
444 RELIABILITY VIA DESIGNED EXPERIMENTS

creases and the differences between experimental results
grow relatively smaller.

One area in which statistical design of experiments is im-
portant is in the design of experiments for reliability. For in-
stance, in a complex manufacturing process, such as that
used in the production of very large scale integration (VLSI)
components, we wish to know how measurable characteristics
of the manufacturing process affect the reliability of the prod-
uct. We can determine these effects by taking periodic sam-
ples of the product and experimentally determining their ex-
pected lifetimes. Because of the high precision required in
measuring a complicated manufacturing process as well as
determining the success or failure of a complex item, such as
a VLSI circuit, it is important to design the experiment so as
to properly take into account all factors affecting an item’s
reliability as well as to accurately and precisely measure the
effects of the factors.

RELIABILITY THEORY OVERVIEW

Reliability is the probability that a system will operate with-
out failure for a specified period of time (the design life) in a
specified environment (e.g., ambient temperature, power sup-
ply voltage, energetic particle flux). This is simply the cumu-
lative probability distribution (CDF) of success. We may con-
sider reliability to be a measure of the system’s success in
performing its intended function. For example, suppose that
1000 identical electronic parts are tested in the environment
in which they are expected to operate. During an interval of
time (t � �t, t), we observe that 97 of the original 1000 compo-
nents have failed. Since reliability is the CDF of success, the
reliability at time t, R(t), is

R(t) = number of components surviving at time t
total number of components under test

= 903
1000

= 0.903
(1)

If t is a random variable denoting the time to failure, a sys-
tem’s reliability function at time t is given by

R(t) = P(t > t) (2)

The CDF of failure, F(t), is the complement of R(t)

R(t) = 1 − F(t) (3)

If the probability density function (pdf) associated with the
random variable t is given by f (t), we can then rewrite R(t),

RELIABILITY VIA DESIGNED EXPERIMENTS given by Eq. (3), as follows:

The theory of experimental design was developed in response
to the fact that experimental results are inherently variable. R(t) = 1 −

∫ t

0
f (x) dx (4)

In fields such as physics and chemistry, this variability is of-
ten quite small, and, for experiments conducted in a class- If we take the time derivative of Eq. 4, we obtain the following
room environment, it is not unusual to think of the ‘‘correct’’ relationship between and R(t) and f (t):
result for an experiment. Even in the classroom, however, ex-
perience indicates that the results are variable, with the vari-
ability arising from complexities of the measurement proce-

dR(t)
dt

= − f (t) (5)

dure as well as from the inherent variability of the
experimental material. The precision of an experiment, and For example, suppose that f (t) is exponential with parameter

�. The pdf for a model of accelerated life testing, the exponen-therefore the statistical design of the experiment, becomes in-
creasingly important as the complexity of the experiment in- tial distribution model, has this form. In this case, f (t) �

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



RELIABILITY VIA DESIGNED EXPERIMENTS 445

�e��t, and the reliability function R(t) is • f̃(t), the Failure Density Function Estimated from the
Data. We compute this as:

R(t) = 1 −
∫ t

0
λe−λx dx = e−λt (6)

f̃ (t) = n f (t)

n0�t
(12)

We are now in a position to express the probability of a sys-
tem’s failing in a time interval [t1, t2] in terms of its reliability where nf (t) is the number of light bulbs that have failed
function: by time t, �t is the length of the interval (1000 h for this

example), and no is the total number of light bulbs being
tested (500 for this example).P(t1 ≤ t ≤ t2) =

∫ t2

t1

f (x) dx = R(t1) − R(t2) (7)
• h̃(t), the Hazard Function Estimated from the Data. This

is computed as:The failure rate in the interval [t1, t2] is defined as the proba-
bility that a failure per unit time occurs in this interval, given
that no failure has occurred prior to t1. The failure rate is h̃(t) = n f (t)

ns(t)�t
(13)

given by

where ns(t) is the number of light bulbs surviving at time
t.

R(t1) − R(t2)

(t2 − t1)R(t1)
(8)

• R̃(t), the Reliability Function Estimated from the Data.
If we now replace t1 by t and t2 by t � �t, we can rewrite the From Eq. (10), we can write
failure rate as

R̃(t) = f̃ (t)

h̃(t)
(14)R(t) − R(t + �t)

�tR(t)
(9)

• F̃(t), the CDF of Failure Estimated from the Data. SinceThe hazard function h(t), or instantaneous failure rate, is de-
the CDF of failure is the complement of the reliabilityfined as the limit of the failure rate given in Eq. (9) as �t
function, we can writeapproaches zero,

F̃(t) = 1 − R̃(t) (15)
h(t) = lim

�t→0

R(t) − R(t + �t)
�tR(t)

= 1
R(t)

[
− d

dt
R(t)

]
= f (t)

R(t)
(10)

The computations for each of these quantities are shown in
From Eqs. (5) and (10), we obtain the following relationship Table 2.
between the reliability function R(t) and the hazard function
h(t):

FACTORS AFFECTING RELIABILITY

R(t) = e− ∫ t
0 h(x) dx (11)

For many physical systems, the physics of the failure mecha-
nisms for those systems can be used to estimate their reliabil-The key equations relating R(t), h(t), F(t), and f (t) are Eqs.
ity. There are many mechanisms for the failure of electrical(5), (10), and (11).
and electronic devices. For instance, the time to failure of in-We now give a simple example to show how failure data
tegrated circuits due to electromigration is affected by twocan be used to estimate the hazard rate and reliability. Sup-
factors—the current density through the circuit and the cir-pose a light bulb manufacturer is interested in estimating the
cuit’s temperature. The rate at which corrosion that can dete-mean life of the bulbs. Five hundred bulbs are tested under
riorate the leads outside of a packaged integrated circuit andthe same conditions under which they are expected to be used

by the firm’s customers. The bulbs are observed during the thereby cause its failure is determined by the relative humid-
test; the number of failures observed in nonoverlapping 1000 ity of the circuit’s operating environment. For thin-film inte-
h intervals is shown in Table 1. We now wish to plot the fol- grated circuit resistors, the rate at which their resistance
lowing quantities: changes over time is affected by the temperature of their op-

erating environment. The interested reader may refer to El-
sayed (1) for more details.

In each of these cases, factors affecting a system’s reliabil-
ity are either physical properties of the system itself, charac-
teristics of the process by which it was manufactured, or char-
acteristics of its operating environment that can be measured.
Experiments can be designed to determine the effects of these
factors on the system’s reliability. Such experiments must be
designed with the following issues in mind:

• How to take into account similarities and differences be-
tween individual experimental units in the design.

• How to estimate the effects of individual factors that are
believed to determine a unit’s reliability.

• How to identify and model interactions between factors.

Table 1. Number of Failed Light Bulbs per Time Interval

Hours
in the Time Failures
Interval Observed

0–1000 237
1001–2000 73
2001–3000 53
3001–4000 34
4001–5000 32
5001–6000 27
6001–7000 24
7001–8000 20

Total failures 500



446 RELIABILITY VIA DESIGNED EXPERIMENTS

Table 2. Computing f̃(t), h̃(t), F̃(t), and R̃(t)

Time Estimated Estimated Estimated Estimated
Interval Failure Hazard Failure Reliability
(Hours) Density Function CDF Function

0–1000
237

500 � 103 � 4.74E � 04
237

500 � 103 � 4.74E � 04 0.00E � 00 1.00E � 00

1001–2000 4.74E � 01 5.26E � 01
73

500 � 103 � 1.46E � 04
73

263 � 103 � 2.78E � 04

2001–3000 6.20E � 01 3.80E � 0153
500 � 103 � 1.06E � 04

53
190 � 103 � 2.79E � 04

3001–4000 7.26E � 01 2.74E � 01
34

500 � 103 � 6.80E � 05
34

137 � 103 � 2.48E � 04

4001–5000
32

500 � 103 � 6.40E � 05
32

103 � 103 � 3.11E � 04 7.94E � 01 2.06E � 01

5001–6000 8.58E � 01 1.42E � 01
27

500 � 103 � 5.40E � 05
27

71 � 103 � 3.80E � 04

6001–7000 9.12E � 01 8.80E � 0224
500 � 103 � 4.80E � 05

24
44 � 103 � 5.45E � 04

7001–8000 9.60E � 01 4.00E � 0220
500 � 103 � 4.00E � 05

20
20 � 103 � 1.00E � 03

TYPES OF EXPERIMENTAL DESIGN jected. For the randomized design, we can express this by

Randomized Block Designs yjk = µ + t j + ε jk (16)

