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tistical estimation procedures as well as hypothesis testing
can also be divided in two groups: parametric and nonpara-
metric ones. The hypothesis testing in the context given in-
cludes many different hypotheses associated with particular
life distributions and/or their general properties (for instance,
aging) and similar hypotheses related to random processes.
In this article, the classical approach to reliability data analy-
sis is considered. The Bayesian data analysis is given in
BAYESIAN INFERENCE IN RELIABILITY.

An important characteristic feature of reliability data
analysis is associated with the so-called data censoring. Relia-
bility data are very seldom complete samples, that is, theSTATISTICAL ANALYSIS OF RELIABILITY DATA
samples are composed of distinct times to failure (TTF) or
numbers of cycles to failure. A much more realistic situationStatistical analysis of reliability data can be considered gen-
is one in which, for example, for a sample of n times to failureerally as a methodological basis for the development and vali-
only r � n times to failure are known, while for n � r failuredation of probabilistic models used in reliability engineering.
times are known only to be less than a given value.The statistical methods used for reliability data analysis are

very similar to those used in biomedical studies, where life-
time or survivorship models are the subjects of interest; BASIC DISTRIBUTIONS
therefore, the term ‘‘lifetime’’ or ‘‘survival data analysis’’ used
in many publications includes either type of application— In this section we consider some basic lifetime distributions
engineering and biomedical sciences. used as probabilistic models for unrepairable units as well as

Any data analysis technique is based on a corresponding some auxiliary distributions needed for statistical analysis.
probabilistic model. The basic probabilistic models considered
in reliability data analysis are: Binomial Distribution

Let us consider a random trial having two possible outcomes:1. Time-independent reliability models. Under these mod-
a success, with probability p, and a failure with probabilityels, strength and/or stress are considered as time-inde-
1 � p. Such trials are known as Bernoulli trials. Consider apendent (static) random variables (r.v.). The models are
sequence of n Bernoulli trials. The distribution of the numberwidely used in engineering design (see STRESS-STRENGTH
of successes, x, in the sequence is known as the binomial dis-

MODELS). A special group of the time-independent relia-
tribution. The probability of observing x successes in n Ber-bility models constitutes the models associated with the
noulli trials is known as the binomial probability densitybinomial distribution. Typical examples are the models
function, which is given bydealing with the probability of failure to start on de-

mand for a redundant unit.
2. Time-dependent reliability models can be divided into f (x; p, n) =

(
n
x

)
px(1 − p)n−x (1)

the following classes:
a. Reliability models without explanatory factors. Under Because the random variable x can take on only positive inte-

these models, the reliability function is time-depen- ger values, it is obvious that the binomial distribution is a
dent. The explanatory or stress factors (such as tem- discrete one. The mean and variance of the binomial distribu-
perature, humidity, voltage, and so on) are consid- tion are
ered as constant, having no influence on reliability.

b. Reliability models with explanatory factors. Typical
examples of these models are the accelerated life

E(x) = np

Var(x) = σ 2(x) = np(1 − p)
(2)

model and proportional hazard (PH) model (see AC-

CELERATED LIFE TESTING). The reliability models with The binomial distribution plays a fundamental role in
explanatory factors can be divided into the following reliability. Suppose that n identical units are tested (with-
groups: reliability models with constant stress fac- out replacement of the failed units) for a specified time, t, and
tors and reliability models with time-dependent that the test results in r failures. The number of fail-
stress factors. ures, r, can be considered as a discrete random variable hav-

ing the binomial distribution with parameters n and p(t),
where p(t) is now the probability of failure of a single unitReliability problems associated with repairable units are con-

sidered using special repair and replacement models based on during time t. In other words, p(t) is the probability of suc-
cess in a Bernoulli trial, which is a test of a single unitthe notion of point process. The most commonly used models

are the homogeneous Poisson process, nonhomogeneous Pois- during time, t, and ‘‘success’’ is the respective failure. Thus,
p(t), in a sense, as a function of time, is the time-to-failureson process, and the renewal process (see REPAIRABLE

SYSTEMS). cumulative distribution function, as well as 1 � p(t) is the
reliability or survivor function. As an example of straight-Problems of statistical data analysis for all the probabilis-

tic models mentioned previously can be, generally speaking, forward application of the binomial distribution, we can men-
tion a model for the number of failures to start onreduced to two types of statistical inferences—estimation and

hypothesis testing. The statistical estimation includes distri- demand for a redundant unit (which is the time-independent
reliability model). The probability of failure in this case mightbution estimation and/or the random process estimation. Sta-
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be considered as time independent. Thus, we should keep in In the case of the exponential distribution, the conditional re-
liability function obviously ismind two possible applications of the binomial distribution:

(1) the survivor (reliability) function or TTF cumulative dis-
tribution function, and (2) the proper binomial distribution.

R(x |t) = e−λ(t+x)

e−λt = e−λx (8)
Poisson Distribution

Another discrete distribution widely used in reliability is the Classes of Distribution Based on Aging. A notion of aging
Poisson distribution. Assume that some objects are evenly in reliability theory is introduced in terms of failure rate. A
dispersed at random on a large domain, with some specified fundamental study of distributions with a monotonic failure
density � (e.g., events of instant duration appearing in a finite rate can be found in Barlow and Proschan (1).
time interval). Then the probability to observe k objects The conditional reliability function from Eq. (7) can be in-
(events) in some specified domain, �, has the Poisson distri- terpreted as the reliability function of a unit of age t. This is
bution: the probability that a unit will not fail during the additional

time, x, given that it has not failed by time t. Consider the
case where the conditional reliability function is a decreasingP(k;�) = �k

k!
e−� (3)

function of time. Let H(t) be the cumulative hazard rate, asso-
where " is the mean number of objects in domain �, that is, ciated with a given TTF distribution, and let r(t) be the re-
" � ��. The variance of this distribution is equal to its mean, spective failure rate. Equation (7) can be written in terms of
that is, var(k) � ". In reliability application, the mean of the these functions as:
Poisson distribution is used in the form of the product �t, hav-
ing the meaning of a mean number of the events (failures)
observed during time t where � is the failure (hazard) rate. R(X |t) = exp[−H(t + x)]

exp[−H(t)]
= exp

[∫ t+x

t
r(u) du

]
(9)

The binomial distribution approaches the Poisson one with
"� np when n is large enough and p (or 1� p) approaches zero.

