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for the probability of interest converges to the true value as
the number of replications increases. This section considers
methods for generating random lifetimes and random pro-
cesses from probabilistic models. The basic methods are inver-
sion (inverse-CDF and inverse-CHF), linear combination
methods (composition and competing risks), majorizing meth-
ods (acceptance/rejection and thinning), and special prop-
erties.

The basic methods are followed by a discussion of order
statistics. The generation of order statistics is useful for esti-
mating measures of performance associated with series, par-
allel, and k-out-of-n systems. The accelerated life and propor-
tional hazards lifetime models can account for the effects of
covariates on a random lifetime. Variate generation for these
models is a straightforward extension of the basic methods
when the covariates do not depend on time. Variate genera-
tion algorithms for Monte Carlo simulation of nonhomoge-
neous Poisson processes are a simple extension of the inverse-
CHF technique. Methods for generating failure times for a
repairable system modeled by a nonhomogeneous Poisson
process are also reviewed.

PROBABILITY MODELS FOR LIFETIMES

In reliability modeling, a continuous positive random variable
typically represents the lifetime of a component or system.
The generic term ‘‘item’’ is used in this section to apply to
either a component or a system. Several functions completely
specify the distribution of a random variable. Five of these
functions are useful in describing variate generation algo-
rithms: cumulative distribution function (CDF), survivor
function, probability density function (PDF), hazard function,
and cumulative hazard function (CHF). Other functions, not
used here, are the characteristic function (1), density quantile
function (2), mean residual life function (3), moment-generat-
ing function (4) and total time on test transform (5).

This section considers techniques for generating random
variates for Monte Carlo simulation analysis. Two textbooks
[i.e., Devroye (6) and Dagpunar (7)] are devoted entirely to
the topic. The purpose of this section is to review algorithms
capable of transforming these random numbers to random
variates possessing known probabilistic properties for use in

MONTE CARLO SIMULATION reliability studies. With the generation of random variates as
a basis, several other topics, namely, generating order statis-

Simulation is a generic term used loosely in engineering, with tics, generating lifetimes from models with covariates, and
generating point processes, are considered.application areas ranging from flight simulators used in cock-

pit design to simulated annealing used in optimization. Simu- In the interest of brevity, we assume that a source of ran-
domness is available (i.e., a stream of independent randomlation is presented here as a mathematical and computational

technique used to analyze probabilistic models. Simulation numbers). These random numbers are uniformly distributed
between 0 and 1, and most high-level programming languagescan be divided into Monte Carlo simulation, where static mod-

els are analyzed, and discrete-event simulation, where dy- now include a random number generator. The random num-
bers are denoted by U and the random variates (lifetimes) arenamic models involving the passage of time are analyzed.

Since simulation is presented here in the context of reliability denoted by T. Algorithms for generating the random numbers
and desirable properties associated with random number gen-modeling, Monte Carlo simulation models are emphasized.

Monte Carlo simulation methods are often used when ana- erators (such as insensitivity to parameter values, speed,
memory requirements, relationship to variance reductionlytic methods become intractable, and they typically give a

modeler added insight into the structure of a problem. As re- techniques) are reviewed by Schmeiser (8), as well as by many
of the simulation textbooks that he references. Park andliability and lifetime models become less mathematically trac-

table, Monte Carlo methods will have increasing importance. Miller (9) also overview random number generation.
The discussion here is limited to generating continuous, asMonte Carlo simulation techniques mirror the relative fre-

quency approach for estimating probabilities. The estimate opposed to discrete or mixed, distributions. Generating vari-
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ates from discrete distributions is useful for evaluation of cer- If T is a random lifetime with cumulative hazard function H,
then H(T) is an exponential random variable with a mean oftain types of reliability analysis tools such as fault trees. For

simplicity, the examples are confined to the exponential and one. This result is the basis for the inverse-CHF technique.
Also, H(t) � �log S(t).Weibull distributions, which have been chosen because of

their tractability and widespread use. Any continuous life-
time distribution with a closed-form inverse-CDF could have RANDOM LIFETIME GENERATION
been used. Reliability textbooks that discuss Monte Carlo
techniques include Foster et al. (10), Goldberg (11), Harr (12), Techniques for generating a single, continuous lifetime from a
Henley and Kumamoto (13), Leemis (14), Mann et al. (15) and known parametric probabilistic model can be partitioned into
Rao (16). density-based and hazard-based algorithms. Density-based

The survivor function, also known as the reliability func- algorithms may be applied to any random variable whereas
tion and complementary CDF, is defined by hazard-based algorithms can only be applied to nonnegative

lifetimes. In this section, both types of algorithms are as-S(t) = P[T ≥ t] t ≥ 0
sumed to generate a nonnegative lifetime T.