When setting up an experiment to compare different treat- where
ments, each treatment must be applied to several units—if
we were to apply a treatment to only one unit, we would not yjk is the yield for unit k after the application of treatment j
be able to determine whether differences in the responses � is an average yield for all of the experimental units
from two units were caused by differences in the treatments tj is the deviation of all of the units that have undergone
or whether they were due to the units being inherently differ- treatment j from the average of all the treatments in-
ent. The simplest type of experiment to compare the effects of cluded in the experiment.
n treatments is one in which the first treatment is applied to �jk is represents the deviation of unit k, having under-
x1 units, the second treatment to x2 units, and so forth until gone treatment j, from the average yield �
the nth treatment is applied to xn units. The only recognizable
difference between the units in this type of experiment is the For the randomized block experiment, we need to take into
treatment that is applied. This design is called a completely account the differences between blocks. This is done by modi-
randomized design. fying Eq. (16) as follows:

Even though a treatment is applied to multiple units in a
randomized design, the ambiguity that occurs if only a single yi j = µ + bi + t j + εi j (17)
unit is treated in a particular manner is not eliminated. It
may be the case that a treatment might be applied to all of The average yield, �, is the same as for the randomized exper-
the units which respond in a particular fashion. However, if iment. The yield, however, is now the yield of treatment j in
the experimenter has any ideas of which units are most likely the ith block, yij. The additional term bi represents the aver-
to behave similarly, they can be used to control the allocation age deviation from � of the units in the ith block. Finally, �ij
of treatments to units. The idea is that the experimental units represents the deviation of the units in the ith block that have
are grouped into blocks that are ‘‘similar’’; each such block undergone treatment j from the average yield of all of the
will then include roughly equal numbers of units for each units in the ith block, � � bi.
treatment. This control is referred to as blocking, and the re- Most experimental data is examined using the analysis of
sulting design is the randomized block design. This type of variance technique. Detailed treatments of this analysis tech-
experiment might be appropriate for determining the effects nique may be found in Refs. (2) and (3). This analysis has

two functions:of changing one step in the manufacturing process for inte-
grated circuits. The measured change to the fabrication pro-

1. It divides the total variation between the experimentalcess would be the treatment in this case. The wafers being
units into components that represent the differentsampled from the production line might be divided into
sources of variation. This provides a way of assessingblocks; the blocks are characterized by their distance from the
the relative importance of those sources.center of the wafer.

In the randomized and randomized block designs, we as- 2. It provides estimates of the underlying variation be-
sume that each experimental unit has an inherent yield that tween the units themselves, which can be used in rea-

soning about the effects of the treatments.is modified by the effect of the treatment to which it is sub-



RELIABILITY VIA DESIGNED EXPERIMENTS 447

The analysis of variance for the randomized block experiment ament S1, there are three possible new shapes (S2, S3, and
S4), and the manufacturer wishes to determine the effects oftakes into account the following sources of variation:
the new material and the new shapes on the expected lifetime
of the bulbs. For this experiment, there would be two factors:Variations between blocks
filament material F and shape S. There are two levels of theVariations between different treatments
filament material factor (current material C, new materialVariations due to inconsistency of treatment differences
N) and four levels of the shape factor (current shape S1, S2,over the different blocks
S3, and S4). The set of experimental treatments is given by F
� S, that is:The analysis of variance relationship is given by

{(C, S1), (C, S2), (C, S3), (C, S4), (N, S1), (N, S2),

(N, S3), (N, S4)}

A total of 800 bulbs are included in the experiment; 400 are
constructed using filaments made of the proposed new mate-
rial, and 400 are constructed using the material currently
used by the firm in the bulbs it distributes commercially. The

∑
i j

(yi j − y••)2 ≡
∑

i j

(yi• − y•• )2

Total Sum of Squares ≡ Block SS

+
∑

i j

(y• j − y••)2 +
∑

i j

(yi j − yi• − y• j + y•• )2

+ Treatment SS + Error SS
(18)

failure density, hazard function, reliability function, and CDF
The use of a dot instead of a suffix in Eq. (18), such as y�j, of failure are obtained as shown in the example in the first
indicates the mean value of y over all possible values of the section. The expected lifetime of the bulbs under each experi-
suffix j. The relative magnitudes of between-block variance, mental treatment is computed from R̃(t) for that treatment as
between-treatment variance, and variation between the units the sum �N

i�1 �tiR̃(ti), where i denotes successive test inter-
are obtained by comparing the block, treatment, and error vals, �ti denotes the length of interval i, N denotes the inter-
mean squares. If the number of blocks is b, and the number val at the conclusion of which no bulbs were functioning, and
of treatments is t, the block, treatment, and error mean R̃(ti) denotes the estimated reliability function at the end of
squares are as follows: the ith test interval. The results of the experiment are given

in Table 3. Each entry in the table gives the observed ex-
pected lifetime (measured in hours) of the bulbs under that
particular experimental treatment. There are several ways in
which we can interpret these results:

1. We could consider the effects of changing the shape of
the filament for each type of filament material. For the
bulbs using the current filament material, the effect of
changing the shapes from S1 to S2, S2 to S3, or S3 to S4

increases the expected lifetime at each change in shape,

Block mean square =
∑

i j

(yi• − y••)2
/

(b − 1)

Treatment mean square =
∑

i j

(y• j − y••)2
/

(t − 1)

Error mean square =
∑

i j

(yi j − yi• − y• j

+y••)2
/

(b − 1)(t − 1)

(19) with the change from S3 to S4 having the largest effect.
A similar increase in expected lifetime is for the bulbs

Each of the divisors in the above definitions of mean squares using filaments made of the new material as the shape
are referred to as degrees of freedom for that source of vari- of the filament is changed. For the bulbs using the new
ance. The mean squares may also be compared using F tests material in their filaments, the largest increase in the
if we assume that the variation of the experimental units fol- expected lifetime is associated with changing from S3 to
lows a normal distribution. S4.

2. We could consider the expected lifetime differences be-Factorial Designs
tween experimental and current filaments for each of

Factorial designs are employed when we wish to examine the the four shapes. These are 17.1 h for shape S1, 20.8 h
interactions among various factors affecting the results of an for S2, 22.8 h for S3, and 29.2 h for S4. From this view-
experiment. A factor is a set of treatments that can be applied point, we see that the experimental material has an ad-
to experimental units. For instance, in an experiment on vantage for each of the four shapes, and has the biggest
metal fractures, one factor might be the thickness of the ma- advantage for shape S4.
terial. A factor’s level is a specific treatment from the set of
treatments that make up the factor. For example, there might
be three different thicknesses of the material being investi-
gated in an experiment on metal fractures. Each thickness
would constitute a different level of the thickness factor. An
experimental treatment is the description of the way in which
a particular unit is treated; the treatment comprises one level
from each factor.

Consider a simple example in which a manufacturer of
light bulbs is considering changing the filament material and
the shape of the filament with the goal of increasing the life-
time of the bulbs. In addition to the current shape of the fil-

Table 3. Observed Expected Lifetimes of Experimental
versus Current Bulbs

Filament Shape

Current
Filament Type (S1) S2 S3 S4

Current 1895.20 1908.70 1922.30 1939.40
material

Experimental 1912.30 1929.50 1945.10 1968.60
material



448 RELIABILITY VIA DESIGNED EXPERIMENTS

3. We can consider first the average difference between given below:
the two types of filaments, which for our example is
22.48 h. Secondly, we can consider the average response
to shaping the filaments in different ways; in this case
1903.75, 1919.19, 1938.70, and 1954.00, and then the
way in which the overall pattern differs from a combi-
nation of these two effects. We can express the way in
which the overall pattern differs from a combination of
two effects by saying either that the difference in ex-
pected lifetime between the current and experimental
filaments is largest for shape S4 or that the increase in
expected lifetime in response to changing the filament
shape from S1 to S4 is larger for the experimental fila-
ment material than for the material currently in use.