Clearly, if r(t) is increasing, R(x�t) is a decreasing function of
t. The distributions having this property constitute a class ofExponential Distribution
increasing failure rate (IFR) distributions. Alternatively, a

Among the continuous distributions used in reliability the ex- TTF distribution belongs to a class of decreasing failure rate
ponential distribution can be considered basic. As a time-to- (DFR) distributions if its conditional reliability, R(x�t), in-
failure distribution, it appears in many reliability problems, creases with time t for each x � 0. Note again that the expo-
some of which are considered below. The exponential distribu- nential distribution is the only distribution with a constant
tion is a model of an item subjected to random fatal shocks. failure rate, so it is a ‘‘boundary’’ distribution between IFR
If these shocks arrive according to the Poisson process with and DFR classes. Another commonly used class of aging dis-
intensity (failure rate) �, the item will fail at the moment tributions is the class of increasing failure rate average
when a shock occurs. The intervals between these events have (IFRA) distributions, that is, a class of TTF distributions for
the exponential distribution, so the same distribution can be which the average failure rate introduced as
applied to the time to failure of an item.

The probability density function of the exponential distri-
bution is 〈r(t)〉 = 1

t

∫ t

0
r(x) dx = − log R(t)

t
= H(t)

t
(10)

f (t) = λe−λt (4)

is increasing with time. Similarly, the class of decreasing fail-The corresponding reliability function, R(t), the mean time to
ure rate average (DFRA) is introduced as the class of distribu-failure (MTTF), and variance are
tions with a decreasing average failure rate. The properties
of these distributions are widely used in reliability data anal-R(t) = e−λt , t ≥ 0 (5)
ysis. Many other classes of TTF distributions are also used,
such as NBU (new better than used), NBAFR (new better
than used average failure rate) and so on (1,2).

In practice, we usually deal with a more general case:

MTTF =
∫ ∞

0
tf (t) dt =

∫ ∞

0
R(t) dt =

∫ ∞

0
e−λt dt = 1

λ

Var(t) = 1
λ2

(6)

unit’s failure rate forms a U-shaped function that is also
sometimes called a life characteristic curve. Numerous relia-The coefficient of variation (the ratio of a standard deviation
bility and life data give a similar bathtub shape for a plot ofto the mean) for the exponential distribution is 1, and it can
failure rate versus time. This curve is divided into the threebe used as a quick test for exponentiality.
parts corresponding to three age periods. The first interval isThe unique property of the exponential distribution is that
a period with a decreasing failure rate, known as an infantthe distribution of the remaining life of a used item (residual
mortality period. In reliability data analysis, the failures inTTF) is independent of its initial age. This property is often
this period are usually related to manufacturing defects. Thereferred to as the ‘‘memoryless’’ property. This property easily
period of infant mortality is followed by a period with an ap-follows from consideration of the conditional reliability func-
proximately constant failure rate. This is the period of cata-tion, which is the probability that an item will not fail for
strophic failures that are due mostly to accidental overloadstime x, if it has survived time t, which is given by:
or shocks. The last age period, characterized by an increasing
failure rate, is a period of wearout failures associated with
material fatigue or wear.

R(x |t) = R(x + t)
R(t)

(7)
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Cumulative Damage Model Resulting in IFRA Distribu- the CDF of the Weibull distribution can be written as
tions. Consider a unit subjected to shocks occurring randomly
in time. Let these shocks arrive according to the Poisson pro-
cess with constant intensity �; each ith shock causes a ran- F(t) = 1 − exp

[
−
(

t
α

)β
]

t ≥ 0 (15)

dom amount of damage, xi. All x1, x2, . . . are independent
and identically distributed random variables, with a distribu-

where � is the scale parameter and � is the shape parameter.tion function F (a damage distribution function). The unit
The scale parameter is also referred to as the ‘‘characteristicfails when the accumulated damage exceeds a specified
life,’’ which is 100(1 � e�1) 	 63.2th percentile. Note that if tthreshold x. It can be shown (1) that for any damage distribu-
has the two-parameter Weibull distribution, the transformedtion function F, the time-to-failure distribution function is
random variable x � ln t has the so-called Type I asymptoticIFRA.
distribution of smallest (extreme) values:

Bounds on Reliability for Aging Distributions. The following
simple bounds are given in terms of IFRA (DFRA) and IFR F(x) = 1 − exp

[
− exp

(
x − u

b

)]
− ∞ < x < ∞ (16)

(DFR) distributions (1). Any IFR distribution obviously is a
subclass of the class of IFRA distributions.

where u � ln � and b � 1/�.
The mean of the two-parameter Weibull distribution isBounds Based on a Known Percentile. Let tp be the 100pth

given bypercentile of an IFRA (DFRA) distribution. Then

µ = α�

(
1 + 1

β

)
(17)R(t)

{
≥ (≤)e−αt for 0 ≤ t ≤ tp

≤ (≥)e−αt for t ≥ tp
(11)

where
where � � �(1/tp)log(1 � p).

Bounds Based on a Known Mean. Let a time-to-failure distri- �(c) =
∫ ∞

0
xc−1e−x dx (18)

bution be IFR with known mean �a. Then

is the gamma function and the variance of the Weibull distri-
bution isR(t) ≥

{
e−t/µa for t< µa

0 for t ≥ µa
(12)

Inequality for Coefficient of Variation. Let a time-to-failure
σ 2 = α2

[
�

(
1 + 2

β

)
− �2

(
1 + 1

β

)]
(19)

distribution be IFRA (DFRA) with mean �a and variance �2.
From the expression for the failure rate in Eq. (13), it is obvi-Then, the coefficient of variation is �/�a � (�) 1. Recall that,
ous that the Weibull distribution is IFR distribution for � �for the exponential distribution, the variation coefficient is
1 and DFR distribution for 0 � � � 1. For � � 1, the Weibullequal to 1. This criterion is useful for reliability data analysis,
distribution coincides with the exponential one. Thus, thisbut the inequality is only the necessary condition for IFRA
distribution can be used as a model for any part of the life(DFRA) distribution.
characteristic curve. This ability of the Weibull distribution

Weibull Distribution to reflect such a wide class of distributions makes it popular
for different reliability engineering applications.The Weibull distribution is one of the most popular models

Using the properties of the gamma function, it can befor TTF distributions. This distribution was introduced as a
shown that if the shape parameter increases, the mean � ap-model for bearing failures caused by the wearing process. The
proaches the scale parameter �, and the variance �2 also ap-Weibull distribution can be also obtained as a limit law for
proaches zero; so for � � 1 the coefficient of variation, beingthe distribution of the smallest-order statistic (the ‘‘weakest
less than 1, also approaches zero.link’’ model). It can be also obtained as the TTF distribution

for an item subjected to fatal shocks occurring randomly in
Logarithmic Normal Distributiontime in accordance with a time-dependent Poisson process

