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Figure 1. Redundant group of m 	 1 units in parallel.

on cold standby do not fail and degrade very slowly, compared
with their counterparts on active duty. Spare units in storage
come closest to this definition. A notion of warm standby is
also found in the literature. In this case the units are sup-
posed to be ready but not operational. They can be switched
in when needed. Units on warm standby are assumed to de-
grade and fail, albeit more slowly than the units on hot
standby. Mathematical models of the warm standby situation
generally involve details unique to a system, which we will
not pursue here.

Another dimension of redundancy is the notion of individ-
ual or group standby. Group standby is effective in a com-
puter (possibly embedded) network. All components may be
loaded with a specific software and may have unique roles in
operation, whereas the hardware may be generic. Under thisRELIABILITY OF REDUNDANT AND
situation it may be enough to use a few redundant hardwareFAULT-TOLERANT SYSTEMS
units which may be configured to provide the functionality of
a failed unit. By similar reasoning, one can see that sameAmong the varied methods for improving the reliability of an
model also works for a multichannel communication system.engineering design, redundancy plays an important role. Re-

In this discussion we have implicitly assumed that thedundancy is usually understood as the use of additional
switches responsible for swapping failed operating units withstandby units to protect a system against the failure of its
a standby (hot or cold) unit work perfectly and instantly. Thisoperating units. A redundant system does not necessarily
hardly represents the real situation. We will talk about thehave protection against a catastrophic failure of all (or most)
role and limitation of real switches later in the article.of its units because some units are connected in series.

In this article we consider only structural redundancy of
Individual Hot Standbydependent units. This involves the use of standby redundant

units in different ways or the specialized use of additional Individual hot standby is identical to a parallel system under
units as in a bridge network structure. There are other meth- the assumption of perfect switching. Thus, a standby unit is
ods of achieving functional redundancy in a system (1). For in the same regime as an operational unit. In most situations
instance, under the load-sharing regime, operating units all units in such a redundant group (RG) are considered sto-
work with a loading less than nominal. Systems with time chastically identical. An RG of (m 	 1) units (an operational
redundancy have extra time to compensate for the conse- unit and m standby units) is assumed to be successfully op-
quences of current failures. erating if at least one unit of the group is in the up state. A

The effect of redundancy can be dramatically increased if reliability block diagram (RBD) of this redundant group is
one uses renewal (repair or replacement) of failed units. Re- shown in Fig. 1. If �k is the random time to failure for unit k,
dundancy with restoration is considered in more detail in the then the RG random time to failure �RG � max

1�k�m	1
(see Fig. 2).

article entitled REPAIRABLE SYSTEMS in this encyclopedia.
Some discussion on systems with dependent units can be
found in Ref. 2.

MANY FLAVORS OF STRUCTURAL REDUNDANCY

Even structural redundancy comes in many flavors. A system
is in hot standby if there are more units in operation than
needed and all units are in the operational mode. Comparison
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with a cold standby scenario clarifies the previous statement.
The use of cold standby originates from the belief that units Figure 2. Time diagram for a group of four hot standby units.
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The probability of failure-free operation (PFFO) of the
group can be written in a very simple form:

PRG = 1 − (1 − p)m+1

The unit PFFO is denoted by p in this expression. The mean
time to failure (MTTF) is easily written only for the exponen-
tial distribution of time to failure of individual units if the
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units are statistically identical:

Figure 4. Redundant group of k main and n � k standby units.
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)
units, that is, �t � 1, one can use an approximation:

The unit MTTF is denoted by T in this expression. Formally,
the RG MTTF increases without limit with increasing num-
ber of units. The rise is very slow, however, and is merely P(m+1)(t) ≈ 1 − (λt)m+1

(m + 1)!
· exp(−λt)

logarithmic in m. We would like to mention without proof that
for given T and m, TRG is high if unit time to failure (TTF) Group Hot Standby
exhibits large dispersion.