We can express this third approach in the following model:

t jk = f j + sk + ( f s) jk (20)

where tjk is the treatment effect for material j and shape k, f j

is the average treatment effect for material j, sk is the average

f1 = (−32.44 − 18.94 − 5.34 + 11.76)/4 = −11.24

f2 = (−15.34 + 1.86 + 17.46 + 40.96)/4 = 11.24

s1 = (−32.44 − 15.34)/2 = −23.89

s2 = (−18.94 + 1.86)/2 = −8.54

s3 = (−5.34 + 17.46)/2 = 6.06

s4 = (11.76 + 40.96)/2 = 26.36

( f s11) = (−32.44) − (−11.24) − (−23.89) = 2.69

( f s12) = (−18.94) − (−11.24) − (−8.54) = 0.84

( f s13) = (−5.34) − (−11.24) − (6.06) = −0.16

( f s14) = (11.76) − (−11.24) − (26.36) = −3.36

( f s21) = (−15.34) − (11.24) − (−23.89) = −2.69

( f s22) = (1.86) − (11.24) − (−8.54) = −0.84

( f s23) = (17.46) − (11.24) − (6.06) = 0.16

( f s24) = (40.96) − (11.24) − (26.36) = 3.36
treatment effect for shape k, and ( fs)jk is the difference be-
tween tjk and f j � sk. Effects involving comparisons between The results above confirm the qualitative conclusions stated
levels of only one factor are called main effects of that factor,

earlier. The average difference in expected lifetime betweenwhile those effects involving comparisons for more than a sin-
light bulbs having filaments made of different materials isgle factor are called interactions. We can define these effects
22.48 h. The major effect of changing shapes from S1 to S1,more precisely as follows.
S2 to S3, and S3 to S4 is that the difference in expected lifeThe main effects of a factor is a comparison between the
between bulbs using the current material and those using theexpected yields for different levels of one factor, averaging
new material increases. The interaction pattern occurs whenover all levels of all the other factors. We can write this as
changing from S1 to S2 and from S3 to S4. Using the new mate-
rial and changing from S1 to S2 produces a additional positive
difference of fs22 � fs21 � 1.85 h to add to the main effect

∑
j

l jt j• (21)

difference, S2 � S1 � 15.35 h, for a total effect of 17.20. Usingwhere �j lj is 0 and tj� represents the average value of tjk over
the current material and changing from S1 to S2 produces aall possible levels of factor k. We may write tj� � �k tjk/nj. The
negative difference of fs12 � fs11 � �1.85 h to add to the maininteraction between two factors is written as
effect difference for a total effect of 13.50 h. Using the new
material and changing from S3 to S4 produces an additional
positive difference of fs24 � fs23 � 3.20 h to add to the main

∑
k

mk

∑
j

l jt jk (22)

effect difference, S4 � S3 � 20.30 h, for a total effect of 23.50.
where �k mk is 0. Using the current material and changing from S1 to S2 pro-

Returning to Eq. (20), we can recognize f j, sk, and ( fs)jk as duces a negative difference of fs14 � fs13 � �3.20 h to add tomain effects and interactions if we define them as follows:
the main effect difference for a total effect of 17.10 h.

One of the advantages of using a factorial structure in ex-
perimental design is that we are able to examine interactions
between factors, as illustrated above. There are two addi-
tional advantages. First, conclusions about the effects of a fac-
tor have a broader validity because of the range of conditions

f j = t j• − t••
sk = t•k − t••

( f s) jk = (t jk − t j• ) − (t•k − t••)

= (t jk − t•k) − (t j• − t••)

under which that factor has been studied. Second, and even
For the numerical values used in the example above, the

more important, is that a factorial experiment essentiallytreatment effects tjk are estimated by the deviations of treat-
allows several experiments to be done simultaneously. Wement yields from the overall average of 1927.64. These devia-
can illustrate this advantage with the following example.tions are shown in Table 4. The estimates of the effects are
Suppose that we want to investigate the effects of three fac-
tors, each at two levels, and that we only have enough re-
sources for 24 observations. The factors are X, Y, and Z with
levels x0 and x1, y0 and y1, z0 and z1. There are three designs
that we consider:

1. We can have three separate experiments, one for each
factor, with 8 observations per experiment:
• (x0y0z0, x1y0z0), four observations each
• (x0y0z0, x0y1z0), four observations each
• (x0y0z0, x0y0z1), four observations each

Table 4. Deviations of Treatment Yields from
Overall Average

Filament Shape

Current
Filament Type (S1) S2 S3 S4

Current �32.44 �18.94 �5.34 11.76
material

Experimental �15.34 1.86 17.46 40.96
material



RELIABILITY VIA DESIGNED EXPERIMENTS 449

In this set of three experiments, we isolate the effect of
each factor in turn by controlling all other factors. This
is considered to be the classical scientific experiment.

2. We can reduce the resources wasted in the first experi-
ment by using (x0y0z0) in each of the three individual
experiments. Instead, the four distinct treatments may

Car
Tire Position

I II III IV
Left, Front A B C D
Right, Front B D A C
Left, Rear C A D B
Right, Rear D C B A

be replicated equally as follows:
Figure 1. A Latin square design for an experiment to assess the
wear of four brands of car tire. A row represents possible positions of(x0y0z0), (x1y0z0), (x0y1z0), (x0y0z1)
a tire on a car, and a column represents one of four varieties of auto-
mobile.

with six observations each.

3. We can design a factorial experiment with the following
eight treatments: of design shown in Fig. 1; this particular design evaluates

four brands of tire in four positions for four different cars.
The type of experimental design shown in Fig. 1 is referred

to as a Latin square design. Latin square designs have the
(x0y0z0), (x0y0z1), (x0y1z0), (x0y1z1), (x1y0z0), (x1y0z1),

(x1y1z0), (x1y1z1)
experimental units arranged in a double-blocking classifica-
tion system. There are x blocks in each system, with each of

Each treatment in this experiment would have three ob- x treatments occurring once in each block of each block sys-
servations. tem. The total number of units in the experiment is x2. For

the example shown in Fig. 1, the two blocking systems are
the tire position and the type of car, while the brand of tire is

To compare the three designs, we can look at the variance the treatment. The two blocking systems in this type of design
of the comparison of mean yields for x0 and x1 (the compari- are traditionally referred to as rows and columns.
sons of the mean yields for y0 and y1 and z0 and z1 will be In a Latin square design, there are three sources of vari-
equivalent). The three experiments give the following vari- ability: variability between rows, variability between col-
ances for X1 � X0: umns, and variability between treatments. The model for the

yield of this type of experiment is

1. 2�2/4 for the classical scientific experiment yjk = µ + r j + ck + tl( j, k) + ε jk
2. 2�2/6 for the equal replication of distinct treatments

3. 2�2/12 for the factorial experiment where rj represents treatment effects within row j, ck repre-
sents treatment effects within column k, and �jk is an error
term specifying the deviation of the unit in the row j, columnThe factorial experiment gives the smallest variance for x1 �
k from the overall average yield �. Note that the yields yjk are

x0, and is therefore the most efficient of the three experi- characterized by only two of the three classifications (rows,
ments—in the absence of interactions between the factors, columns, and treatments). In this type of design, only two
(x1yjzk) � (x0yjzk) has the same expectation for all pairs ( j, k). classifications are required to uniquely classify each observa-
The effective replication of the comparisons between x0 and tion; the type of treatment is completely determined by the
x1 is 12. Even if there are interactions between the factors, row and column indices j and k. This dependence is shown in
the factorial design is still superior to the other two designs, the form of the treatment index l( j, k). The three types of
which do not consider that the size of the x1 � x0 effect de- treatment effects may be estimated orthogonally, using the
pends on the particular combination of Y and Z levels. The restrictions that
results of the first two types of experiment may not be repro-
ducible if the levels of the other two factors are changed. ∑

j

r j = 0,
∑

k

ck = 0, and
∑

l

tl = 0

Latin Square Designs
The Latin square design is a solution to the problem of includ-

For some experiments, there may be more than one appro- ing two blocking factors within a single experiment. However,
priate blocking scheme that we would like to accommodate in it is extremely restrictive. The number of replicates of each
the experiment. One simple and well-known example is the treatment must be equal to the number of treatments. Fur-
problem of assessing the wear performance of automobile thermore, the number of degrees of freedom for error in the
tires. Different brands of tire will perform differently. In addi- analysis of variance for an experiment with t treatments are
tion, tires may be fitted to any one of four positions; there (t � 1)(t � 2)—this provides only two degrees of freedom for
may be differences in performance between the four positions. an experiment with three treatments, and six degrees of free-
Finally, there will also be overall differences in performances dom when there are four treatments. We would not expect to
between different cars. In this situation, we would like to de- obtain an adequate estimate of �2 under these circumstances.
sign a single experiment in which we allocate tires to each When using a Latin square design for an experiment with
position for each car so that each brand of tire is tested in three or four treatments, it is usually necessary to have more

than one square.each position of each car. This is accomplished with the type



450 RELIABILITY VIA DESIGNED EXPERIMENTS

One particular method of using experimental design tech-
niques (8) uses combinatorial designs to generate tests that
efficiently cover n-way combinations of a system’s test param-
eters (the parameters that determine the system’s test sce-
narios). Cohen et al. show (8) that the number of test cases
grows logarithmically in the number of test parameters. This
makes it fairly inexpensive to add detail to the test cases in

