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For instance, a radar system failure makes operation impossi-
ble for the time needed for failure detection and correction,
but after this it can resume normal operation again. If a re-
dundant unit fails, the system may not even ‘‘feel’’ its
replacement/repair. So, this type of repair relates to systems
with a continuous (noninterrupted) regime of operation.

The second type of renewal concerns those systems whose
operation does not allow any interruption. For instance, an
aircraft cannot be repaired in flight. It can have some redun-
dant components giving it a limited ability to continue opera-
tion, but in a degraded state. However, this is not repair by
common usage. Moreover, a significant failure leads to cata-
strophic consequences! On the other hand, it is possible to
perform extensive repair on the ground and to restore ‘‘com-
plete’’ ability to operate before the next flight.

Of course, the two cases described here do not cover all
possible scenarios. An extension of a previous argument
would suggest that a spacecraft may not be repaired in flight.
However, the Hubble Space Telescope was repaired in orbit.
We are forced to accept that a system is repairable in some
situations and not repairable in others. A comprehensive dis-
cussion on reliability of repairable systems can be found in
Ascher and Feingold (1).

RELIABILITY INDICES

An important goal in the design and analysis of a repairable
system is to improve system reliability. Thus we need precise
measures (indices) for reliability.

Reliability indices of repairable systems depend on the fol-
lowing main factors:

• System structure,
• Failure rate (not necessarily constant), and
• Repair modes (possibility of simultaneous repair, repair

intensity for each failed unit).

Reliability of repairable systems is analyzed with the help of
analytical models or numerical simulation. Among analytical
mathematical models, one of the most widely used is Markov-
type models.

REPAIRABLE SYSTEMS
MARKOV MODELING

Repair is the process of returning equipment to its operating
state after failure. It may be more illuminating to speak In engineering practice, we generally apply Markov models to

describe a renewable system mathematically. A Markovabout renewal, rather than repair. Repair of modular equip-
ment may simply be the replacement of failed units by opera- model describes the process of probabilistic transition of a

system from one state to another. Each system state is char-ble ones.
Failures may be of a different nature: failure of an embed- acterized by the states of its units: operational, standby,

failed, under repair, and the like. The process of state transi-ded component that needs repair, failure of a replaceable unit
that calls for a replacement, or degradation of operational pa- tion is characterized by the Markov property: the evolution of

the transition process does not depend on ‘‘prehistory.’’ Therameter(s) that merely need adjustment (tuning). Repair, in
the reliability engineering context, may imply an actual re- practice is justified by the relative simplicity of mathematical

expressions and the explicit result it yields.pair or/and the replacement of a failed unit. Henceforth, the
two words repair and renewal will be used interchangeably. While using Markov models to describe a repairable sys-

tem, we implicitly assume that all distributions (time to fail-Renewal can be of two main types, depending on whether
a failure during system operation is catastrophic. The first ure, renewal time) are exponential. This assumption seems to

be an obstacle for the wide applicability of Markov models.type concerns failures that can be removed without cata-
strophic consequences. The operation itself may have to be However, there is some justification for exponential distribu-

tions of time to failure, especially for electronic equipment. Ofinterrupted, but it is not considered critical for the system.
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Figure 1. Structure, transition graph, and time diagram for
single repairable unit.
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course, such an assumption is not correct for the distribution This leads to
of repair (replacement) time. Nevertheless, Markov models
‘‘work’’ successfully when applied to highly reliable systems.

Applying the Markov model consists of following major
dPu(t)

dt
= −λPu(t) + µPd(t)

steps:
when the appropriate limit exists. This is the simplest exam-
ple of a Kolmogorov equation for a point stochastic process.• Precise verbal description and complete enumeration of
The differential equation can be solved together with a nor-all possible system states and transitions between these
malization condition Pu(t) � Pd(t) � 1 and a set of initial con-states,
ditions. Note that the system of equations is consistent with

• Choice of system structure and definition of failure crite- the redundant differential equation for Pd because of the nor-
ria, malization condition, which states that the system is always

• Definition of failed states on the basis of chosen failure located somewhere.
criteria, The system of linear differential equations arising from

• Construction of the transition graph for the correspond- such transition graphs can be solved by Laplace transforms
ing Markov process, or any of the standard methods (2–4). It should be empha-

sized that stationary coefficients, when they exist, can be ob-• Assignment of a transitive intensity to each arc in the
tained without solving the differential equations. If a station-transition graph.
ary state exists [i.e., Pu(t) � Pu when t � �], dPu(t)/dt is
identically zero. This leads toMarkov Model of Single Unit

The simplest possible repairable system is a single unit. Its
(trivial) reliability block diagram is shown in Fig. 1(a). The

−λPu + µPd = 0

Pu + Pd = 1
unit can either be in the up state or in the down state. Failure
implies a transition from the up state to the down state. A

and
sample of the transition graph and the time diagram are pre-
sented in Fig. 1(b, c). Here state ‘‘u’’ denotes the up state, and
‘‘d’’ the down state. A down (failed) state is differentiated from Pu = µ

λ + µ
an up state in a transition diagram by shadowing, as shown
in Fig. 1(b). Markov Model for Two Units