A routine engineering practice is to use a group of common
standby units for a group of operating units (see Fig. 4). SuchIndividual Cold Standby
a structure is sometimes called k-out-of-n, implying that the

Redundant units on cold standby are assumed not to fail system operates successfully if k units among the total of n
while not operating. If the cold standby implies spares, the survive. Usually, such cases appear in communication and
time to switch them in may not be neglected. Thus the system computer systems. This is an obvious generalization of a par-
with only cold standby units is exposed to system failure. In allel system, where k � 1. The case with k � n � 1 is some-
this case it may be more appropriate to talk about sufficiency times called the fail safe configuration. In the following dis-
of a spare stock rather than system reliability. All units (op- cussion we will denote the number of operating units by k and
erating and redundant) are assumed identical with the same the total number of the system’s units by n (the number of
MTTF, T. A time diagram for such a system is presented in hot standby units equals n � k).
Fig. 3. Each unit in the RG fails at a random moment. We denote

If a unit has m standby redundant ones, then the MTTF the random time to failure of unit j by �j and order them in
of such a redundant group TRG � (m 	 1)T. In this case the increasing order. Now we introduce another notation: �(k) is
PFFO of the RG, P(m	1)(t), can be expressed in more complex the time when the kth unit fails. By construction,
way than for hot redundancy:

min
1≤k≤n

ξk = ξ(1) < ξ(2) < · · · < max
1≤k≤n

ξk

P(m+1)(t) =
∫ t

0
P(m)(t − x) f (x) dx

In this case the RG’s random time to failure �RG � �(n�k	1) (see
Fig. 5).

where P(k)(t) is the convolution of order k of the unit’s PFFO The PFFO of the RG can be written as
and f (t) is the density function of the distribution of the unit’s
time to failure. The latter expression has a simple form if
f (t) is an exponential function f (t) � � exp(��t):

P(m+1)(t) =
m∑

k=0

(λt) j

j!
· exp(−λt) = 1 −

∞∑
j=m+1

(λt) j

j!
· exp(−λt)

PRG =
n∑

j=k

(
n
j

)
pj (1 − p)n− j =

n−k∑
j=0

(
n
j

)
(1 − p) j pn− j

= 1 −
n∑

j=n−k+1

(
n
j

)
(1 − p) j pn− j

Thus P(m	1)(t) involves a Poisson distribution. The defining pa- It follows from the very right part of the preceding formula
rameter of the Poisson distribution �t is the mean number of that, for highly reliable units (1 � p � 1/n), the approximate
failures in a time interval of length t. For highly reliable
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Figure 5. Time diagram for a group of three operating and two hot
standby units (�(3) is the moment of system failure).Figure 3. Time diagram for a group of four cold standby units.



RELIABILITY OF REDUNDANT AND FAULT-TOLERANT SYSTEMS 437

value for the RG PFFO is given by

PRG ≈ 1 −
(

n
n − k + 1

)
(1 − p)n−k+1pk−1

The MTTF can be easily written only for the exponential dis-
tribution:

TRG = T
(

1
k

+ 1
k + 1

+ · · · + 1
n

)
= T

n∑
j=k

1
j

It is important to notice that group hot standby is effective
for increasing the system PFFO. The MTTF, however in-
creases very slowly.

Group Cold Standby

An economical way of achieving the benefits of redundancy is
to use a group of m � n � k cold standby units for a group of
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k operating units if short interruptions to system operation

Figure 6. A series system with system-level and unit-level redun-can be tolerated. In the general case the description of the
dancy: (a) system-level; (b) unit-level.process is very complicated. Simple results are known only

for the exponential TTF distribution. The PFFO of the system
can be written as

which uses standby, the better. We illustrate this (Fig. 6) by
considering the limiting cases of system-level and unit-level
redundancy for a series system under hot standby.PRG =

n−k∑
j=0

(ktλ) j

j!
exp(−ktλ) = 1 −

∞∑
j=n−k+1

(ktλ) j

j!
exp(−ktλ)

Hot standby system-level redundancy means that (m 	 1)
series circuits of n different independent units are connected

The MTTF can be easily written for the exponential distribu- in parallel. The PFFO of such a redundant system is given by
tion as

TRG = (n − k + 1) · T
k

PSystem = 1 −
(

1 −
n∏

k=1

pk

)m+1

For arbitrary distribution of unit time to failure in the case In the case of unit-level redundancy, each unit j of the circuit
of group cold standby, numerical results can be obtained with has m redundant units for itself. In this case,
the help of Monte Carlo simulation.