Car
Tire Position

I II III IV I II III IV
Left, Front A B C D A B C D
Right, Front B D A C B C D A
Left, Rear C A D B C D A B
Right, Rear D C B A D A B C

the form of additional parameters. The greedy algorithm for
Figure 2. Variation on a Latin square design to assess the wear of producing test cases given by Cohen et al. (8) is quite
car tires. This design uses multiple Latin squares with common row straightforward. Suppose that we have a system with k testeffects. In this case, the effects of tire position are consistent across

parameters, and that the ith parameter has li distinct values.both groups of automobile type.
At this point, we’ve already selected r test cases, and we wish
to select the (r � 1)st. This is done by generating M different

Experiments in which multiple Latin squares are used fall candidate test cases and then choosing the one that covers
into one of two categories: the most new n-tuples (e.g., pairs, triples) of parameters. Co-

hen et al. report (8) that when M was set to 50 (50 candidate
1. Experiments in Which One of the Blocking Systems is test cases were generated for each new test case), the number

Consistent Over Different Squares. For instance, if two of generated test cases grew logarithmically in the number of
groups of cars are used in the experiment to determine parameters when all the parameters had the same number of
the wear of tires and the four possible tire positions are values. Furthermore, increasing M did not drastically reduce
the second blocking system for each group, we would the number of test cases.
expect that differences between position should be con-
sistent over the two groups. An experimental design for

EXPERIMENTAL ASSESSMENT OF SOFTWARE RELIABILITYthis situation is shown in Fig. 2.
2. Experiments in Which the Rows or Columns Have No

To determine a software system’s reliability we must conductRelationship to Each Other. This type of design is
three distinct experiments. First, we must know how the soft-shown in Fig. 3.
ware is used; that is, we will need to know the way in which
users exercise the operations implemented in the softwareAn index of designs for a given number of treatments and for
system. Secondly, we must understand how the system is de-a set of experimental units with two blocking systems may be
signed. Finally, we must observe how likely it is for each pro-found in Ref. 4; detailed treatments of experimental design
gram module in the system to fail. These issues are exploredmay be found in Refs. 5 and 6.
in more detail in the following sections.

APPLICABILITY OF EXPERIMENTAL DESIGN
SOFTWARE RELIABILITY: AN OVERVIEW OF THE PROBLEMTO SOFTWARE TESTING

Computer programs do not break. They do not fail monolithi-Design of experiments can be used in testing software to gen-
cally. Programs are designed to perform a set of mutually ex-erate a set of test cases that will produce maximum coverage
clusive tasks or functions. Some of these functions work quitewith respect to the desired criterion (e.g., branch coverage, c-
well, whereas others may not work well at all. When a pro-uses, p-uses). The idea is that as coverage increases, the num-
gram is executing a particular function, it executes a well-ber of faults found and removed during a test increases, leav-
defined subset of its code. Some of these subsets are flaweding fewer residual faults in the system. Malaiya et al. have
and some are not. Users tend to execute subsets of the totalstudied relationships between test coverage and fault cover-
program functionality. Two users of the same software mayage (7). They found the relationships sufficiently well-defined
have totally different perceptions as to the reliability of theto develop a logarithmic model relating fault coverage to test
same system. One user may use the system on a daily basiscoverage. According to this model, as test coverage increases,
and never experience a problem. Another user may have con-fault coverage also increases. Details of the model are given
tinual problems in trying to execute the same program while(7).
attempting to perform different functions.

The literature in reliability is rife with efforts to port hard-
ware reliability notions to software. It just won’t work. Soft-
ware is very different from hardware. Software systems are
composed of individual and largely independent sections
called modules. At any instant in the life of a program, only
one of these modules is capable of demanding the resources
of the computer central processing unit (CPU). It would be
very difficult to conceive of an analogous hardware system.
Imagine, if you will, an automobile capable of moving one pis-
ton at a time in its engine, turning but one wheel as it goes
down the road, or switching its operation from the distributor

Column
Row

1 2 3 4 5 6 7 8
1 A B C D
2 B D A C
3 C A D B
4 D C B A
5 A B C D
6 B A D C
7 C D A B
8 D C B A

to the rear differential to the left tail light, and so on. Soft-
ware systems are constructed of many modules. Only some ofFigure 3. Example of a multiple Latin square experiment in which

there are no common row or column effects. these modules will execute when the software performs its



RELIABILITY VIA DESIGNED EXPERIMENTS 451

nominal functionality. A module may be hopelessly flawed, troduced into a system by people making errors in their tasks.
Ultimately, if we wish to improve the quality of our softwarebut if it never enters the set of operating modules, these flaws

will never be seen nor expressed. systems we must come to grips with the fact that faults are
introduced by people due to the psychological complexity ofYet another problem we have in the software quality busi-

ness, we can only have at most one software system. For ex- the specification, design, or coding a piece of software.
A significant amount of work remains to be done in theample, if we build a million cars all with the same program

running the ignition controls, each of these cars will have ex- actual measurement of software faults. To count faults, we
needed to develop a method of identification, a standard, thatactly the same program. There is exactly no variation in the

manufacture of software. Whatever we do, we will only build is repeatable, consistent, and identifies faults at the same
level of granularity as other structural measurements. Thisone system. There may be zillions of copies, but they are all

the same program. This is good and this is bad. If there is one type of fault is simple to count, since it occurs only in one
module. In identifying and counting faults, we must deal withdesign defect, then each of the zillion copies has this flaw. It

is good in that there is exactly zero variation in the manufac- faults that span only one module as well as those that span
several.turing process.

Failure Events
FOUNDATIONS

A failure occurs when the software system encounters a soft-
ware fault during the course of execution. There is a problem,One of the most offensive and misleading terms used in the
however, with the detection of the failure event. Not all suchsoftware profession is the notion of a bug. There is exactly no
failures will cause the system to stop executing. The systeminformation in the statement that a program has n bugs in it.
may well continue executing. The failure event may not haveNo one have ever defined just what a bug is. A recent check
important consequences. It may go undetected. A more insidi-of the National Institute of Standards and Technology re-
ous software failure is one that initiates a chain of events thatvealed no temperature-controlled rubidium standard bug. The
will bring the system to its knees at some future time. Whenwhole of software reliability engineering must center around
the failure is finally made manifest, a very long time hasa precise understanding of software flaws and their etiology.
elapsed between when the actual failure event occurred andSome terminology will be in order.
when it had visible consequences.

Thus, a significant problem in the determination of the re-Errors
liability of a software system is the precise determination of

An error is an act of a person. A software requirement analyst the failure event. If the failure event is largely unobservable,
may write an incorrect specification. The act of introducing then the notion of the time between observable failures will
the defective specification is the error. A software designer, have a very large (and undetermined) noise component. There
may fail to implement a specification correctly. The act of is really no way to measure the elapsed time between events
omission is the error. There are two principal categories of that we cannot observe. The failure event, and the circum-
these errors. There are sins of commission. A person actively stances that surround the failure have proven to be most elu-
introduced a problem. There is also the sin of omission. A sive concepts.
person failed to perform some activity that was prescribed. Finally, not all faults will lead to failures. Some faults will

be located on execution paths that will never be expressed
when the software system is executing in a nominal fashion.Faults
We are not interested in these faults. They will never lead to

People make errors. The physical and tangible result of these
failures. They should not be removed from the system. Each

errors is a fault. Unfortunately there is no particular defini-
time we alter the system we run a risk of introducing new

tion of precisely what a software fault is. In the face of this
faults. It is most improbable that we would seek to remove a

difficulty, it is rather hard to develop meaningful associative
fault from our software that will have no impact on our sys-

models between faults and metrics. In calibrating our model,
tem only to trade it for a fault that might well cause the sys-

we would like to know how to count faults in an accurate and
tem to fail.

repeatable manner. In measuring the evolution of the system
to talk about rates of fault introduction and removal, we mea-

Some Thoughts on Time
sure in units describing how the system changes over time.
Changes to the system are visible at the module level, and Computer software exists only in a three-dimensional world.

There is no real concept of time as far as software is con-we attempt to measure at that level of granularity. Since the
measurements of system structure are collected at the module cerned. Software is not like wine. It will never improve with

age. Software is not like gears in a transmission. It will neverlevel (by module we mean procedures and functions), we
would like information about faults at the same granularity. wear out. Nor will continual use sand its surface smooth. Any

faults in a software system at its birth will still be present atWe would also like to know if there are quantities that are
related to fault counts that can be used to make our calibra- its demise. Furthermore, a software system’s exposure to time

is a highly variable commodity. Some CPU’s are very fast,tion task easier.
Simply put, a fault is a structural defect in a software sys- others are very slow in relation to the fast ones. By hardware

measurement standards, we could achieve really reliable soft-tem that may lead to the system’s eventually failing. In other
words, it is a physical characteristic of the system of which ware by running it on the slowest possible CPU. The notion of

time between failure has no particular relevance in software.the type and extent may be measured using the same ideas
used to measure the properties of more traditional physical It is most inappropriate, then, to think about a software

system breaking at some future time based on our observa-systems. More details are given by Nikora (9). Faults are in-



452 RELIABILITY VIA DESIGNED EXPERIMENTS

tions of its past performance. As we discuss in the next sec- made to the ALGOL-like languages, latent code in the op-
erating system, specifically those routines that dealt withtion, software breaks because of what we chose to do with it

in the future, not because of some intrinsic characteristic memory management, that had not been executed overly
much in the past now became central to the new operatingaging in the system. The future reliability of a system, then,

depends entirely on the user and how he or she chooses to use environment. This code was both fragile and untested. The
operating systems that had been so reliable began to fail likethe system.
cheap light bulbs.