The three classes of techniques for generating variates re-which is a nonincreasing function of t satisfying S(0) � 1 and
viewed in the subsections below are inversion, linear combina-limt�� S(t) � 0. The survivor function is important in the
tion methods, and majorizing methods.For each class, there isstudy of systems of components since it is the appropriate ar-
a density-based and a hazard-based method that are similargument in the structure function to determine system relia-
in nature. Examples of the use of all these techniques arebility (17). S(t) is the fraction of the population that survives
given in Leemis and Schmeiser (19). More recently, Devroyeto time t, as well as the probability that a single item survives
(20) gives a review of variate generation techniques requiringto time t. For continuous random variables, S(t) � 1 � F(t),
just one line of code.where F(t) � P[T � t] is the CDF.

When the survivor function is differentiable,
Inversion

f (t) = −S′(t) t ≥ 0 The density-based inverse cumulative distribution function
technique, or inverse-CDF technique, is based on the probabil-

is the associated PDF. For any interval (a, b), where a � b, ity integral transformation which states that F(T) � U(0, 1),
where F is the CDF for the random lifetime T. Thus

P(a ≤ T ≤ b) =
∫ b

a
f (t)dt

T ← F−1(U )

Finite mixture models for k populations of items may be mod- generates a lifetime T, where � denotes assignment. If the
eled using the PDF CDF has a closed-form inverse, this method typically requires

one line of computer code. If the inverse is not closed form,
numerical methods must be used to integrate the PDF.f (t) =

k∑
i=1

pi fi(t) t ≥ 0

Example 1. Consider a Weibull distribution with scale pa-
rameter � and shape parameter �. The CDF iswhere f i(t) is the PDF for population i and pi is the probability

of selecting an item from population i, i � 1, 2, . . ., k. Mix-
F(t) = 1 − e−(λt)κ t ≥ 0ture models are used in composition, a density-based variate

generation technique.
which has the closed-form inverseThe hazard function, also known as the rate function, fail-

ure rate, and force of mortality, can be defined by
F−1(u) = 1

λ
[− log(1 − u)]1/κ 0 < u < 1

h(t) = f (t)
S(t)

t ≥ 0
Thus, an algorithm for generating a Weibull random variate
is

The hazard function is popular in reliability work because it
has the intuitive interpretation as the amount of risk associ-
ated with an item that has survived to time t. The hazard T ← 1

λ
[− log(1 − U )]1/κ

function is a special form of the complete intensity function
at time t for a point process (18). In other words, the hazard where U � U(0, 1). Most random number generators cur-
function is mathematically equivalent to the intensity func- rently in use do not return exactly 0 or exactly 1. If U is gen-
tion for a nonhomogeneous Poisson process, and the failure erated so that 1 is excluded, 1 � U can be replaced with U
time corresponds to the first event time in the process. Com- for increased speed without concern over taking the logarithm
peting risks models are easily formulated in terms of h(t), as of 0.
shown in the next section.

The cumulative hazard function can be defined by The inverse-CHF technique is based on H(T) being expo-
nentially distributed with a mean of one. So

T ← H−1[− log(1 − U )]
H(t) =

∫ t

0
h(τ ) dτ t ≥ 0
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changeable in this fashion. An algorithm to estimate the
mean time to system failure using N system lifetimes is

3

2

1

Figure 1. A block diagram for a three-component system.

generates a single random lifetime T. This algorithm is easi-
est to implement if H can be inverted in closed form.

Example 2. Consider an arrangement of three identical
components with independent and identically distributed
Weibull lifetimes with parameters � and � as arranged in the
block diagram in Fig. 1. Find the mean time to system failure.