(i.e., with a time-dependent parameter �). Let the failure rate Another popular TTF distribution is the logarithmic normal,
r(t) be a power function of time t: or lognormal, distribution. There are many reasons for its

widespread applicability to reliability. The first is the avail-
ability of statistical data analysis based on the normal
(Gaussian) origin of the lognormal distribution. The distribu-
tion was used as an adequate model in many engineering

r(t) = β

α

(
t
α

)β−1

t ≥ 0, β, α > 0

= 0 t < 0
(13)

problems. For example, it was used by many authors as a
Using this failure rate and the following basic relationship distribution of particle sizes in naturally occurring or artifi-
between the failure rate r(t) and the respective cumulative cially obtained aggregates. As the TTF distribution, the log-
distribution function (CDF), normal distribution also arises from simple physical consider-

ations in fracture mechanics problems (3,4).
Let x be a normally distributed random variable, with the

mean � and the standard deviation �. It is easy to show that
F(t) = 1 − exp

[
−
∫ t

0
r(τ ) dτ

]
(14)
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the random variable t � ex has a lognormal distribution with For reliability applications, the gamma distribution can be in-
troduced in the following way. If a system consists of n inde-parameters � and �, that is, the probability density function

(PDF) of the variable t is pendent components, n � 1 of which are redundant, and all
the units have the same exponentially distributed TTF with
failure rate �, the TTF of the system is considered as the time
to nth failure, that is, it is given by the distribution of thef (t) = 1√

2πσ t
exp

[
−1

2

(
log t − µ

σ

)2
]

t ≥ 0 (20)

sum of n independent exponentially distributed r.v.’s. The dis-
tribution of this sum is the gamma distribution.

where � � E(log t) and �2 � Var(log t) are, respectively, the It is obvious that the exponential distribution is a particu-
mean and the variance of log t. The parameters � and � are lar case of the gamma distribution. If the exponential r.v.’s,
the distribution parameters, but they are not the mean and composing the gamma distribution are not identical, the cor-
the variance of the lognormal distribution. responding distribution is called a generalized gamma distri-

The MTTF and the variance of the lognormal distribution bution [which is considered, for example, in Gnedenko and
are given by Ushakov (5)].

As mentioned before, the distribution of intervals in the
Poisson process is the exponential one. Let T(n) be the sum ofMTTF = exp

[
µ + σ 2

2

]
(21)

n independent random intervals each exponentially distrib-
uted with a failure rate �. It is obvious that the probability ofVar(t) = e(2µ+σ 2)(eσ 2 − 1) = MTTF2

(eσ 2 − 1) (22)
the event [T(n) � t] is equal to the probability of observing
during time t the number of event N less than n. The latterIn practice, almost all lognormal data analysis procedures are
probability is given by the Poisson distribution:based on taking logarithms of all the failure times and ana-

lyzing the transformed data as though they were normal dis-
tribution data. The lognormal CDF, F(t), is R(t) =

n−1∑
i=0

(λt)ie−λt

i!
, t > 0 (27)

It is clear the function in Eq. (27) is the reliability function ofF(t) =
∫ t

0

1√
2πσs

exp

[
1
2

(
log s − µ

σ

)2
]

ds (23)

the gamma distribution with positive parameters � and n,
where n is an integer. The corresponding PDF is given by

Substituting s � (log t � �)/� and ds � dt/(�t), the CDF can
be expressed as

f (t) = λ(λt)n−1e−λt

(n − 1)!
, t > 0 (28)

It is easy to see that the mean and the variance of the gamma
F(t) =

∫ log t−µ
σ

−∞

1√
2π

e−1/2s2
ds = �

(
log t − µ

σ

)
(24)

distribution are given by
where �( � ) is the standard normal CDF. The respective relia-
bility function can be written as MTTF = n

λ
, Var(t) = n

λ2 (29)

The particular case of the gamma distribution, when � � ��R(t) = 1 − F(t) = �

(
− log t − µ

σ

)
(25)

and n � k/2 where k is a positive integer, is the chi-square
distribution with k degrees of freedom [if k/2 is not an inte-These expressions show that e� is the median of the lognormal
ger, (k/2 � 1)! must be replaced by �(k/2)]. The chi-squaredistribution. The failure rate function of the lognormal life
and Poisson distributions are related to each other as (6)distribution is given by

n−1∑
i=0

(λt)ie−λt

i!
= Prob(χ2

2n > 2λt) (30)r(t) = f (t)
R(t)

= f (t)

�

(
log t − µ

σ

) (26)

In general, for any positive 	 the CDF of the gamma distribu-
tion isNote that the failure rate function of the lognormal distribu-

tion is not only nonmonotonic but it always has a maximum.
The failure rate, r(t) � 0 at t � 0, increases with age to the
maximum and after that it decreases to zero with increasing

F(t) =
∫ t

0

λ(λt)η−1e−λt

�(η)
, t > 0 (31)

age. Thus, such a failure rate time dependence does not corre-
spond to any part of the life characteristic curve. Neverthe- The gamma distribution is:
less, the lognormal distribution (especially its ‘‘left tail’’ with
increasing failure rate) fits numerous reliability data. • DFR, if 	 
 1

• The exponential distribution, if 	 � 1
Gamma Distribution

• IFR, if 	 � 1
The gamma, or Erlang, distribution of the nth order is the
distribution of the sum of a fixed (nonrandom) number, n, of Besides the previously mentioned obvious applications, the

gamma distribution is also widely used as the prior distribu-independent and identically exponentially distributed r.v.’s.
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tion in Bayesian reliability estimation, and it is a popular and
model in the theory of queuing processes and in the theory of
birth-death processes. S2 = 1

n

n∑
i=1

(Xi − X )2 (34)

where X and S2, respectively, are the point estimates of theBASIC DISTRIBUTION ESTIMATION METHODS
distribution mean, �, and variance, �2.

The estimator of variance in Eq. (34) is biased; however,There exist two basic kinds of estimation, point estimation
this bias can be removed by multiplying it by n/(n � 1):and interval estimation. Point estimation provides a single

number from a set of observational data to represent a pa-
rameter of the distribution. Point estimation does not give
any information about its accuracy. Interval estimation is ex-

S2 = 1
n − 1

n∑
i=1

(Xi − X )2 (35)

pressed in terms of confidence intervals. The confidence inter-
Example 1 The life, T, of a component is considered as aval includes the true value of the parameter with a specified
random variable having the exponential distribution. Theconfidence probability.
times to failure (in relative units) obtained from the compo-
nent life test are 3, 8, 12, 35, 42, 42.5, 77, 141, 152.5, and 312.