A new metaphor for software systems would focus on the
functionality that the code is executing and not the softwareGETTING THE METAPHOR RIGHT
as a monolithic system. In computer software systems, it is
the functionality that fails. Some functions may be virtuallyA main concern in software reliability investigations revolves

around the failure event itself. Our current view of software failure free, whereas other functions will collapse with cer-
tainty whenever they are executed. It is possible to measurereliability is colored by a philosophical approach that began

with efforts to model hardware reliability (see Ref. 10 for the activities of a system as it executes its various functions
and characterize the reliability of the system in terms of thesemore details). Inherent in this approach is the notion that it

is possible to identify with some precision this failure event functionalities.
Each program functionality may be thought of as havingand measure the elapsed time to the failure event. For hard-

ware systems this has real meaning. Take, for example, the an associated reliability estimate. We may chose to think of
the reliability of a system in these functional terms. Users offailure of a light bulb as discussed earlier. A set of light bulbs

can be switched on and a very precise timer started for the the software system, however, have a very different view of
the system. What is important to the user is not that a partic-time that they were turned on. One by one the light bulbs

will burn out and we can note the exact time to failure of each ular function is fragile or reliable, but rather whether the sys-
tem will operate to perform those actions that the user willof the bulbs. From these failure data, we can then develop a

precise estimate for both the mean time to failure for these want the system to perform correctly. From a user’s perspec-
tive, it matters not, then, that certain functions are very unre-light bulbs and a good estimate of the variance of the time to

failure. The case for software systems is not at all the same. liable. It only matters that the functions associated with the
user’s actions or operations are reliable. The classical exam-Failure events are sometimes quite visible in terms of cata-

strophic collapses of a system. More often than not, the actual ple of this idea was expressed by the authors of the early
UNIX utility programs. In the last paragraph of the documen-failure event will have occurred a considerable time before its

effect is noted. In most cases it is simply not possible to deter- tation for each of these utilities was a list of known bugs for
that program. In general, these bugs were not a problem.mine with any certainty just when the actual failure occurred

on a real time clock. The most simple example of this improb- Most involved aspects of functionality that the typical user
would never exploit.ability of measuring the time between failures of a program

may be found in a program that hangs in an infinite loop. From a functional viewpoint, a program may be viewed as
a set of program modules that are executing a set of mutuallyTechnically the failure event happened on entry to the loop.

The program, however, continues to execute until it is killed. exclusive functions. If the program executes a functionality
consisting of a subset of these modules that are fault free, itThis may take seconds, minutes, or hours depending on the

patience and/or attentiveness of the operator. As a result, the will never fail no matter how long it executes this functional-
ity. If, on the other hand, the program is executing a function-accuracy of the actual measurement of time intervals is a sub-

ject never mentioned in most software validation studies [de- ality that contains fault laden modules, there is a very good
likelihood that it will fail whenever that functionality is ex-tails given by Chan, Littlewood, Brocklehurst, and Snell (11)].

The bottom line for the measurement of time between failures pressed [details given by Munson (12)]. Furthermore, it will
fail with certainty when the right aspects of functionalityin software systems is that we cannot measure with any rea-

sonable degree of accuracy these time intervals. This being are expressed.
The main problem in the understanding of software relia-the case, we then must look to new metaphors for software

systems that will permit us to model the reliability of these bility from this new perspective is getting the granularity of
the observation right. Software systems are designed to im-systems based on things that we can measure with some ac-

curacy. plement each of their functionalities in one or more code mod-
ules. In some cases there is a direct correspondence betweenYet another problem with the hardware adaptive approach

to software reliability modeling is that the failure of a com- a particular program module and a particular functionality.
That is, if the program is expressing that functionality, it willputer software system is simply not time dependent. A system

can operate without failure for years and then suddenly be- execute exclusively in the module in question. In most cases,
however, there will not be this distinct traceability of func-come very unreliable based on the changing functions that

the system must execute. Many university computer centers tionality to modules. The functionality will be expressed in
many different code modules. It is the individual code moduleexperienced this phenomenon in the late 1960s and early

1970s when there was a sudden shift in computer science cur- that fails. A code module will, of course, be executing a partic-
ular functionality when it fails. We must come to understandricula from programming languages such as FORTRAN that

had static run time environments to ALGOL derivatives such that it is the functionality that fails.
As a program is exercising any one of its many functional-as Pascal and Modula that had dynamic run time environ-

ments. From an operating system perspective, there was a ities in the normal course of operation of the program, it will
apportion its time across this set of functionalities (see Ref.major shift in the functionality of the operating system exer-

cised by these two different environments. As the shift was 12 for more detail). The proportion of time that a program



RELIABILITY VIA DESIGNED EXPERIMENTS 453

Table 5. Example of the IMPLEMENTS Relation

O � F f1 f2 f3 f4

o1 T T
o2 T T T

Table 7. Example of the ASSIGNS Relation

F � M m1 m2 m3 m4 m5 m6

f1 T T T
f2 T T T
f3 T T T
f4 T T T T

spends in each of its functionalities is the functional profile
of the program. Furthermore, within the functionality, it will

pressed functionalities are those with the propertyapportion its activities across one to many program modules.
This distribution of processing activity is represented by the

F (o) = { f : F| ∀ IMPLEMENTS(o, f )}concept of the execution profile. In other words, if we have a
program structured into n distinct modules, the execution pro-

It is possible, then, to define a relation IMPLEMENTS overfile for a given functionality will be the proportion of program
O � F such that IMPLEMENTS(o, f ) is true if functionalityactivity for each program module while the function was be-
f is used in the specification of an operation, o. For each oper-ing expressed.
ation o � O, there is a relation p	 over O � F such that p	(o,As the discussion herein unfolds, we see that the key to
f ) is the proportion of activity assigned to functionality f byunderstanding program failure events is the direct associa-
operation o. An example of the IMPLEMENTS relation fortion of these failures to execution events with a given func-
two operations implemented in four specified functions istionality. A Markovian stochastic process will be used to de-
shown in Table 5. In this table, we can see that functions f 1scribe the transition of program modules from one to another
and f 2 are used to implement the operation o1.as a program expresses a functionality. From these observa-

In Table 6, there is an example of the relation p	. Thesetions, it will become fairly obvious just what data will be
numbers represent the proportion of time each of the func-needed to describe accurately the reliability of the system. In
tions will execute under each of the operations. The softwareessence, the system will be able to appraise us of its own
design process is a matter of assigning functionalities in F tohealth. The reliability modeling process is no longer some-
specific program modules m � M, the set of program modules.thing that will be performed ex post facto. It may be accom-
The design process may be thought of as the process of defin-plished dynamically while the program is executing.
ing a set of relations, ASSIGNS over F � M such that
ASSIGNS( f, m) is true if functionality f is expressed in mod-Operations
ule m. For a given software system, S, let M denote the set of

To assist in the subsequent discussion of program functional- all program modules for that system. For each function f �
ity, it will be useful to make this description somewhat more F, there is a relation p over F � M such that p( f, m) is the
precise by introducing some notation conveniences. Assume proportion of execution events of module m when the system
that the software system S was designed to implement a spe- is executing function f . Table 7 shows an example of the AS-
cific set of mutually exclusive functionalities F. Thus, if the SIGNS relation for the four functions presented in Table 5.
system is executing a function f � F, then it cannot be ex- In this example we can see the function f 1 has been imple-
pressing elements of any other functionality in F. Each of mented in the program modules m1, m2 and m4. One of these
these functions in F was designed to implement a set of soft- modules, m1, will be invoked regardless of the functionality.
ware specifications based on a user’s requirements. From a It is common to all functions. Other program modules, such
user’s perspective, this software system will implement a spe- as m2, are distinctly associated with a single function. In Ta-
cific set of operations, O. This mapping from the set of user ble 8, there is an example of the relation p. These numbers
perceived operations, O, to a set of specific program function- represent the proportion of time each of the functions will ex-
alities, F, is one of the major tasks in the software specifica- ecute in each of the program modules. The row marginal val-
tion process. ues represent the total proportion of time allocated to each of