S ← 0

for i = 1 to N

generate U1,U2,U3 ∼ U (0, 1)

T1 ← 1
λ

[− log(1 − U1)]1/κ

T2 ← 1
λ

[− log(1 − U2)]1/κ

T3 ← 1
λ

[− log(1 − U3)]1/κ

T ← min{T1, max{T2, T3}}
S ← S + T

A ← S/N
It is possible to use both analytic and Monte Carlo tech-

The variable S contains a cumulative sum of the system life-niques to solve this problem. Let T1, T2, and T3 be the life-
times, and A contains the average of the system lifetimes gen-times for the three statistically identical components, let T be
erated. The estimate for the average time to system failure Athe system lifetime, and let Si(t) � e�(�t)�

be the survivor func-
converges to the analytic result as the number of replicationstion for component i for i � 1, 2, 3 and t 	 0. The system
N � �. This algorithm can be written more efficiently sincesurvivor function is
the components have identical distributions. To save on the
number of logarithms and exponentiations, properties such
as T2 	 T3 when U2 	 U3 can be exploited so that only one
Weibull variate needs to be generated for each system life-
time, based on the order of U1, U2, U3, as shown in the next

S(t) = S1(t)[1 − (1 − S2(t))(1 − S3(t))]

= e−(λt)κ [1 − (1 − e−(λt)κ )(1 − e−(λt)κ )]

= 2e−2(λt)κ − e−3(λt)κ t ≥ 0 example.

Thus, the mean time to system failure is A final example is given to illustrate an alternative way
of generating the system lifetime of a coherent system (17)
of components.

E[T] =
∫ ∞

0
S(τ ) dτ = �(1 + 1/κ)

λ
(21−1/κ − 3−1/κ )

Example 3. Consider the same system as Example 2. The
previous example used three random numbers to generate a

To solve the problem exactly as stated, this analytic solution single system lifetime T. Thus the algorithm was not synchro-
is ideal. For many applications, however, a Monte Carlo solu- nized. There is a technique for achieving synchronization that
tion can provide additional insight into a problem. Further- is illustrated in this example. The first step is to determine
more, a less restricted problem (e.g., more complicated failure �i � P[Ti � T], for i � 1, 2, 3, which is the probability that
distribution or dependent component failure times) might not component i is the component that ‘‘causes’’ system failure.
have a mathematically tractable analytic solution. A Monte Second, the conditional lifetime distribution of all compo-
Carlo estimate for the mean time to failure requires each nents, given that they are the cause of failure, should be de-
component lifetime to be generated, and the inverse-CHF termined, and a lifetime variate generated from the appro-
technique is used here. The cumulative hazard function for priate distribution. For the three-component example,
the Weibull distribution is

π2 = P[T3 < T2 < T1]

H(t) = (λt)κ t ≥ 0 and, by symmetry

which has the closed-form inverse π3 = P[T2 < T3 < T1] = π2

and
H−1(y) = 1

λ
y1/κ y ≥ 0

π1 = 1 − π2 − π3

Thus an algorithm for generating a Weibull random variate since �1 
 �2 
 �3 � 1. So the algorithm for generating a
is system lifetime from a single U(0, 1) is

Set up
T ← 1

λ
[− log(1 − U )]1/κ

which is identical to the inverse-CDF technique. In general,
the inverse-CDF and inverse-CHF techniques are inter-

determine π1, π2, π3

find the conditional lifetime distributions for all
components
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Algorithm tems, but it can also be used in actuarial applications. The
competing risks model is also used for modeling competing
failure modes for components that have multiple failure
modes. The algorithm is

generate Tj from hj(t), j = 1, 2, . . ., k

T ← min{T1, T2, . . ., Tk}

Majorizing Methods

generate U ∼ U (0, 1)

if 0 < U < π1 then J ← 1 and U ← U
π1

if π1 < U < π1 + π2 then J ← 2 and U ← U − π1

π2

if π1 + π2 < U < 1 then J ← 3 and U ← U − π1 − π2

π3
The third class of techniques for generating random lifetimes

generate T from conditional lifetime distribution J us- is the majorizing techniques: acceptance/rejection and a mod-
ing U. ified version of thinning. In order to use acceptance/rejection,

there must be a majorizing function f*(t) that satisfiesThe U that is used in the last step of the algorithm has been
f*(t) 	 f (t) for all t 	 0. The PDF corresponding to f*(t) isrescaled so that it is conditionally U(0, 1).