Voting Systems P∗
System =

n∏
k=1

[1 − (1 − pk)m+1]

A common use of a voting system is in mission-critical soft-
It can be shown that P*System 
 PSystem (1,3).ware decisions. In such systems, n independent outputs (sig-

nals) are compared against each other. If k signals coincide,
the system is assumed to be operating successfully. If the FAILURE MONITORING AND ROLE OF SWITCHES
number of possible outputs are many in number (like correc-
tion to a spacecraft trajectory), two identical but indepen- It is usually assumed that standby units replace failed units
dently computed outputs often offer a reasonable level of con- instantaneously and certainly. Engineers know, however,
fidence unless there is a tie. that the problem of replacing a failed unit is not that simple.

At the other extreme of binary decisions, the situation is In most cases, the reliability of the switching device is a re-
somewhat different. If there are only two possible answers, a stricting factor. A redundant group might be very reliable,
correct (output) signal or a mistaken signal, the system out- but the switch itself becomes the troublemaker.
put signal corresponds to the majority signal. Of course, there To perform switching effectively and quickly, one must
is a possibility of adopting the wrong signal for the system if have built-in monitoring equipment that monitors all units
the majority reports a mistaken signal. The probability of a thoroughly and frequently. We emphasize that the monitoring
mistaken output for the system as a whole is small if each device must monitor all units (at least for group hot redun-
unit generates the correct signal with relatively high proba- dancy) and not just the operating ones. Otherwise some re-
bility. It is easy to see that this system is a modified version dundant units may fail quietly and switching will have no
of the group hot standby model. real effect on reliability. The monitoring device itself is sub-

ject to hardware and software failures. Some discussion of the
Redundancy Depth

problem can be found in Refs. 1 and 4.
So far all units are implicitly assumed to be bistate, op-The effectiveness of redundancy depends on the application

depth. In most cases, the smaller a part (deeper application) erating or failed. A switch is a tristate unit because it has
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two distinct failure modes, failure to switch when needed and
failure to idle (premature and unnecessary switching). Relia-
bility analysis of a system involving a switch connected to
many units (Fig. 7) is complicated because the switch may get
stuck with one unit and it may not be able to connect to an-
other with positive probability.

To simplify the situation, the reliability analysis of a
switch is generally performed by modeling the switch as an
abstract two-state object considered in series with the redun-
dant components. An RBD with such an abstract switch is
called a relay configuration (5).
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We remind the readers that cold redundancy is usually
considered a model for spare units. Any replacement of a Figure 8. Bridge structure.
failed unit by a spare takes some time. In this case the role
of the noninstant switch is played by the repairperson. If a
failed unit is not redundant, then the system interrupts its

the redundant unit is back in operation and again the systemoperation for the replacement time.
is protected against a failure. System failure occurs only if all
units of the redundant group fail during the renewal proce-REDUNDANCY WITH REPAIRABLE UNITS
dure. For highly reliable systems the probability of a second
failure during the replacement (repair) time is insignificant.So far we have implicitly assumed that failed units are never
For more details concerning the reliability analysis of repair-repaired but are replaced with new ones when needed. How-
able systems, the reader may consult the article entitled RE-ever, most failed units are not thrown out. They are repaired
PAIRABLE SYSTEMS in this encyclopedia.where appropriate and retained for the future use. So, there

is some kind of unit circulation:

NETWORK REDUNDANCY• An operational unit fails;
• The failed unit is replaced by a spare unit; and