Point Estimation Since the exponential distribution is a one-parameter distri-
bution, only the first moment is used, thus:Estimation of a parameter is necesarily based on a set of sam-

ple values, X1, . . ., Xn. If the sample values are independent
and their underlying distribution remains the same from one
sample to another, we have a random sample of size n from

t = 1
n

n∑
i=1

ti = 1
10

10∑
i=1

ti = 82.5

the distribution of the random variable of interest X. Let
the distribution have a parameter �. A random variable The relationship between the mean and parameter � for the
t(X1, . . ., Xn), which is a single-valued function of X1, . . ., exponential distribution is � � 1/�. Therefore, an estimator of
Xn, is referred to as a statistic. A point estimate is obtained � is � � 1/t � 0.0121.
by selecting an appropriate statistic and calculating its value

Method of Maximum Likelihood. The method of maximumfrom the sample data. The selected statistic is called an esti-
likelihood (ML) is one of the most popular methods of estima-mator, while the value of the statistic is called an estimate.
tion. Consider a random variable, X, with probability densityConsider the main properties of estimators. An estimator
function f (x, �0), where �0 is the unknown parameter. Usingt(X1, . . ., Xn) is said to be an unbiased estimator for � if its
the method of maximum likelihood, one can try to find theexpectation E[t(X1, . . ., Xn)] � � for any value of �. Another
value of �0 that has the highest (or most likely) probability (ordesirable property of an estimator t(X1, . . ., Xn) is the prop-
probability density) of producing the given set of observa-erty of consistency. An estimator t is said to be consistent if,
tions, X1, . . ., Xn. The likelihood of obtaining this set of sam-for every � � 0,
ple values is proportional to the PDF f (x, �0) evaluated at the
sample values X1, . . ., Xn. The likelihood function for a con-lim

n→∞P(|t(x1, . . ., xn) − θ | < ε) = 1 (32)
tinuous distribution is introduced as

This property implies that as the sample size n increases, the L f (X1, . . ., Xn; θ0) = f (X1, θ0) f (X2, θ0), . . ., f (Xn, θ0) (36)
estimator t(X1, . . ., Xn) gets closer to the true value of �. In

Generally, the definition of the likelihood function is based onsome situations several unbiased estimators can be found. An
the probability (for a discrete random variable) or the PDFunbiased estimator t of �, having minimum variance among
(for continuous random variable) of the joint occurrence of nall unbiased estimators of �, is called efficient. Another esti-
events, X � X1, . . ., X � Xn. The maximum likelihood esti-mation property is sufficiency. An estimator t(X1, . . ., Xn) of
mate, �̂0, is the value of �0 that maximizes the likelihood func-the parameter � is said to be sufficient if it contains all the
tion, Lf (X1, . . ., Xn; �0), with respect to �0.information about � that is in the sample X1, . . ., Xn.

The usual procedure for maximization with respect to aThe most common methods of point estimation are briefly
parameter is to calculate the derivative with respect to thisconsidered below.
parameter and equate it to zero. This yields the equation

Method of Moments. In the framework of this method, the
estimators are equated to the corresponding distribution mo-

∂L f (X1, . . ., Xn; θ0)

∂θ0
= 0 (37)

ments. The solutions of the equations obtained provide the
estimators of the distribution parameters. For example, as The solution of the above equation for �0 will give �̂0, if it can
the mean and variance are the expected values of X and be shown that �̂0 does indeed maximize Lf (X1, . . ., Xn; �0).(X � �)2, respectively, the sample mean and sample variance Because of the multiplicative nature of the likelihood func-
are defined, as the respective expected values of a sample of tion, it is often more convenient to maximize the logarithm of
size n, as: the likelihood function instead; that is,

∂ log L f (X1, . . ., Xn; θ0)

∂θ0
= 0 (38)X = 1

n

n∑
i=1

Xi (33)
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Because the logarithm is monotonic transformation, the solu- The random interval [l, u] is called a 100(1 � �)% confidence
interval for the parameter �0. The endpoints l and u are re-tion for � from this equation is the same as that obtained from

Eq. (37). For a probability density function with m parame- ferred to as the 100(1 � �)% confidence limits of �0; (1 � �) is
called the confidence coefficient or confidence level. The mostters, the likelihood function becomes
commonly used values for � are 0.10, 0.05, and 0.01. If �0 �
l(�0 
 u) with probability equal to 1, then u(l) is called one-
sided upper (lower) confidence limit for �0. A 100(1 � �)% con-

L f (X1, . . ., Xn; θ1, . . ., θm) =
n∏

i=1

f (Xi, θ1, . . ., θm) (39)

fidence interval for an unknown parameter �0 is interpreted
as follows: if a series of repetitive experiments yields randomwhere �1, . . ., �m are the m parameters to be estimated. In
samples from the same distribution, and the confidence inter-this case, the maximum likelihood estimators can be obtained
val for each sample is calculated, then 100(1 � �)% of theby solving the following system of m equations:
constructed intervals will, in the long run, contain the true
value of �0.

The following example illustrates the common principle of
∂Ll (X1, . . ., Xn; θ1, . . ., θm)

∂θ j
= 0, j = 1, . . ., m (40)

confidence limits construction. Consider the procedure for
constructing confidence intervals for the mean of a normalUnder some general conditions, the obtained maximum likeli-
distribution with known variance. Let X1, X2, . . ., Xn, be ahood estimates are consistent, asymptotically efficient, and
random sample from the normal distribution, N(�, �2), inasymptotically normal.
which � is an unknown parameter, and �2 is assumed to be
known. It can be shown that the sample mean has the normalExample 2 Let us estimate the parameter p of the binomial
distribution N(�, �2/n). Thus, (X � �)�n/� has the standarddistribution. In this case,
normal distribution. This means that

L f (m | n) =
(

n
m

)
pm(1 − p)n−m, m = 0, 1, . . ., n

P

(
−z1−(α/2) ≤ X − µ

σ/
√

n
≤ z1−(α/2)

)
= 1 − α (41)

Taking the derivative, and equating it to zero

where z1�(�/2) is the 100(1 � ���)th percentile of the standard
normal distribution N(0,1). Solving the inequalities inside the

∂ Log L f

∂ p
= n

p(1 − p)

(m
n

− p
)

= 0
parentheses, Eq. (41) can be rewritten as

we find that the maximum likelihood estimator p̂ � m/n. In
general, the maximum likelihood method requires use of nu- P

(
X − z1−(α/2)

σ√
n

≤ µ ≤ X + z1−(α/2)

σ√
n

)
= 1 − α (42)

merical optimization methods.

Thus, Eq. (42) gives the symmetric (1 � �) confidence intervalExample 3 For the life-test data given in Example 1, esti-
for the mean, �, of a normal distribution with known �2. Themate the parameter of the distribution, using the method of
confidence interval is wider for a higher confidence coefficientmaximum likelihood. The maximum likelihood function for
(1 � �). As � decreases, or n increases, the confidence intervalthis problem is
becomes smaller for the same confidence coefficient (1 � �).

