sponding probability, .4, is the highest among the five proba-
of a population composed of different subpopulations have the bilities.
same reliability parameters. In other words, when the popula- Now consider the case where only estimates, and not the
tion at hand is nonhomogeneous, a given reliability parame- exact values, of failures frequencies are available for some but
ter, for example, failure rate, will have an inherent variabil- not all of the subpopulations involved. For instance the data-
ity, that is, the failure rate is inherently different for one base in the engine example here gives us limited number of
subpopulation compared with others. This is called popula- failures in limited number of tests from each of the labora-
tion variability of the failure rate (or any other reliability pa- tories. Consequently we can obtain only an estimate of the
rameters of interest). subpopulation failure probabilities. For instance, in the case

In the previous example if we assume the existence of a of subpopulation 1, this estimate based on the maximum like-
population variability among the five subpopulations tested lihood method is
by different laboratories, then instead of one failure probabil-
ity we would need to estimate five different failure probabili-
ties, each corresponding to one subpopulation. We note that p̂1 = k1

N1
= 2

1000
= 0.002/start

no amount of information eliminates this variability. It
changes only if the actual reliability characteristics of the en- which is different from the true value (assumed to be 0.001)
gines change. for p1. With this limited state of knowledge, obviously we can-

To help better understand the meaning and implications not know the exact form of the population variability distribu-
of population variability, let us assume that the failure proba- tion. The question is how this more limited information can
bilities of each of the five subpopulations in this example is be used to estimate the population variability distribution.
perfectly known with no uncertainty. Let these probabilities We demonstrate the method through an example.
be values shown in Table 4.

In other words if we select an engine at random from this Application to Failure Rate Estimation. Consider the case
population, its failure rate is one of the tabular values. The where the following data are available about the performance
probability that its failure rate is pi is, of course, the fraction of a particular type of component E � �(ki, Ti), i � 1, . . ., N�
of engines that have that failure rate, which is the fraction of where ki � number of failures in subpopulation i, Ti � total
all engines in the ith subpopulation. number of hours of operation in subpopulation i, and N �

Consequently, for the failure rate of a randomly selected number of subpopulations.
engine from this nonhomogeneous population, we have the Each (ki, Ti) pair represents the experience of a subpopula-
probability distribution shown in Fig. 3. tion. It is important to note that the subpopulations are not

necessarily different. The objective is to find 
(�), the popula-
tion variability distribution of �, the failure rate.

To simplify matters we assume that 
(�) is a member of a
parametric family of distributions, such as beta, gamma, or
lognormal. Let � � ��1, �2, . . ., �m� be the set of m parameters
of 
(�), that is, 
(�) � 
(���).

For example, for normal distribution, � � ��, �� and

φ(λ) = φ(λ|µ, σ ) = 1√
2πσ

e− 1
2

�
λ−µ

σ

�2

Uncertainty distribution (state of knowledge) over the space
of 
 ’s is the same as uncertainty distribution over values ofp2 = 0.0003 p1 = 0.0006 p1 = 0.003 p4 = 0.002 p5 = 0.0008

p

�
�
�
�
�
�
�
�
�

0.4

0.2

0.04

P
r(

p
)

�. For each value of � a unique 
(���) exists and vice versa.
Now our goal of estimating 
(�) is reduced to that of estimat-Figure 3. Example. Population variability distribution of failure

probability. ing �. Given the information available, E, and a prior distribu-
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tion on �, we can use Bayes’s theorem to find our state-of- However, � is not known. All we know is that � is one of many
knowledge probability distribution over �: possible values represented by 
(���). Therefore we can find

the probability of the data unconditional on the (unknown)
value of �. This is done by averaging the likelihood over all
possible values of �:

π(θ |E) = L(E|θ )π0(θ )∫
θ1

∫
θ2

· · · ∫
θm

L(E|θ )π0(θ ) dθ

where �0(�) � prior distribution of �, and �(��E) � posterior
distribution of �, given evidence E. We note that �(��E) is an

L(ki, T|θ ) =
∫ ∞

0
L(ki, Ti|λ)φ(λ|θi) dλ

n-dimensional joint probability distribution over values of �1,
�2, . . ., �n., and L(E��) � likelihood of evidence E, given �. or

Once this distribution is determined, we can obtain various
estimates for 
(�). For instance, the expected (average) distri-
bution is given by L(ki, Ti|θ ) =

∫ ∞

0

(λTi)
ki

ki!
e−λTi φ(λ|θi) dλ

Note that now the likelihood becomes conditional on �. This
φ(λ) =

∫
θ1

· · ·
∫

θm

(λ|θ1, θ2, . . ., θm)π(λ|θ1, θ2, . . ., θm|E) dθ

is in fact the desired form of the likelihood for use in Bayes’s
theorem for estimating �.The expected value of � is obtained from