Some important properties inversion techniques exhibit:
g(t) = f ∗(t)

/∫ ∞

0
f ∗(τ ) dτ

• they are synchronized (i.e., one random number produces
one lifetime) The algorithm is

• they are monotone (i.e., larger random numbers produce
larger lifetimes)

• they accommodate truncated distributions
• they can be modified to generate order statistics (useful

for generating the lifetime of a k-out-of-n system, as

repeat

generate T from g(t)

generate S ∼ U (0, f ∗(T ))

until S ≤ f (T )
shown in the next subsection).

Generating T may be done by inversion or any other method.
Linear Combination Methods The name acceptance/rejection comes from the loop condition:

the random variate T is accepted for generation if S � f (T)Linear combination techniques are the density-based compo-
and rejected if S � f (T).sition method and the hazard-based competing risks method.

Thinning was originally used by Lewis and Shedler (21)The composition method is viable when the PDF can be writ-
for generating the event times in a nonhomogeneous Poissonten as the convex combination of k density functions
process. Thinning can be adapted to produce a single lifetime
by ignoring all but the first event time generated. A majoriz-
ing hazard function h*(t) must be found that satisfies h*(t) 	f (t) =

k∑
j=1

pj f j (t) t ≥ 0
h(t) for all t 	 0. The algorithm is

where

k∑
j=1

pj = 1.

The algorithm is

T ← 0

repeat

generate Y from h∗(t) given Y > T

T ← T + Y

generate S ∼ U (0, h∗(T ))

until S ≤ h(T )

Generating Y in the loop can be done by inversion or any

choose PDF j with probability pj, j = 1,2, . . ., k

generate T from PDF j
other method. The name thinning comes from the fact that T
can make several steps, each of length Y, that are thinned outThe first step is typically executed using a discrete inversion
before the loop condition is satisfied.algorithm.

The second linear combination technique is called compet-
Special Propertiesing risks, which can be applied when the hazard function can

be written as the sum of hazard functions, each corresponding The fourth class of techniques for generating random life-
to a ‘‘cause’’ of failure times is called special properties. It is neither density nor

hazard-based since it depends on relationships between ran-
dom variables. Examples of special properties include gener-
ating an Erlang random variable as the sum of independent

h(t) =
k∑

j=1

hj (t) t ≥ 0

exponential random variables, and generating a binomial ran-
dom variable as the sum of independent Bernoulli randomwhere hj(t) is the hazard function associated with cause j of

failure acting in a population. The minimum of the lifetimes variables. Examples of special properties associated with ran-
dom variables are given in the encyclopedic work of Johnson,from each of these risks corresponds to the system lifetime.

Competing risks is most commonly used to analyze series sys- Kotz, and Balakrishnan (22).
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The four techniques described in this section are often The inverse of the Weibull CDF is
combined in order to generate a variate from a particular dis-
tribution. Devroye (6) and Dagpunar (7) review variate gener-
ation techniques for some of the more intractable distribu- F−1(u) = 1

λ
[− log(1 − u)]1/κ 0 < u < 1

tions (e.g., normal and gamma) that are not considered here.
Most computer installations have access to subprograms ca- A system lifetime T, which corresponds to the order statistic
pable of generating variates from a wide range of distribu- T(n), is generated by
tions.

The generation of independent univariate random variates
provides the basis for Monte Carlo simulation analysis of re- T ← 1

λ
[− log(1 − U1/n)]1/κ

liability models. There are a number of directions that a sec-
tion of this nature could take at this point. I have opted for This is clearly faster than generating n Weibull variates and
surveying: generating order statistics, generating lifetimes for returning the largest generated.
models with covariates, and generating nonhomogeneous
Poisson processes. Other important topics include generating

To generate order statistics efficiently for a k-out-of-n sys-random vectors [see Rao (16) and Grimlund (23)], civil engi-
tem, the following algorithm can be used when a beta variateneering applications [see Harr (12)], mechanical engineering
generator is availableapplications [see Rao (16)], fault tree analysis [see Henley and

Kumamoto (13)], or discrete-event simulation [see Law and
Kelton (24)]. generate X ∼ beta(n − k + 1, k)

T ← F−1(X )

ORDER STATISTIC GENERATION
The variate generated corresponds to T(n�k
1).