One of the most sophisticated methods of redundancy is rep-
• The failed unit is repaired and becomes a spare unit. resented by network structures. In this case all units (links)

can be considered operating units. At the same time, failure
If a nonredundant unit fails and it has to be replaced or of some of them might not affect performance of the network

repaired before the system can be returned to the operating
as a whole. The impact of failure depends on the failure loca-

state, the system downtime can be unacceptably high. A judi-
tion, the current system loading (for instance, the level ofcious use of spares (cold redundancy) with (hot) redundancy
traffic in a telecommunication network), the algorithm of net-reduces the system downtime to an acceptable level. If a
work operation, and other factors. We will only consider two-failed unit is redundant, then an almost instant switch for
pole networks to confine the discussion to standard reliabilitythe standby unit might not influence the system operation. If
block diagrams. The main feature of a general network struc-replacement (or even repair) of a failed unit is fast enough,
ture is that it cannot be reduced to series–parallel and paral-
lel–series connections.

Irreducible Bridge

Obviously there are systems which cannot be reduced to a
combination of series and parallel structures. The simplest
planar structure of this kind is called a bridge structure (Fig.
8). There are other structures which may not be depicted on
a plane. A general structure of this kind is analyzed by study-
ing its paths and cuts.

A system with a two-pole network structure is assumed to
be operating successfully if there is at least one path from the
input node to the output node. Thus, a path is a minimal set
which connects the input with the output. The failure of this
structure means that there is at least one cut, that is, a cut
is a minimal set of units such that their simultaneous failure
leads to disconnecting the input and output nodes of the net-
work. The system with a bridge structure has four different
paths, �1, 4�, �1, 3, 5�, �2, 5�, and �2, 3, 4�, and four different
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cuts, �1, 2�, �1, 3, 5�, �2, 3, 4�, and �4, 5�. One can find that the
subsets of units (links) forming the paths intersect, that is,Figure 7. Redundant group with a switch; (a) real switch; (b) ab-

stract switch. they have some common units. The same is true for the cuts.
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General Irreducible Network and cuts). From reliability theory (4,5), it is known that, for a
series system of n dependent units, the PFFO satisfies theReliability analysis of networks in the most general case is
inequalityvery complicated. It is not possible to calculate exact reliabil-

ity indexes of a general network analytically. One has to re-
sort to approximate, numerical, or simulation (Monte Carlo)
techniques. However, it is possible to find simple upper and

PSeries ≥
n∏

k=1

pk

lower limits for the PFFO of a two-pole network under the
condition that any connection of the input and output nodes For a parallel system of m dependent units, the PFFO satis-
is admissible and constitutes an operating state of the net- fies the inequality
work. Of course, this assumption is very restrictive for real
systems because the existence of a path does not mean that
the network is operating successfully. (A telecommunication
network with a traffic load greater than the available capacity

PParallel ≤ 1 −
m∏

k=1

qk

of the path is a simple counterexample.) We consider two
main methods of boundary evaluation of the network PFFO where qk � 1 � pk. This immediately allows us to write the
(or availability coefficient). following for a system with a bridge structure:

BOUNDS ON TWO-POLE NETWORKS (1 − q1q2)(1 − q1q3q5)(1 − q4q5)(1 − q2q3q4) < PBridge

< 1 − (1 − p1 p4)(1 − p1 p3 p5)(1 − p2 p5)(1 − p2 p3 p4)

In this section we consider some approximate analytical
bounds on two-pole networks. Unfortunately, these bounds For the general case (details of which can be found in
are generally not very tight, and it is not possible to infer (4,5)), the Esary–Proschan bounds can be written in the form
which of these methods is better for a given network before
actual computation. In spite of all these shortcomings, these
techniques form a starting point for further analyses of gen-

∏
∀k

Bk ≤ PBridge ≤ 1 −
∏
∀ j

A j

eral networks.

whereEsary–Proschan Bounds

The Esary–Proschan method compares a general system with
a suitably constructed series system of cuts and parallel sys-
tem of paths. The Esary–Proschan bounds can be computed

Bk = 1 −
∏
i∈bk

qi

only after finding all paths and cuts for a system. We illus-
trate this method for the simplest irreducible network with a Bk is the set of units belonging to the kth minimum cut
bridge structure. All simple cuts and paths of the structure
are enumerated in Fig. 9.