Depending on the parametric family chosen to represent

(���), the integration in the previous equation can be carried
out either analytically or by numerical methods.E(θ ) =

∫
θ1

· · ·
∫

θm

θπ(θ |E) dθ

For example, if 
(���) is a gamma distribution with param-
eters � � ��, ��, that is, if

Using the expected value of � as the set of parameters of 

gives us another ‘‘point estimate’’ of 
, that is, 
[��E(�)], is
the distribution with mean value parameters. We note that φ(λ|α,β) = βα


(α)
λα−1e−βλ


(�) � 
[��E(�)].
Similarly the most likely distribution is obtained by finding

thenthe values of �1, �2, . . ., �m such that �(�1, �2, . . ., �m�E) is
maximized:

∂π(θ1, θ2, θ3, . . ., θm|E)

∂θi

∣∣∣∣
θi=θ̂i

= 0 where i = 1,2, . . .,m

Then the ‘‘most likely’’ distribution is that member of the
parametric family 
(���1, �2, . . ., �m) for which �1 � �̂1, �2 �

L(ki, Ti|θ ) = L(ki, Ti|α, β)

=
∫ ∞

0

(λTi )
ki

ki!
eλTi

λα−1


(α)
e−βλβα dλ

=
Tki

i

ki!
βα


(α)


(α + ki)

(β + Ti )
α+ki

�̂2, . . ., �m � �̂m.
Note that the likelihood function L(E��) is the probability The joint or total likelihood is given by

of observing the data E, given that the set of the parameters
of the population variability distribution is �. Now we assume
that the data from the individual subpopulations are indepen-
dent, that is, the process of generating the data in one sub-
population is not influenced by the process in another subpop-

L{(ki, Ti ), i = 1, . . ., N|α,β} =
∏

L(ki, Ti|α, β)

= βα

[
(α)]N

N∏
i=1

Tki
i

ki!

(α + ki)

(β + Ti )
α+ki

ulation. Therefore, the elements of E � �E1, E2, . . ., EN�,
defined as Ei � �ki, Ti� are independent events. In this case
the likelihood function can be written as the product of sub-
population likelihoods:

L(E|θ ) =
N∏

i=1

L(Ei|θ )

L[(ki|Ti ), i = 1, . . ., N|θ] =
N∏

i=1

L(ki, Ti|θ )

If the failure rate �i for the ith subpopulation is known ex-
actly, say �i � �, then using the Poisson model, the likelihood
of observing ki failures in Ti units of time can be calculated
from

P(ki = Ti|λ) = (λTi)
ki

ki!
e−λTi

Table 5. Simulated Failure Data Using a Gamma
Distribution as the Population of Underlying Failure Rates

Sample Failure Data

Time Failures Time Failure

1000 130 10 1
1000 311 1000 107
100 22 100 27

10 2 100 41
100 13 1000 163

1000 110 10000 1653
100 22 100 13
100 24 100 37

10 2 1000 170
10 1 100 14
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Figure 4. Posterior joint probability density
function for the unknown gamma distribu-
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tion parameters.

Now we can use this likelihood in Bayes’s theorem to find the fact computational complexity in the past was one of the main
reasons for relatively limited use of Bayesian methods in re-joint distribution of � and �:
liability. However, recent advances in computer technology
have removed some of the practical barriers, and the past few
years have witnessed a significant rise in interest in Bayesian
methods among design and reliability engineers.

π(αβ|{ki, Ti}, i = 1, . . ., N)

= L({ki, Ti}, i = 1, . . ., N|α, β)π0(α, β)∫
α

∫
β

L({ki, Ti}, i = 1, . . ., N|α, β)π0(α, β) dβ dα

which is a two-dimensional probability distribution over � BIBLIOGRAPHY
and �.

The expected distribution is obtained as follows: 1. H. F. Martz and R. A. Waller, Bayesian Reliability Analysis, New
York: Wiley, 1982.

2. S. French and J. Q. Smith (eds.), The Practice of Bayesian Analysis,π(λ|E) =
∫

α

∫
β

π(α, β| {ki, Ti

}
, i = 1, · · · , N)φ(λ|α, β) dα dβ

London: Arnold, 1997.
3. J. M. Bernardo and A. F. M. Smith, Bayesian Theory, New York:Table 5 lists the data used to illustrate the technique. The

Wiley, 1994.
data were generated by Monte Carlo sampling from a gamma

4. T. Bayes, Essay Towards Solving a Problem in the Doctrine ofdistribution as the population variability. Figure 4 shows
Change, Biometrika, 45: 298–315, 1964.

plots of the posterior distribution of parameters, and Fig. 5
shows the resulting expected posterior population variability ALI MOSLEH
pdf compared with the theoretical (correct) population vari- University of Maryland
ability distribution (i.e., the original gamma distribution).

It is evident that computational aspects of using Bayes’s
theorem in many practical situations are quite involved. In
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Figure 5. Population variability pdf for example application.