In many reliability applications, the efficient generation of or-
der statistics can be useful for generating a random system

ACCELERATED LIFE AND PROPORTIONAL HAZARDS MODELSlifetime. Order statistics play a central role in the analysis of
simple arrangements of systems consisting of n statistically

The effect of covariates (explanatory variables) on survival of-identical components. Let T1, T2, . . ., Tn be the n indepen-
ten complicates the analysis of a set of lifetime data. In adent failure times of components in a system, and let T(1),
medical setting, these covariates are usually patient charac-T(2), . . ., T(n) be the ordered failure times. If T denotes the
teristics such as age, gender, or blood pressure. In reliability,system failure time, then T � T(1) for a series system, T �
covariates (such as the turning speed of a machine tool or theT(n) for a parallel system and T � T(n�k
1) for a k-out-of-n sys-
stress applied to a component) affect the lifetime of an item.tem. The most straightforward approach to generating the
Two common models to incorporate the effect of the covariatessystem lifetime for these models is to generate the lifetimes
on lifetimes are the accelerated life and Cox proportional haz-of each of the components, sort the lifetimes, then choose the
ards models. This section describes algorithms for the genera-appropriate order statistic. This approach is adequate when
tion of lifetimes that are described by one of these models.n is small and the lifetimes are simple to generate. When one

The q � 1 vector z contains covariates associated with aor both of these conditions do not hold, the following results
particular item or individual. The covariates are linked to thefrom Schucany (25), Ramberg and Tadikamalla (26), and
lifetime by the function �(z), which satisfies �(0) � 1 andSchmeiser (27,28) can be used to generate order statistics
�(z) 	 0 for all z. A popular choice is �(z) � e�
z, where � ismore efficiently. The algorithms presented in this section are
a q � 1 vector of regression coefficients.effective ways of decreasing the central processing unit (CPU)

The cumulative hazard function for T in the accelerated lifetime to generate a system lifetime since only one inversion of
model is (18)F is necessary and no sorting is required.

The random variables min�U1, U2, . . ., Un� and 1 � (1 �
U)1/n have the same distribution, where Ui, i � 1, 2, . . ., n H(t) = H0[tψ(z)]
and U are independent random numbers. If the function
F �1(u) can be evaluated in closed form or numerically, an al- where H0 is a baseline cumulative hazard function. When
gorithm to generate the system lifetime of a series system of z � 0, H0 � H. In this model, the covariates accelerate
identical components is [�(z) � 1] or decelerate [�(z) � 1] the rate that the item

moves through time. The cumulative hazard function for T in
T ← F−1[1 − (1 − U )1/n] the proportional hazards model is

Since max�U1, U2, . . ., Un� and U1/n have the same distribu-
H(t) = ψ(z) H0(t).

tion, the system lifetime of a parallel system of statistically
identical components can be generated by

In this model, the covariates increase [�(z) � 1] or decrease
[�(z) � 1] the failure rate of the item by the factor �(z) for allT ← F−1(U1/n)
values of t.

All of the algorithms are based on the fact that H(T) isExample 4. A system of n statistically identical components
is arranged in parallel. If each component has an independent exponentially distributed with a mean of one. Therefore,

equating the cumulative hazard function to �log(1 � U) andWeibull lifetime with scale parameter � and shape parameter
�, find the fastest way to generate a system lifetime variate. solving for t yields the appropriate generation technique.
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Table 1. Lifetime Generation in Regression Models

Renewal NHPP

Accelerated life T � a 

H�1

0 [�log(U)]
�(z)

T �
H�1

0 �H0[a�(z)] � log(U)�
�(z)

Proportional hazards T � a 
 H�1
0 ��log(U)

�(z) � T � H�1
0 �H0(a) �

log(U)
�(z) �

In the accelerated life model, since time is being expanded The renewal and NHPP algorithms are equivalent when
a � 0 (since a renewal process is equivalent to an NHPP re-or contracted by a factor �(z), variates are generated by
started at zero after each event), the accelerated life and pro-
portional hazards models are equivalent when �(z) � 1, and
all four cases are equivalent when H0(t) � �t (the exponentialT ← H−1

0 [− log(1 − U )]
ψ(z)

case) because of its memoryless property.