It is not possible to derive a precise formula for the system
Aj = 1 −

∏
i∈a j

pi

PFFO by using formulas for series–parallel and parallel–
series connections because of dependent units (both in paths

and Ak is the set of units belonging to the jth minimum path
in the network.

The inconvenience of this method is in the necessity of enu-
merating all cuts and paths of the network which is not a
simple problem for networks of large dimension. Besides, the
larger the network, the weaker the bounds generally turn out
to be.

Litvak–Ushakov Bounds

The Litvak–Ushakov method also compares the general net-
work with a suitably constructed set of series and parallel
structures. The main advantage of this method over the
Esary–Proshan method is that it is possible to compute a
weak bound with relative ease. In addition, this bound can be
improved upon by finding more bounding structures.

We illustrate this method on a bridge structure. All simple
cuts and paths of the structure were enumerated above (Fig.
9). The idea of the Litvak–Ushakov method is in presentating
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(a)

(b) a network as a parallel connection of nonintersected (i.e., inde-
pendent) paths or as a parallel connection of nonintersectedFigure 9. Decomposition of a bridge structure into paths and cuts

(a) parallel configuration of paths; (b) series configuration of cuts. cuts. The Litvak–Ushakov presentation of a network is not
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where Bk and Aj have the same sense as above; �1, . . ., �N

and �1, . . ., �M are different sets formed from nonintersected
paths and cuts, respectively. One can find more details in
(1,3).

DYNAMIC REDUNDANCY

A class of realizations of unit redundancy can be presented
by an interesting scheme called dynamic redundancy. In this
scheme, a redundant group consists of three subgroups, op-
erating units, hot standby units, and cold standby units. Dy-
namic redundancy is applicable in situations where a failed
unit cannot be repaired and failing stock (cold standby units)
cannot be replenished. Thus the dynamic redundancy prob-

2 3 4

1 3 5

1 4

2 5

(b)

(a)

lem is closely related to the problem of inventory control,
though it is different from the classical problem of inventory
control. Because of this stringent definition, dynamic redun-
dancy is not widely applicable. Ideas of dynamic redundancy
may be applied to ensure the reliability of power supply
equipment on an orbiting man-made satellite.

Assuming perfect switching, hot standby units are modeled
as operating in parallel with main operating units. It is fur-
ther assumed that cold standby units can be switched in only
at some predefined moment. If there is a deficit of hot standby
units before a cold switch is scheduled, the system fails. One
may consider assigning all redundant units to the hot standby
pool. In this case redundant units may be spent too soon, and
they can not be replaced. On the other hand, if the number of
hot standby units is smaller than some threshold, the proba-
bility of system failure before the switching of cold standby

1
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4
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(b)

(a)

units increases significantly. Depending on the actual situa-
tion, it may even be beneficial not to replace all failed unitsFigure 10. Decomposition of a bridge structure into nonintersected
at the time of maintenance after most of the spare units havepaths and cuts (a) paths; (b) cuts.
been used up. Thus the problems of finding the optimal num-
ber of hot standby units and the number cold standby units
to be switched in at prescribed moments arise.

unique. For the bridge structure (Fig. 8), there are three pos- The situation is further complicated by the existence of dif-
sible presentations each for paths and cuts (Fig. 10). ferent goals that dynamic redundancy tries to maximize. A

Omitting all details we only mention that series connec- military satellite operation may not be ever interrupted even
tions of nonintersected cuts can be obtained by assuming that at the price of shortened life span. On the other hand, short
some units (links) are absolutely reliable, which means that interruptions can be tolerated by a planetary explorer if this
the system as a whole has increased reliability. Analogously, leads to a significant increase in its total life. This is still an
parallel connection of nonintersected paths can be obtained area of research (1).
by replacing some units by permanently failed ones, which
decreases the system reliability. Following their argument,
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

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1 −

∏
j∈α1

Aj
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∏
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Aj
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
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