Each operation that a system may perform for a user may the functions. These are the same values as the column mar-
be thought of as having been implemented in a set of func- ginals of Table 6. Similarly, the column marginal values of
tional specifications. There may be a one-to-one mapping be- Table 8 represent the proportion of time distributed across
tween the user’s notion of an operation and a program func- each of the six program modules.
tion. In most cases, however, there may be several discrete There is a relationship between program functionalities
functions that must be executed to express the user’s concept and the software modules that they will cause to be executed.
of an operation. For each operation, o, that the system may These program modules will be assigned to one of three dis-
perform, the range of functionalities, f , must be well known. tinct sets of modules that, in turn, are subsets of M. Some
Within each operation one or more of the system’s functional-
ities will be expressed. For a given operation, o, these ex-

Table 6. Example of the p� Relation

p	(o, f ) f1 f2 f3 f4

o1 0.2 0.8 0 0
o2 0 0.4 0.4 0.2

Table 8. Example of the p Relation

p( f, m) m1 m2 m3 m4 m5 m6

f1 1 1 0 1 0 0
f2 1 0 1 0 0.1 0
f3 1 0 0.5 0 0 0.3
f4 1 0 1 0 0.4 0.1



454 RELIABILITY VIA DESIGNED EXPERIMENTS

modules may execute under all of the functionalities of S. an indexed collection of random variables �Xt�, where the in-
dex t runs through a set of nonnegative integers, t � 0, 1, 2,This will be the set of common modules. The main program

is an example of such a module that is common to all opera- . . . representing the epochs of the process. At any particular
epoch the software is found to be executing exactly one of itstions of the software system. Essentially, program modules

will be members of one of two mutually exclusive sets. There M modules. The fact of the execution occurring in a particular
module is a state of the system. For this software system, theis the set of program modules Mc of common modules and the

set of modules MF that are invoked only in response to the system is found in exactly one of a finite number of mutually
exclusive and exhaustive states that may be labeled 0, 1, 2,execution of a particular function. The set of common mod-

ules, Mc � M is defined as those modules that have the prop- . . ., M. In this representation of the system, there is a sto-
chastic process �Xt�, where the random variables are observederty
at epochs t � 0, 1, 2, . . . and where each random variable
may take on any one of the (M � 1) integers, from the stateMc = {m : M| ∀ f ∈ F • ASSIGNS(f,m)}
space A � �0, 1, 2, . . ., M�.

All of these modules will execute regardless of the specific A stochastic process �Xt� is a Markov chain if it has the
functionality being executed by the software system. Yet an- property that
other set of software modules may or may not execute when
the system is running a particular function. These modules
are said to be potentially involved modules. The set of poten-

Pr[Xt+1 = j|Xt = it , Xt−1 = it−1, · · ·, X0 = i0]

= Pr[Xt+1 = j|Xt = it]
tially involved modules is

for any epoch t � 0, 1, 2, . . . and all states i0, i1, . . ., it in
the state space A. This is equivalent to saying that the condi-M( f )

p = { m : MF |∃ f ∈ F • ASSIGNS( f, m) ∧ 0 < p( f, m) < 1}
tional probability of executing any module at any future ep-

In other program modules, there is extremely tight binding och is dependent only on the current state of the system. The
between a particular functionality and a set of program mod- conditional probabilities Pr[Xt�1 � j�Xt � it] are called the
ules. That is, every time a particular function, f , is executed, transition probabilities. In that this nomenclature is some-
a distinct set of software modules will always be invoked. what cumbersome, let p(n)

ij � Pr[Xn � j�Xn�1 � i]. Within the
These modules are said to be indispensably involved with the execution of a given functionality, the behavior of the system
functionality f . This set of indispensably involved modules for is static. That is, the transition probabilities do not change
a particular functionality, f , is the set of those modules that from one epoch to another. Thus,
have the property that

Pr[Xt+1 = j|Xt = it ] = Pr[X1 = j|X0 = i0]
M( f )

i = {m : MF |∀ f ∈ F • ASSIGNS( f, m) ⇒ p( f, m) = 1}
for i, j, in S, which is an additional condition of a Markov
process.As a direct result of the design of the program, there will be

Since the p(n)
ij are conditional probabilities it is clear thata well defined set of program modules, Mf, that might be used

to express all aspects of a given functionality, f . These are the
modules that have the property that

p(n)

i j ≥ 0, for all i, j in A, n = 0, 1, 2, · · ·

and,m ∈ M f = Mc ∪ M( f )
p ∪ M( f )

i

From the standpoint of software design, the real problems in
understanding the dynamic behavior of a system are not nec-

M∑
j=0

p(n)

i j = 1, for all i in A and n = 0, 1, 2, · · ·

essarily attributable to the set of modules, Mi, that are tightly
Interestingly enough, for all software systems there is abound to a functionality or to the set of common modules,

distinguished module, the main program module that will al-Mc, that will be invoked for all executing processes. The real
ways receive execution control from the operating system. Ifproblem is the set of potentially invoked modules, Mp. The
we denote this main program as module 0 then,greater the cardinality of this set of modules, the less certain

we may be about the behavior of a system performing that
Pr[X0 = 0] = 1 and Pr[X0 = i] = 0 for i = 1, 2, · · ·, Mfunction. For any one instance of execution of this functional-

ity, a varying number of the modules in Mp may execute. We can see, then, that the unconditional probability of execut-
ing in a particular module j is

Profiles of Software Dynamics

When a program begins the execution of a functionality, we Pr[Xn = j] = p(n)

i j Pr[X0 = 0] = p(n)

i j

may envision this beginning as the start of a stochastic pro-
The problem of the determination of the transition proba-cess. It is possible to construct a probability adjacency ma-

bilitiestrix, P, whose entries represent the transition probability
from each module to another module at each epoch in the
execution process while a particular functionality is exe- p(0)

i j = Pr[X1 = j|X0 = i]
cuting.

The transition from one module to another may be de- of P0 is now of interest. Each row i of P represents the proba-
bility of the transition to a new state j given that the programscribed as a stochastic process. In which case we may define



RELIABILITY VIA DESIGNED EXPERIMENTS 455

is currently in state i. These are mutually exclusive events. any arbitrary epoch, n, the program will be executing a mod-
ule mi � Mfk

with a probability, uik � Pr[Xn � i�Y � k]. TheThe program may only transfer control to exactly one other
program module. Under this assumption, the conditional set of conditional probabilities u�k where k � 1, 2, . . ., #�F�

constitute the execution profile for function f k. As was theprobabilities that are the rows of P0, also have the property
that they are distributed multinomially. They profile the tran- case with the functional profile, the distribution of the execu-

tion profile is also multinomial for a software system con-sitions from one state to another.
The granularity of the term, epoch, is an important consid- sisting of more than two modules. As a matter of the design

of a program, there may be a nonempty set M(f)
p of moduleseration. An epoch begins with the onset of execution in a par-

ticular module and ends when control is passed to another that may or may not be executed when a particular function-
ality is exercised. Of course, this will cause the cardinality ofmodule. The measurable event for modeling purposes is this

transition among the program modules. We will count the the set Mf to vary. A particular execution may not invoke any
of the modules of M(f)

p . On the other hand, all of the modulesnumber of calls from a module and the number of returns to
that module. Each of these transitions to a different program may participate in the execution of that functionality. This

variation in the cardinality of Mf within the execution of amodule from the one currently executing will represent an
incremental change in the epoch number. Computer pro- single functionality will contribute significantly to the amount

of test effort that will be necessary to test such a function-grams executing in their normal mode will make state transi-
tions between program modules rather rapidly. In terms of ality.

Each operation will be implemented by a subset of func-real clock time, many epochs may elapse in a relatively
short period. tionalities, i.e., F(o)

e � F. As each operation is run to comple-
tion it will generate an execution profile. This execution pro-

Operational Profiles file may represent the results of the execution of one or more
functions. Most operations, however, do not exercise preciselyAny software system has at its core a set of operations O that
one functionality. Rather, they may apportion time across ait was designed to implement. Each user will typically exer-
number of functionalities. For a given operation, let l be acise a subset of these functionalities. Each user will probably
proportionality constant. Then, 0 
 lk 
 1 will represent theuse each operation to a different extent than every other user.
proportion of epochs that will be spent executing the kth func-The users bring to the system an operational profile of his/
tionality in F(o)

e . Thus an operational profile of a set of modulesher use of the system.
will represent a linear combination of the conditional proba-The operation profile of the software system is the set of
bilities, uik as follows:unconditional probabilities of each of the functionalities O be-

ing executed by the user. Let W be a random variable defined
on the indices of the set of elements of O. Then, pk � Pr[W �
m], m � 1, 2, . . ., �O� is the probability that the user is exe-

pi =
∑

fk∈F (o )
e

lkuik

cuting program operation m as specified in the functional re-
quirements of the program and �O� is the cardinality of the Module Profiles
set of operations.