HYPOTHESIS TESTING
L f (t1, . . ., t10, λ) =

10∏
i=1

f (ti, λ) = λ10e−λ

Interval estimation and hypothesis testing are, in a sense,Taking the derivative yields the following equation
mutually inverse procedures. Consider an r.v. X with a known
probability density function f (x; �). Using a random sample
from this distribution one can obtain a point estimate �̂ of the

dL f (t1, . . ., t10, λ)

dλ
=

[
10λ9 − λ10

10∑
i=1

ti

]
= 0

parameter �. Assume that a hypothesized value of � is �0. Un-
der these circumstances, the following question can be raised:which has the following solution
Is the estimate value �̂, in a sense, compatible with the hy-
pothesized value �0? In terms of statistical hypothesis testing
the statement � � �0 is called the null hypothesis, which isλ̂ = 10∑10

i=1 ti

= 0.0121

denoted by H0. The null hypothesis is always tested against
an alternative hypothesis, denoted by H1, which for the case

In this example, the estimates by the method of moments and
considered might be the statement � � �0. The null and alter-

the method of ML coincide.
native hypotheses are also classified as simple, or exact (when
they specify exact parameter values) and composite, or inexactInterval Estimation
(when they specify an interval of parameter values). For the

Let l(X1, . . ., Xn) and u(X1, . . ., Xn) be two statistics, such example considered, H0 is simple and H1 is composite. An ex-
that the probability that parameter �0 lies in an interval [l, ample of a simple alternative hypothesis might be H1: � � �*.
u] is For testing statistical hypotheses test statistics are used.

In many situations the test statistic is the point estimator of
P{l(X1, . . ., Xn) < θ0 < u(X1, . . ., Xn)} = 1 − α the unknown distribution. In this case (as in the case of the
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interval estimation) one has to obtain the distribution of the theoretical distribution are unknown and are estimated from
the same data, the above distribution remains valid, giventest statistic used. Let X1, X2, . . ., Xn, be again a random
the number of degrees of freedom is reduced by one for everysample from the normal distribution, N(�, �2), in which � is
unknown parameter that must be estimated. Thus, if an as-an unknown parameter, and �2 is assumed to be known. One
sumed distribution yields a result such thathas to test the simple null hypothesis H0: � � �* against the

composite alternative H1: � � �*. As the test statistic, let us
use the same sample mean, X, which has the normal distribu-
tion N(�, �2/n). Having computed the value of the test statis-

k∑
i=1

(ni − ei )
2

ei
< C1−α, f (44)

tic X, we can construct the confidence interval Eq. (42) and
where the critical value, C1��,f, is the value of the 
2 corre-find out whether the value of �* is inside the interval. This is
sponding to the cumulative probability (1 � �), then the as-the test of the null hypothesis. If the confidence interval in-
sumed theoretical distribution is not rejected (i.e., the nullcludes �*, the null hypothesis is not rejected at significance
hypothesis H0: F(x) � F0(x) is not rejected) at significance levellevel �.
�. If the inequality in Eq. (44) is not satisfied, the alternativeIn terms of hypothesis testing, the confidence interval con-
hypothesis H1: F(x) � F0(x) is accepted. Employing the 
2

sidered is called the acceptance region, the upper and the
goodness-of-fit test, it is recommended that at least five inter-lower limits of the acceptance region are called the critical
vals be used (k � 5), with at least five expected observationsvalues, and the significance level � is referred to as a proba-
per interval (ei � 5) to obtain satisfactory results. The stepsbility of type I error. In deciding whether or not to reject the
for conducting the 
2 test are as follows:null hypothesis, it is possible to commit the following errors:

• Divide the range of data into intervals (number of inter-
• Reject H0 when it is true (type I error)

vals � 5), the first and the last being infinite intervals,
• Not reject H0 when it is false (type II error—the probabil- and count ni � the number of measurements in each in-

ity of the type II error is designated by �.) terval.
• Estimate the parameters of the assumed theoretical dis-

These situations are traditionally represented by the follow- tribution, F0(x), and calculate the theoretical quantity of
ing table: data in each interval, ei, as follows:

ei = [F0(x + �x) − F0(x)] · [sample size]

• Calculate statistic using Eq. (43).
• Choose a specified significance level, � (generally,

1 � � � 90 or 95 percent).

Decision State of Nature

H0 Is True H0 Is False

Reject H0 Type I error No error
Do not reject H0 No error Type II error

• Determine the number of degrees of freedom of the 
2

distribution:It is clear that increasing the acceptance region, which results
in decreasing �, simultaneously results in increasing �. The f = k − 1 − [number of parameters of F0(x)]
traditional approach to this problem is to keep the probability
of type I error � at a low level (0.01, 0.05 or 0.10) and to • Determine C1�� from the table and compare it with the
minimize the probability of type II error as much as possible. obtained value of Eq. (43). If the inequality of Eq. (44) is
The probability of not making a type II error is referred to as satisfied, then the assumed theoretical distribution func-
the power of the test. tion, F0(x), is not rejected.

In reliability data analysis one often needs a statistical
procedure to assess the quality of the distribution model fitted Example 4 The sea wave loads acting on marine structures
for the data given. Such procedures constitute the special are the objects of probabilistic reliability design. The sample

of 219 measurements of wave bending moments (in arbitraryclass of hypothesis tests known as the goodness-of-fit tests.
units) is given in Table 1.Two of the most commonly used tests, the chi-square and Kol-

mogorov-Smirnov tests, are briefly discussed below.

Chi-Square Test

Consider a sample of N observed values (measurements) of a
random variable. The chi-square goodness-of-fit test compares
the observed frequencies (histogram), n1, n2, . . ., nk, of k in-
tervals of the random variable with the corresponding fre-
quencies, e1, e2, . . ., ek, from an assumed theoretical distribu-
tion, F0(x). The basis for this goodness-of-fit testing is the
distribution of the statistic

k∑
i=1

(ni − ei )
2

ei
(43)

This statistic has an approximate chi-square (
2) distribution
with f � k � 1 degrees of freedom. If the parameters of the

Table 1. Wave Bending Moments

Interval Interval Number of Measurements
Number Start in Each Interval

1 0.00 11
2 2526.31 25
3 5052.63 34
4 7578.94 35
5 10105.26 37
6 12631.57 27
7 15157.89 23
8 17684.20 15
9 20210.52 6