In the proportional hazards model, equating �log(1 � U) to GENERATING A NONHOMOGENEOUS POISSON PROCESS
H(t) yields the variate generation formula

This section describes two techniques for generating event
times for NHPPs. Homogeneous Poisson processes and re-T ← H−1

0

(− log(1 − U )

ψ(z)

)
newal processes are not considered since they are a straight-
forward generalization of the inversion algorithms. An NHPP

In addition to generating individual lifetimes, these variate is often suggested as an appropriate model for the failure
generation techniques can be applied to point processes. A times of repairable systems whose rate of occurrence of fail-
renewal process, for example, with time between events hav- ures varies over time (4). The repair time must be negligible
ing a cumulative hazard function H(t), can be simulated by in order to use an NHPP to approximate the probabilistic
using the appropriate generation formula for the two cases mechanism governing the sequence of failures. The two tech-
shown above. These variate generation formulas must be niques considered here are inversion, which relies on a time-
modified, however, to generate variates from a nonhomoge- scale transformation given by Cinlar (32), and thinning, de-
neous Poisson process (NHPP). veloped by Lewis and Shedler (21).

In an NHPP, the hazard function, h(t), is analogous to the An NHPP is a generalization of an ordinary homogeneous
intensity function, which governs the rate at which events Poisson process with events occurring randomly over time at
occur. To determine the appropriate method for generating the rate of �. Events occur over time at a rate defined by the
variates from an NHPP, assume that the last event in a point intensity function, �(t). The cumulative intensity function is
process has occurred at time a. The cumulative hazard func- defined by
tion for the time of the next event, conditioned on survival to
time a, is �(t) =

∫ t

0
λ(τ ) dτ t > 0

HT |T>a(t) = H(t) − H(a) t ≥ a
and is interpreted as the mean number of events by time t.

InversionIn the accelerated life model, where H(t) � H0[t�(z)], the time
of the next event is generated by When �(t) can be inverted in closed form, or when it can be

inverted numerically, Cinlar (32) showed that if E1, E2, . . .
are the event times in a homogeneous Poisson process with
rate one, then ��1(E1), ��1(E2), . . . are the event times for an

T ← H−1
0 {H0[aψ(z)] − log(1 − U )}

ψ(z)

NHPP with cumulative intensity function �(t). This is a gen-
Equating the conditional cumulative hazard function to eralization of the result that formed the basis for the inverse-

CHF algorithm. An algorithm for generating the event times�log(1 � U), the time of the next event in the proportional
T1,T2, . . ., for an NHPP with cumulative intensity functionhazards case is generated by
�(t) is

T ← H−1
0

[
H0(a) − log(1 − U )

ψ(z)

]

An example of the application of these algorithms to a partic-
ular parametric distribution is given in Leemis (29). Exten-
sions to the case where the covariates are time dependent are
given in Leemis, Shih, and Reynertson (30) and Shih and
Leemis (31). Table 1 summarizes the variate generation algo-
rithms for the accelerated life and proportional hazards mod-
els (the last event occurred at time a). The 1 � U has been
replaced with U in this table to save a subtraction, although
the sense of the monotonicity is reversed.

T0 ← 0

E0 ← 0

i ← 0

repeat

i ← i + 1

generate U ∼ U (0, 1)

Ei ← Ei−1 − log(1 − U )

Ti ← �−1(Ei)

until Ti ≥ S
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The algorithm returns the event times T1, T2, . . ., Ti�1, where This estimator passes through the points
S is a prescribed termination time of the point process. The
algorithm is valid because �log(1 � U) is the appropriate way
(via inversion) of generating an exponential variate with a

(
t(i),

in
(n + 1)k

)
mean of one. As before, replacing 1 � U with U reduces the
CPU time.