The manner in which a program will exercise its many mod-
ules as the user chooses to execute the functionalities of theFunctional Profiles
program is determined directly by the design of the program.

When a software system is constructed by the software devel- Indeed, this mapping of functionality onto program modules
oper, it is designed to fulfill a set of specific functional require- is the overall objective of the design process. The module pro-
ments. The user will run the software to perform a set of per- file, s, is the unconditional probability that a particular mod-
ceived operations. Each of the operations, o, maps to one or ule will be executed based on the design of the program. It is
more elements in the set of functionalities as defined by the derived through the application of Bayes’ rule. First, the joint
IMPLEMENTS relation. The functional profile of the software probability that a given module is executing and the program
system is the set of unconditional probabilities of each of the is exercising a particular function is given by
functionalities F being executed by the user under that user’s
operational profile. Let Y be a random variable defined on the Pr[Xn = j ∩ Y = k] = Pr[Y = k]Pr[Xn = j|Y = k] = qkuik
indices of the set of elements of F. Then, qk � Pr[Y � k], k �
1, 2, . . ., �F� is the probability that the user is executing where j and k are defined as before. Thus, the unconditional
program functionality k as specified in the functional require- probability, si, of executing module j under a particular design
ments of the program and �F� is the cardinality of the set of is
functions [described by Musa (13)]. A program executing on a
serial machine can only be executing one functionality at a
time. The distribution of q, then, is multinomial for programs
designed to fulfill more than two specific functions. The prior
knowledge of this distribution of functions should guide the
software design process [details given by Munson and Ra-

si = Pr[Xn = i]

=
∑

k

Pr[Xn = i ∩ Y = k]

=
∑

k

qkuik

venel (14)].

As was the case for the functional profile and the execution
Execution Profiles

profile, only one module can be executing at any one time.
Hence, the distribution of q is also multinomial for a systemWhen a program is executing a given functionality, say f k, it

will distribute its activity across the set of modules, Mfk
. At consisting of more than two modules.



456 RELIABILITY VIA DESIGNED EXPERIMENTS

Failure Profiles The next, static, matrix S that will have to be maintained
is the matrix that describes the mapping F � M of the func-

What is needed now is a mechanism to describe the actual
tion to the program modules as a result of the program design

failure event in a software system. As was noted earlier, a
process. Each element of this matrix will have the property

failure will actually occur through the execution of a fault in
that

a program module. A reasonable and viable mechanism for us
to use to capture the fault event is to imagine the existence
of an hypothetical failure module. A failure event in any mod-
ule may then be represented as a transition to this absorbing

s jk =
{

1 if ASSIGNS ( f j, mk) is TRUE
0 if ASSIGNS ( f j, mk) is FALSE

failure state in our Markov process model for the program
A current assessment of the frequency with which functionsoperation. With this concept we will augment our module
are executed may be maintained in a matrix S. As was thetransition matrix P to form the new augmented matrix P	
case with the operational profile, an element oj of this vectorcontaining a new row and column for the module representing
will be incremented every time the program initiates the jththe failure state.
function.Each failure of the program will alter our view of the tran-

Finally, we need to record the behavior of the total systemsition probabilities of a particular module to the failure state
as it transitions from one program module to another. If theremodule.
are a total of m modules, then we will need an n � n (n �
m � 1) matrix T to record these transitions. Whenever theTHE CONDUCT OF INQUIRY
program transfers control from module mi to module mj the
element tij of T will increase by one. The rows of the transitionFailure Measurement
matrix P may be obtained dynamically from the estimation

Each and every failure event must be assiduously monitored methods presented above.
and recorded. As was indicated earlier, the vast majority of The index pair, (i, j), constitutes the transition event from
software failures will never be observed nor recorded. The log- module mi to module mj. If we preserve the sequence of (i, j)
ical mechanism for trapping and recording faults at their from the 0th epoch to the present, we will be able to recon-
point of origin is provided by the exception handling facility struct the functional (operational) sequences of program be-
such as that offered by Ada (15). Using this mechanism, we havior. However, in that the number of epochs will be ex-
may instrument each module for the possible failure condi- tremely large for reliable program operation, an alternate
tions and record these failures at the point of origin. The al- mechanism might be to preserve simply the last n (i, j) pairs.
ternative to this dynamic measurement opportunity is indeed This may be done by pushing each of the (i, j) pairs onto a
distressing. If the software is not appropriately instrumented stack, C, of length n that will preserve only the (i, j) pairs of
for failure recording, each failure must be traced to its module the last n epochs.
of origin by hand. This is a most laborious and error prone Thus, the essential measurements components will consist
activity. In either event, we must record each failure of the of the components, C, O, Q, S, and T. From these data ele-
system and ascribe this failure to a module. ments we may construct the functional behavior of any sys-

tem through its final n epochs. If a program is augmented to
Measurement of Profiles include these fundamental matrices and mechanism, either

within the operating system or even the program itself, toLet us now turn to the measurement scenario for the model-
record the necessary entries in these matrices, it would being process described above. Consider a system whose re-
possible to reconstruct the function that a program was exe-quirements specify a set of a user operations. These opera-
cuting when it met its untimely demise.tions, again specified by a set of functional requirements, will

be mapped into a set of b elementary program functions. The
Instrumentation for Measurementfunctions, in turn, will be mapped by the design process into

a set of m program modules. Software reliability is a dynamic consideration. A source code
The software is designed to function optimally under an a program has never been known to fail. It will fail only when

priori operational profile. We need a mechanism for tracking it is compiled and executed. Therefore, we must be equipped
the actual behavior of the user of the system. To this end we to measure the program when it is running. There are two
require a vector, O, in which the program will count the fre- types of tools that will assist in this measurement. We may
quency of each of the operations. That is, an element oi of this instrument the software with probes or we may measure the
vector will be incremented every time the program initiates behavior of the system through the use of hardware measure-
the ith user operation. Each of the operations is distinct and ment tools, probes.
they are mutually exclusive. Thus we may use the Bayesian
estimation process to compute estimates for the actual poste-

Software Probes. To measure the activity within a programrior operational profile for the software.
we must insert special call statements at selected places inThe next, static, matrix Q that will have to be maintained
the software depending on what we wish to measure. Theseis the matrix that describes the mapping O � F of the opera-
calls are the software probes. Each call will cause control totions to the program functions. Each element of this matrix
be switched to a tally function that will record the call event.will have the property that

The actual recording that occurs in the object functions of
the software probes is dependent on the nature of the event
we wish to monitor. For software reliability purposes, we are
interested in instrumenting the software to record functional-

qi j =
{

1 if IMPLEMENTS (oi, f j ) is TRUE
0 if IMPLEMENTS (oi, f j ) is FALSE



RELIABILITY VIA DESIGNED EXPERIMENTS 457

ity information and also module transition information. To that the reliability of the system will be determined, in the
main, by the ability of the system to operate correctly for eachinstrument the software for functional profile information,

the user must physically determine the beginning of the set user. This first experiment will yield accurate operational
profile information.of modules in call tree representing each functionality. In this

case, calls to the tally function will record the frequency that The second experiment will be to determine the behavior
of the system under the observed operational profiles. Duringeach functionality has executed. In the case of the execution

profiles, These call statements transfer control to a special this phase, we will execute the system and measure its behav-
ior to learn about the way in which it was designed. We wouldfunction that records the entry event to each module in a fre-

quency transition matrix. like to understand the nature of the distribution of the mod-
ule profiles. These module profiles, of course, are dependentIt takes two levels of software to handle the software

probes. First, there is a preprocessor that physically inserts on functional profiles and execution profile. Each operational
profile will cause the system to exercise a particular set ofthe necessary calls into the source code. Second, there is the

runtime support consisting of the instrumentation package functionalities. Each of these functionalities, in turn, will gen-
erate an execution profile.for cumulating the software transition information. This run-

time package will also typically impose some input/output The third experiment will focus on obtaining reasonable
estimates for the module failure profiles. These failure pro-burden on the system, as well, in that we need to periodically

dump the transition matrix in that the system may fail at files represent the probability of transitioning to the virtual
failure modules from any of the program modules. To do this,any time taking the recording module with it.