A simple transition graph like the one described here
Reliability block diagrams for a system consisting of two iden-admits a simple interpretation. At any given moment in time,
tical and independent units are shown in Fig. 2(a, b). We canif the system (unit) is in a given state, it can either stay in
easily recognize these as series and parallel structures. Relia-that state or make a transition to another state connected to
bility block diagrams depict the system structure and lead toit. Each pair of connected states is characterized by an inten-
the failure criteria. However, for reliability analysis of thesesity (time rate) of transition from one state to another. For
systems we must know not only their structures but also thethe transition graph described previously, transition intensity
regimes of their repair (renewal). We normally assume thatout of state ‘‘u’’ is � and that out of state ‘‘d’’ is �. The transi-
the repair process itself is Markovian. Further descriptiontion intensities sometimes allow simple physical interpreta-
about the repair facility, whether limited or unlimited simul-tion. In this context, the reciprocal of � denotes the unit’s
taneous repair is possible, is needed to describe the systemMTTF (mean time to failure) and the reciprocal of � denotes

the MTTR (mean time to repair).
Let Pu(t) and Pd(t), respectively, be the probabilities of

finding the system in up and down states at time t. It is easy
to conclude that Pu(t) is the availability coefficient for the
unit. The probability of locating the system in the up state at
time (t � �t) can be found from the formula of complete prob-
ability

A

A

B

B

(a)

(b)

Pu(t + �t) = (1 − λ�t)Pu(t) + µ�tPd(t) Figure 2. Structures of two unit systems.
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fully. Corresponding transition graphs for these structures MARKOV MODEL FOR MULTIPLE UNITS
are given in Fig. 3(a, b).

State 2 denotes that both units are in up state (system up Generalization to a series or parallel system consisting of
more than two units is straightforward. For more complexstate), state 1 denotes a state with one failed unit (down for

series, up for parallel), and state 0 denotes a state with both structures, like ‘K-out-of-N’ (K � N), we can use special mod-
els based on the so-called Birth-and-Death process (2,4,5).units failed (system down state). This brings out another

point: a transition graph depends on the failure criteria, Note that the K-out-of-N system is a generalization of series
and parallel systems because 1-out-of-N is a parallel systemwhich itself is related to the system structure. For the simple

examples considered previously, both states 0 and 1 are down and N-out-of-N is a series system. In general cases, the only
possibility is to compile a transition graph that describes thestates for the series system, and only state 0 is the down state

for the parallel system. system operation and use numerical methods for obtaining
the solution.Having drawn the transition diagrams and chosen the fail-

ure criteria, the next task is to assign transition intensities
associated with each of these diagrams (which are presented Limitations of Markov Modeling
by weights of the arrows). Assume that a single unit has fail-

The main disadvantage of applying Markov models in a real-ure rate �, and a single repair service person restores a failed
world situation is the implicit assumption of exponential dis-unit with rate �. For a system of two identical and indepen-
tributions. Although these assumptions are not critical fordent units, possible choices (�2, �1, �0, �1) for the failure rates
some commonly quoted (stationary) reliability indices like theand repair intensities (arrow weights) in Fig. 3(a, b) are:
availability coefficient or the mean time between failure
(MTBF), they are very essential for others like the probability

• �2 � 2� means that both units are always operating (ac- of failure free operation (PFFO) and mean time to failure. The
tive), readers are again referred to the article QUANTITATIVE MEA-

• �2 � � means that a redundant unit is in a ‘‘cold’’ standby SURES OF RELIABILITY for details.
regime, The assumption of exponential distributions may be

dropped by adopting a semi-Markov model. Unfortunately, at-• �0 � 2� means that there are two repair service people
tempts to apply semi-Markov models for reliability problemsworking simultaneously and independently of each other,
have not been very fruitful. Lack of appropriate data justi-• �0 � � means that there is a single repair service person
fying the use of semi-Markov models, and some unjustifiedfor the entire system,
assumptions that still remain in this approach form the main

• Together with �1 � � and �1 � � in every case. counterarguments. It remains an area of academic interest. A
better approach is the application of renewal processes, or

These simple examples give us an opportunity to demon- point recurrent processes (6,7) and its special class, alternat-
strate the main factors taken into account for the analysis of ing renewal processes. The latter may be conveniently inter-
renewal systems. The salient features of transition diagrams preted in reliability terms as alternating intervals of up and
for repairable system can be summarized again: down states.

• Transition diagrams depend on the failure criteria (net- OTHER MATHEMATICAL AND NUMERICAL APPROACHES
work structure: series, parallel).

• Failure intensities �i depend on redundancy type (e.g., One of the most advanced methodologies in modern reliability
hot standby). theory is the asymptotic analysis of renewal systems (2,4).

This approach is grounded on certain limit theorems for point• Repair intensities �j depend on the repair facility (lim-
ited or unlimited). stochastic processes. There are two fundamental asymptotic
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Figure 3. Transition graphs and time diagrams for series and parallel systems.
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theorems in point stochastic process theory. The Renyi– Formal reliability analysis of a complex system is only as
useful as the model and the approximations used. If the ulti-Kninchine–Ososkov theorem (8–10) states that the procedure
mate goal of reliability analysis of a repairable system is toof ‘‘thinning’’ any point process (under a suitable normaliza-
ensure some overall reliability threshold for the minimumtion condition) asymptotically leads to a Poisson process. The
cost, we need to understand which components are more im-Grigelionis–Pogozhev theorem (11,12) states that a superpo-
portant in the reliability sense. Sometimes increased compo-sition of point stochastic processes (under some not-so-restric-
nent level reliability is more effective than a subsystem re-tive conditions) also results in a Poisson process asymptoti-
dundancy (3). Given a concrete set of objective functions,cally. The first theorem is effectively used for reliability
ingenious analysis and judicious use of redundancy can de-analysis of highly reliable redundant systems where system
liver a reliable (fault tolerant) system with inexpensive andfailures are ‘‘rare events’’. The second one is a background for
less reliable components. In our opinion, RAID (Redundantthe use of a Poisson process for the description of failure pro-
Array of Inexpensive Disks) is one such example (14).cess of multicomponent renewable series systems. Discussion

on application of these approaches to reliability theory can be
found in Ref. 4. We also find heuristic methods for analyzing BIBLIOGRAPHY
renewable systems there.
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