10 22763.83 3
11 25263.14 2
12 27789.46 1
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For the data given, the Weibull distribution was fitted in not associated with the sample given, and calculate
F0(t(i)) from the assumed distribution function. If the pa-the form:
rameters of the distribution are estimated using the
same data, the special modifications of the test must beF(x) = 1 − exp(−λxγ )

used; see Lawless (7).
The obtained estimates of the parameters are: �̂ � 1.018

• Calculate the differences of Sn(ti) and F0(t(i)) for each
10�8 and �̂ � 2.327. Based on these estimates and the data in sample item, and determine the maximum value of the
the table, the chi-square statistic is 2.33, and it has 9 degrees differences according to Eq. (46).
of freedom. This value of statistic is much less than the corre-

• Choose a specified significance level, �, and determinesponding critical value, 14.7, chosen at the robust significance
D�

n from the appropriate statistical table.level 0.10. Thus, the hypothesis about the Weibull distribu-
• Compare Dn with D�

n. If Dn 
 D�
n, the assumed distribu-tion is not rejected.

tion function, F0(t), is not rejected.
Kolmogorov-Smirnov Test

CENSORED DATAAnother widely used goodness-of-fit test is the Kolmogorov-
Smirnov (K-S) test. The basic procedure involves comparing

As mentioned earlier, reliability data are seldom completethe empirical (or sample) cumulative distribution function
samples, and typically sample data are censored. The likeli-with an assumed distribution function. If the maximum dis-
hood function for a complete sample was introduced before.crepancy is large compared with what is anticipated from a
In this section, some basic types of censored data and the re-given sample size, the assumed distribution is rejected.
spective the likelihood functions are considered.Consider a sample of n observed values of a continuous

random variable. The set of the data is rearranged in increas-
Left and Right Censoringing order: t(1) 
 t(2) 
 . . . t(n). Using the ordered sample data,

the empirical distribution function Sn(x), is defined as follows: Let N be the number of items in a sample, and assume that
all units of the sample are tested simultaneously. If during
the test period, T, only r units have failed, their failure times
are known, and the failed items are not replaced, the sample
is called singly censored on the right at T. In this case, the
only information we have about N � r unfailed units is that
their failure times are greater than the duration of the test,

Sn(t) =




0 −∞ < t < t(1)

i
n

t(i) ≤ t < t(i+1)

1 t(n) ≤ t < ∞
(45)

i = 1, . . ., n − 1 T. Formally, an observation is called ‘‘right censored at T ’’ if
the exact value of the observation is not known, but it is

where t(1), t(2), . . ., t(n) are the values of the ordered sample known that it is greater than or equal to T (7). The left cen-
data (the order statistics). It can be shown that the empirical soring is introduced in an obvious way. This type of censoring
distribution function is a consistent estimator for the corre- practically never appears in reliability data collection prac-
sponding cumulative distribution function. tice. It is very important to understand the way in which cen-

In the K-S test, the test statistic is the maximum differ- sored data are obtained. The basic discrimination is associ-
ence between Sn(t) and F0(t) over the entire range of random ated with random and nonrandom censoring, the simplest
variable t. It is clear that the statistic is a measure of the cases of which are discussed below.
discrepancy between the theoretical model and the empirical
distribution function. The K-S statistic is denoted by Type I Censoring

Consider a situation of right censoring. If the test is termi-Dn = max
x

|F0(t) − Sn(t)| (46)
nated at a given nonrandom time, T, the number of failures,
r, observed during the test period will be a random variable.If the null hypothesis is true, the probability distribution of
These censored data are an example of type I or time rightDn turns out to be the same for every possible continuous
singly censored data (sometimes called time-terminated). InF0(t). Thus, Dn is a random variable whose distribution de-
general, a Type I censoring is considered under the followingpends on the sample size, n, only. For a specified significance
scheme of observations.level, �, the K-S test compares the observed maximum differ-

Let a sample of n units be observed during different peri-ence with the critical value D�
n, defined by

ods of time L1, L2, . . ., Ln. The TTF of an individual unit, ti,
is observed as a distinct value if it is less than the correspond-P(Dn ≤ Dα

n) = 1 − α (47)
ing time period, that is, if ti 
 Li. This is the case of Type I

Critical values, D�
n, at various significance levels, �, are tabu- multiply censored data; the case considered above is its par-

lated (3). If the observed Dn is less than the critical value D�
n, ticular case, when L1 � L2 � � � � � Ln � T. Type I multiply

the proposed distribution is not rejected. The steps for con- censored data are quite common in reliability testing. For ex-
ducting the K-S test are as follows: ample, a test can start with sample size n but at some given

times L1, L2, . . ., Lk (k 
 n) the prescribed numbers of units
• For each sample item datum, calculate the Sn(t(i)) (i � can be removed from the test.

1, . . ., n) according to Eq. (45). For treating censored data, a special random variable is
introduced (7). Suppose again that a sample of n units is ob-• Estimate the parameters of the assumed theoretical dis-

tribution, F0(t), using another sample or any information served during different periods of time L1, L2, . . ., Ln. The
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times to failure ti (i � 1, 2, . . ., r) are considered as indepen- and the corresponding likelihood function obviously is
dently distributed r.v.’s having the continuous PDF, f (t), and
the CDF, F(t). Under these assumptions, the data can be rep-
resented by the n pairs of random variables (�i, �i) that are

LII =
r∏

i=1

f (ti )(S(t(r)))
N−r (50)

given by
Note that the likelihood function of Eq. (50) has the same
functional form as the likelihood function of Eq. (49).

Random Censoring

τi = min(ti, Li )

δi =
{

1 if ti < Li

0 if ti ≥ Li
The random censoring turns out to be typical in reliability
data analysis when there are several failure modes that mustwhere �i indicates whether the time to failure ti is censored or
be estimated separately. The times to failure due to each fail-not, while �i is simply the time to failure, if it is observed, or
ure mode are considered, in this case, as r.v.’s having differ-the time to censoring, if the failure of ith unit is not observed.
ent distributions, while the object on the whole is consideredNote that �i is a mixed r.v. having a continuous component
as a competing risks (or series) system. A simple random cen-(ti) and a discrete component (Li). It can be shown that the
soring process usually considered in life data analysis is thejoint PDF of � and � is
situation in which each item in a sample is assumed to have
a time to failure t and a censoring time L, which are continu-

f (τi, δi ) = f (τi )
δi (1 − F(Li))

1−δi
ous independent variables with PDFs f (t) and g(L), and CDFs
F(t) and G(L).

so that the corresponding likelihood function, Lh, is given by Designate the reliability (survivor) functions correspond-
ing to the CDFs F(t) and G(L) by SF and SG. Let our data be
represented by the same pairs of r.v.’s, (�i, �i), i � 1, 2, . . .,
n, as in the case of Type I censoring. It can be shown that the

Lh =
n∏

i=1

f (τi)
δi S(Li)

1−δi (48)

likelihood function for these data is given by Lawless (7):