Software probes have a very definite problem. They have we must very carefully map each observed failure to a partic-
ular module.the disadvantage of being obtrusive. The system will take a

real performance hit with theses probes in place. This is par-
ticularly true when we are instrumenting a poorly designed Point Estimates for Profiles
system that employs a number of modules that a called very

The focus will now shift to the problem of understanding thefrequently.
nature of the distribution of the probabilities for various pro-
files. We have so far come to recognize these profiles in termsHardware Probes. An alternative method for monitoring
of their multinomial nature. The multinomial distribution isthe activity of an executing program is to obtain the necessary
useful for representing the outcome of an experiment involv-call information directly from the instruction stream between
ing a set of mutually exclusive events. Let S � �M

i�1 Si wherethe CPU and main memory. Each call is typically initiated by
Si is one of M mutually exclusive sets of events. Each of thesea distinct P-capturing instruction. These instructions and
events would correspond to a program executing a particulartheir call addresses may be obtained directly from the flow
module in the total set of program modules. Further, letof instructions between memory and the CPU. Certainly, the
Pr(Si) � wi andoverwhelming advantage of this approach is that it is unob-

trusive. It does not impact the performance of the software it
is monitoring. The downside, is that the hardware costs are wT = 1 − w1 − w2 − · · · − wM

substantial. We must purchase both a hardware probe and
under the condition that T � M � 1, as defined earlier. Ina separate machine to process the flow of information from
which case wi is the probability that the outcome of a randomthe probe.
experiment is an element of the set Si. If this experiment is
conducted over a period of n trials then the random variable

EXPERIMENTAL OBJECTIVES Xi will represent the frequency of Si outcomes. In this case,
the value, n, represents the number of transitions from one

If we wish to understand the reliability of a software system program module to the next. Note that
and make future predictions about its behavior we must con-
duct three distinct experiments designed to reveal how the XT = n − X1 − X2 − · · · − XMsoftware will be used, how was it designed, and how likely
each program module is to fail when it is executed. The suc-

This particular distribution will be useful in the modelingcess of these experiments will be determined largely by our
of a program with a set of k modules. During a set of n pro-ability to obtain accurate measurements on the program and
gram steps, each of the modules may be executed. These, ofits users. We must learn that the accuracy of our reliability
course, are mutually exclusive events. If module i is executingassessments depend entirely on the accuracy of our measure-
then module j cannot be executing.ments.

The multinomial distribution function with parameters n
and w � (w1, w2, . . ., wT) is given byUnderstanding Software Behavior

To develop a viable assessment of the reliability of a software
system we must conduct three distinct experiments. First, we
must know how the software will be used. More precisely, we
will need good estimates for the operational profile for users
and the variance of these profiles across all users. In the best

f (x|n, w) =




n!∏k−1
i=1 xi!

wx1
1

wx2
2

· · · wxM
M

,

(x1, x2, · · ·, xM ) ∈ S
0 elsewhere

case everyone will use the software in exactly the same man-
ner. In the worst possible case, each user will exercise a dif- where xi represents the frequency of execution of the ith pro-

gram module.ferent set of operations. It should be quite clear to us by now



458 RELIABILITY VIA DESIGNED EXPERIMENTS

The expected values for the xi are given by multinomial distribution with parameters n and W � (w1,
w2, . . ., wM) where n is the total number of observed module

E(xi) = xi = nwi, i = 1, 2, . . ., k transitions and the values of the wi are unknown. Let us as-
sume that the prior distribution of W is a Dirichlet distribu-

the variances by tion with a parametric vector � � (�1, �2, . . ., �M) where
(�i � 0; i � 1, 2, . . ., M). Then the posterior distribution ofvar(xi) = nwi(1 − wi) W for the behavioral observation X � (x1, x2, . . ., xM) is a
Dirichlet distribution with parametric vector �* � (�1 � x1,and the covariance by
�2 � x2, . . ., �M � xM) [details in (17) DeGroot]. As an exam-
ple, suppose that we now wish to model the behavior of acov(wi, wj ) = −nwiwj, i �= j
large software system with such a parametric vector. As the
system makes sequential transitions from one module to an-We would like to come to understand, for example, the
other, the posterior distribution of W at each transition willmultinomial distribution of a program’s execution profile
be a Dirichlet distribution. Further, for i � 1, 2, . . ., T thewhile it is executing a particular functionality. The problem,
ith component of the augmented parametric vector � will behere, is that every time a program is run we will observe that
increased by 1 unit each time module mi is executed.there is some variation in the profile from one execution sam-

ple to the next. It will be difficult to estimate the parameters
w � (w1, w2, . . ., wT) for the multinomial distribution of the BIBLIOGRAPHY
execution profile. Rather than estimating these parameters
statically, it would be far more useful to us to get estimates 1. E. A. Elsayed, Reliability Engineering, Reading, MA: Addison-

Wesley, 1996.of these parameters dynamically as the program is actually
2. W. R. Dillon and M. G. Goldstein, Multivariate Analysis, Newin operation, hence the utility of the Bayesian approach.

York: Wiley, 1984.To aid in the process of characterizing the nature of the
3. R. V. Hogg and A. T. Craig, Introduction to Mathematical Statis-true underlying multinomial distribution, let us observe that

tics, Upper Saddle River, NJ: Prentice-Hall, 1995.the family of Dirichlet distributions is a conjugate family for
4. W. G. Cochran and G. M. Cox, Experimental Designs, New York:observations that have a multinomial distribution [details in

Wiley, 1957.Wilks (16)]. The probability distribution function (pdf) for a
5. G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for Exper-Dirichlet distribution, D(�, �T), with a parametric vector � �

imenters: An Introduction to Design, Data Analysis, and Model(�1, �2, . . ., �M) where (�i � 0; i � 1, 2, . . ., M) is
Building, New York: Wiley, 1978.

6. K. Hinkelmann and O. Kempthorne, Design and Analysis of Ex-
periments: Introduction to Experimental Design, New York: Wi-f (w|α) = �(α1 + α2 + · · · + αM )∏M

i=1 �(αi)
wα1−1

1
wα2−1

2
· · · wαM −1

M
ley, 1994.

7. Y. K. Malaiya et al., The Relationship Between Test Coverage
where (wi � 0; i � 1, 2, . . ., M) and �M

i�1 wi � 1. The expected and Reliability, Proc. 1994 IEEE Int. Symp. Softw. Reliability
values of the wi are given by Eng., Monterey, CA, 1994, pp. 186–195.

8. D. M. Cohen et al., The AETG System: An Approach to Testing
Based on Combinatorial Design, IEEE Trans. Softw. Eng., 23:E(wi) = µi = αi

α0
(23)

437–444, 1997.
9. A. P. Nikora, Software system defect content prediction from de-

where �0 � �T
i�1 �i. In this context, �0 represents the total velopment process and product characteristics, Dept. Comput.

epochs. The variance of the wi is given by Sci., Univ. Southern California, Los Angeles, CA, 1998.
10. J. Musa, A. Iannino, and K. Okumoto, Software Reliability: Mea-

surement, Prediction, Application, New York: McGraw-Hill, 1987.var(wi) = αi(α0 − αi)

α2
0 (α0 + 1)

(24)
11. P. Y. Chan, B. Littlewood, and J. Snell, Recalibrating Software

Reliability Models, IEEE Trans. Softw. Eng., 16: 458–470, 1990.
and the covariance by 12. J. C. Munson, Software Measurement: Problems and Practice,

Ann. Softw. Eng., 1: 255–285, 1995.
13. J. D. Musa, Operational Profiles in Software Reliability Engi-Cov(wi, wj ) = αiα j

α2
0(α0 + 1)

neering, IEEE Software, 10 (2): 14–32, 1993.
14. J. C. Munson and R. H. Ravenel, Designing Reliable Software,

Within the set of expected values �i, i � 1, 2, . . ., T, not Proc. 1993 IEEE Int. Symp. Softw. Reliability Eng., Denver, CO,
all of the values are of equal interest. We are interested, in 1993, pp. 45–54.
particular, in the value of �T. This will represent the probabil- 15. Reference Manual, Ada Programming Language, US Dept. De-
ity of a transition to the terminal failure state from a particu- fense, Washington, D.C., November 1980.
lar program module. 16. S. S. Wilks, Mathematical Statistics, New York: Wiley, 1962.

The value of the use of the Dirichlet conjugate family for 17. M. H. DeGroot, Optimal Statistical Decisions, New York:
modeling purposes is twofold. First, it permits us to estimate McGraw-Hill, 1970.
the probabilities of the module transitions directly from the
observed transitions. Secondly, we are able to obtain revised ALLEN P. NIKORA

Jet Propulsion Laboratoryestimates for these probabilities as the observation process
progresses. Let us now suppose that we wish to model the JOHN C. MUNSON

University of Idahobehavior of a software system whose execution profile has a



REMOTE PROCEDURE CALLS 459

REMOTE AND DISTRIBUTED COMPUTING
TOOLS. See REMOTE PROCEDURE CALLS.

REMOTE CONTROL, ROBOTICS. See TELEROBOTICS.
REMOTE NUMERICAL CONTROL MACHINING.

See TELECONTROL.