for i � 1, 2, . . ., n 
 1.
The rationale for using a linear function between the data

Example 5. The cumulative intensity function is given by values is that inversion can be used for generating realiza-
tions without having tied events. If the usual step-function
estimate of �(t) is used, only the t(i) values could be generated.�(t) = (λt)κ t > 0

Using inversion, the event times from a unit Poisson pro-
cess, E1, E2, . . ., can be transformed to the event times of anoften known as the power law process (33). If � � 1, the popu-
NHPP via Ti � ��1(Ei). For the NHPP estimate consideredlation of items is deteriorating, if � � 1, the population of
here, the events at times T1, T2, . . . can be generated foritems is improving, and if � � 1 the NHPP simplifies to a
Monte Carlo simulation by the algorithm below, given n, k, Shomogeneous Poisson process. Since the inverse cumulative
and the superpositioned values.intensity function is

�−1(y) = 1
λ

y1/κ y > 0

the last statement in the loop becomes

Ti ← 1
λ

E1/κ

i

The techniques for estimating the cumulative intensity
function for an NHPP from one or more realizations is too
broad a topic to be reviewed here. Examples of parametric
and nonparametric techniques for estimation and generating
realizations for simulation models are given in Lee, Wilson,
and Crawford (34) and Leemis (35), and the latter is illus-
trated in the following example.

i ← 1

generate Ui ∼ U (0, 1)

Ei ← − log(1 − Ui)

while Ei <
n
k

do

begin

m ←
⌊

(n + 1)kEi

n

⌋

Ti ← t(m) + [t(m+1) − t(m)]
[

(n + 1)kEi

n
− m

]
i ← i + 1

generate Ui ∼ U (0, 1)

Ei ← Ei−1 − log(1 − Ui )

end

Example 6. This example considers nonparametric estima- Thus, it is a straightforward procedure to obtain a realiza-
tion of the cumulative intensity function of an NHPP from tion of i � 1 events on (0, S] from the superpositioned process
one or more realizations and the associated algorithm for gen- and U(0, 1) values U1, U2, . . ., Ui. Inversion has been used
erating random variates. This method does not require the to generate this NHPP, so certain variance reduction tech-
modeler to specify any parameters or weighting functions. niques, such as antithetic variates or common random num-

The cumulative intensity function is to be estimated from bers, may be applied to the simulation output. Replacing
k realizations of the NHPP on (0, S], where S is a known 1 � Ui with Ui in generating the exponential variates will
constant. Let ni(i � 1, 2, . . ., k) be the number of observa- save CPU time, although the direction of the monotonicity is
tions in the ith realization, reversed. Tied values in the superposition do not pose any

problem to this algorithm, although there may be tied values
in the realization. As n increases, the amount of memory re-
quired increases, but the amount of CPU time required to

n =
k∑

i=1

ni

generate a realization depends only on the ratio n/k, the av-
erage number of events per realization.and let t(1), t(2), . . ., t(n) be the order statistics of the superpo-

sition of the k realizations, t(0) � 0 and t(n
1) � S. Setting
�̂(S) � n/k yields a process where the expected number of If the inverse cumulative intensity function is not avail-
events by time S is the average number of events in k realiza- able, but a majorizing intensity function can be found, then
tions, since �(S) is the expected number of events by time S. thinning can be used to generate variates.
The piecewise linear estimator of the cumulative intensity
function between the time values in the superposition is

Thinning

In describing the basic techniques for variate generation,
thinning was adapted to generate a single lifetime. Thinning
was originally devised to generate the event times for an
NHPP (21). Assume that a majorizing intensity function

�̂(t) = in
(n + 1)k

+
[

n(t − t(i) )

(n + 1)k(t(i+1) − t(i)

]

t(i) < t ≤ t(i+1); i = 0, 1, 2, . . ., n.
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�*(t) exists such that �*(t) 	 �(t) for all t 	 0. The algorithm log natural logarithm
is � the gamma function

T(i) order statistic i
z a q � 1 vector of covariates
� a q � 1 vector of regression coefficients
�(z) link function
�(t) intensity function
�(t) cumulative intensity function
E1, E2, . . . homogeneous Poisson process event times
T1, T2, . . . event times for an NHPP
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