This last equation can be rewritten in a more tractable form
as

L =
∏
i∈U

f (ti )
∏
i∈C

S(Li)

n∏
i=1

[
f (τi)SG(τi)

]δi
[
g(τi )SF (τi)

]1−δi

=
[

n∏
i=1

SG(τi)
δi g(τi)

1−δi

][
n∏

i=1

f (τi )
δi SF (τi)

1−δi

]

where U is the set containing the indexes of the items that
If we are not interested in estimation of the censoring timefailed during the test (uncensored observations) and C is the
distribution, the above function is reduced toset containing the indexes of the items that did not fail during

the test (censored observations). For the simple case above,
when the simultaneous testing (without replacement) of N
units is terminated at a given nonrandom time, T, the corre-

LRC =
n∏

i=1

f (τi )
δi S(τi)

1−δi

sponding likelihood function is
which has exactly the same form as in the case Type I censor-
ing [Eq. (48)]. From a practical point, the random censoring
is usually combined with Type I censoring because of, for ex-LI =

r∏
i=1

f (ti )(S(T ))N−r (49)

ample, limited test or observation time. In this case, if the
matter is time-to-failure distribution, all the censoring can be

Type II Censoring expressed also in the framework of the Type I case.

A test can also be terminated when a previously specified
nonrandom number of failures (say r), have been observed. In PARAMETRIC DISTRIBUTION ESTIMATION
this case, the duration of the test is a random variable. This
is known as type II right censoring and the individual test is In this section we consider the estimation of some time-to-
sometimes called failure terminated. It is clear that under failure distribution based on maximum likelihood approach.
Type II censoring only the r smallest times to failure t(1) 

t(2) 
 . . . 
 t(r) out of sample of N times to failure are ob- Exponential Distribution
served as distinct ones. The times to failure t(i) (i � 1, 2, . . .,

The exponential distribution, historically, was the first lifer) are considered (as in the previous case of Type I censoring)
distribution model for which statistical methods were exten-as identically distributed r.v.’s having the continuous PDF
sively developed (7). It is still the most important componentf (t) and the CDF, F(t). It can be shown that the joint probabil-
reliability model for complex system reliability estimation.ity density function of the times to failure t(1), t(2), . . ., t(r) is

given by
Type II Censored Data

Rewrite the PDF of the exponential distribution of (4) in the
form:

N!
(N − r)

f (t(1)) f (t(2)) · · · f (t(r) )[S(t(r))]
N−r
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Calculate the total time on test, TII:f (t, θ ) = 1
θ

e−t/θ , t ≥ 0 (51)

Under Type II right censoring only the r smallest times to
TII =

4∑
i=1

t(i) + (20 − 4)t(4) = 2394 + 16 X 775 = 14794.

failure t(1) 
 t(2) 
 . . . 
 t(r) (order statistics) out of sample of
n times to failure are observed as distinct ones. Using the Using Eq. (55) with � � 0.1 find the lower limit of interest as
corresponding likelihood function of Eq. (50) for the exponen-
tial distribution considered, we can write the likelihood func-
tion as

θl = 2TII

χ2
0.9(8)

= 29588
13.36

= 2214.7 h

Type I Censoring without ReplacementLII =
r∏

i=1

f (ti )
(
S(t(r) )

)n−r = 1
θ r e−TII/θ (52)

Under Type I right censoring without replacement, a test is
terminated at a given nonrandom time, T, and the number ofwhere
failures, r, observed during the test period is random. Recall-
ing the corresponding likelihood function of Eq. (49), we can
write the respective likelihood function as

TII =
r∑

i=1

t(i) + (n − r)t(r)

It is easy to show that LI =
r∏

i=1

f (ti )(S(T ))n−r = 1
θ r e−Tl /θ (58)

where
θ̂ = TII

r
(53)

is the maximum likelihood estimate (MLE) for the case con-
sidered. It can be shown that 2TII/� has the chi-square distri-

TI =
r∑

i=1

t(i) + (n − r)T

bution with 2r degrees of freedom. Using this fact we can con-
struct a confidence interval. Because the uncensored data are Similarly to the previous case the MLE of � is given by
the particular case of the Type II right censored data (when
r � n), we need to consider only the Type II case in order to
treat complete samples. Using the distribution of 2TII/�, one

θ̂ = TI

r
(59)

can write
The estimate of Eq. (59) can be generalized for the case of
multiple nonrandom right censoring. Let tc1, tc2, . . ., tc(N�r) be
nonrandom times to censoring. In the case considered, thePr

(
χ2

α/2(2r) ≤ 2T
θ

≤ χ2
1−α/2(2r)

)
= 1 − α (54)

MLE of � can be obtained replacing TI by
where 
2

�(2k) is the �th quantile (100�th percentile) of the chi-
square distribution with 2k degrees of freedom. The relation-
ship of Eq. (54) gives the following two-sided confidence inter-

TImc =
r∑

i=1

t(i) +
N−r∑
i=1

tci

val for �:
On the one hand, the estimate of Eq. (59) looks similar to the
estimate of Eq. (53). On the other hand, in the case of Type I
censoring, the number of failures observed, r, is random, so

2TII

χ2
1−α/2(2r)

≤ θ ≤ 2TII

χ2
α/2(2r)

(55)

that TI and r are considered as joint sufficient statistics for a
single parameter, �, (8), which results in the absence of anHaving the point and interval (confidence) estimates for the
exact confidence estimation for the situation given.MTTF, �, it is easy to construct the estimates for other relia-

The most widely used practical approach (approximation)bility measures for the exponential distribution. For example,
to the confidence estimation for the Type I censoring is basedthe point estimate of the reliability (survivor) function is
on the assumption that the quantity 2TI/� has the chi-square
distribution with 2r � 1 degrees of freedom, which results inR̂(t) = e−t/θ̂ , t ≥ 0 (56)
the following two-sided confidence interval for �:

and the upper (1 � �) confidence limit is given by

Ru(t) = e−t/θl , t ≥ 0 (57)

2TI

χ2
1−α/2(2r + 1)

≤ θ ≤ 2TI

χ2
α/2(2r + 1)

(60)

where �l is the (1 � �) lower confidence limit for �.
Type I Censoring with Replacement

Consider a situation when n units are placed on test and eachExample 5 A sample of 20 identical items was placed on a
life test. The test was terminated just after the fourth failure failed item is replaced instantly upon a failure. The relation

between the exponential and the Poisson distribution washad been observed. The times to failure (in hours) recorded
are 322, 612, 685, and 775. Assuming that the TTF distribu- mentioned earlier. Let’s now consider this relationship a little

more closely. Let T be a fixed test duration, and let the num-tion is exponential, find the lower 90% confidence limit for the
MTTF, �. ber of failures, N, for a unit during this time have the Poisson
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distribution with an intensity rate, �, that is, The ML estimates of the parameters � and � can be found as
a straightforward solution of the maximization (of the likeli-
hood function) problem under the restrictions � � 0 and � �Pr(N|λt) = (λT )Ne−λT

N! 0, or using the first-order conditions, which result in solution
of a system of two nonlinear equations. In any case, using a

Consider a time interval (0, t], where t 
 T. The probability numerical method is a must.
that TTF � t [which is the reliability function R(t)] is the
probability that no failure occurs in the interval (0, t], so, it Example 6 A sample of 10 identical components was placed
is given by the above formula with N � 0 and T � t. Thus,

on a life test. The times to failure (in hours) recorded are 459,
R(t) � e��1, which is the reliability function of the exponential

462, 780, 1408, 1735, 1771, 1967, 2105, 2860, and 3441. As-
distribution. Using the general form of likelihood function for

suming that the component TTF distribution is Weibull, find
Type I censoring in Eq. (48), one can find the following likeli-

the point estimates of the distribution parameters � and �.
hood function for the case considered:

Using an appropriate numerical procedure for maximizing
likelihood function [Eq. (64)] with respect to � and �, find the
following estimates: �̂ � 1.91 and �̂ � 1916.17 h. To get aLIr = 1

θ r
e− ∑

ti /θ (61)

feeling about the accuracy of the estimates obtained, mention
where r is the observed number of failures during the test that the data were generated from the Weibull distribution
duration T, and � ti is the total time on test. It is clear that with �̂ � 2 and �̂ � 2000 h.
� ti � nT, so that r is sufficient for �. It is also obvious that r
has the Poisson distribution with the mean equal to nT/�.

NONPARAMETRIC DISTRIBUTION ESTIMATIONFinally, using Eq. (61) the MLE of � can be written as

The estimation and hypothesis testing procedures previously
discussed involved special assumptions. For instance, it couldθ̂ = nT

r
(62)

be assumed that TTF has the exponential, or Weibull, distri-
Using the Poisson distribution of the number of failures, r, bution, and it was necessary to test the goodness of fit to ver-
and the relationship between the chi-square and Poisson dis- ify the assumption. However, even though the goodness of fit
tributions, the following two-sided confidence interval for � is validated by hypothesis testing, the hypothesis remains a
can be obtained in terms of chi-square distribution as hypothesis. There are, also, special statistical methods that

do not require knowledge of the underlying distribution. In
some situations, it is enough to assume that a sample belongs
to the class of all continuous or discrete distributions. The

2nT
χ2

1−α/2(2r + 2)
≤ θ ≤ 2nT

χ2
α/2(2r)

(63)

statistical procedures based on such assumptions are known
The corresponding hypothesis testing is considered in Law- as nonparametric or distribution-free procedures. The non-
less (7). parametric procedures used in reliability and life data analy-

sis are also constructed for the special classes of distribution
Type II Censoring with Replacement functions related to concepts of aging discussed previously.
This case can be reduced to the corresponding case without

Cumulative Distribution Functionreplacement if the total time on test TII is replaced by nt(r).
and Reliability Function Estimation

Weibull Distribution Any random variable is completely described by its CDF, so
the problem of CDF estimation is of great importance. TheLet’s consider the right censored data, for example, a test of
estimate of CDF is the empirical (or sample) distributionn units that results in r distinct times to failure t(1) 

function (EDF) for uncensored data was given by Eq. (45).t(2) 
 � � � 
 t(r) and (n � r) times to censoring tc1, tc2, . . .,
The respective estimate of the reliability (survivor) functiontc(n�r). Using the likelihood function in the form
is called the empirical (or sample) reliability function (ERF).
It can be written for a sample of size n asL =

r∏
i=1

f (t(i) )

n−r∏
j=1

R(tc j )

one can write the corresponding log-likelihood function for the
Weibull distribution with the scale parameter � and the
shape parameter �, as

Rn(t) =




1 0 < t < t(1)

1 − i
n

t(i) ≤ t < t(i+1)

0 t(n) ≤ t < ∞
(65)

i = 1, . . ., n − 1

where t(1), t(2), . . ., t(n) are the ordered sample data (order sta-
tistics). The construction of an EDF requires a complete sam-

log L(α, β) = r log β − βr log α

+ (β − 1)

r∑
i=1

log t(i) − α−βT
(64)

ple. The EDF can be obtained also for the right censored sam-
where ples for the times less than the last TTF observed (t 
 t(r)).

The empirical distribution function is a random function,
since it depends on the sample units. For any given point t,
the EDF, Sn(t), is the fraction of sample items failed before t.

T =
r∑

i=1

tβ

(i) +
n−r∑
i=1

tβ

ci
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Thus, the EDF is the estimate of the probability of a success Assume a sample of n items, among which only k failure
times are known exactly. Denote these ordered times as:(in this context, ‘‘success’’ means ‘‘failure’’), p, in a Bernoulli

trial, and this probability is p � F(t). Note that the maximum t(1) � t(2) � � � � � t(k), and let t(0) be identically equal to zero,
t(0) � 0. Denote by nj the number of items under observationlikelihood estimator of the binomial parameter p (see Exam-

ple 2) coincides with Sn(t). It can be shown that EDF Sn(t) is just before t(j). Assume that the CDF is continuous, so that
there is only one failure at every t(i). Then, nj�1 � nj � 1. Un-a consistent estimator of the CDF, F(t). It is clear that the

mean number of failures observed during time t is E(r) � der these conditions, the product limit estimate is given by:
pn � F(t)n, so that the mean value of the fraction of sample
items failed before t is E(r/n) � p � F(t) and the variance of
this fraction is given by

Var
(

r
n

)
= p(1 − p)

n
= F(t)(1 − F(t))

n
(66)

Sn(t) = 1 − Rn(t) =


0 0 ≤ t < t(1)

1 − ∏i
j=1

nj − 1

nj
t(i) ≤ t < t(i+1), i = 1, . . .,

1 t ≥ t(E )

(71)

For some practical problems in which the estimate of the vari-
where E � k, if k 
 n, and E � n, if k � n. Clearly, forance (66) is required, the formula above is used with replace-
uncensored (complete) samples, the product limit estimate co-ment F(t) by S(t). For example, it is known that as the sample
incides with the EDF [Eq. (45)]. In the general case (includingsize, n, increases, the binomial distribution can be approxi-
descrete distribution, censored or grouped data), the Kaplan-mated by a normal distribution with the same mean and vari-
Meier estimate is given byance (� � np, �2 � np(1 � p)), which gives reasonable results

if np and n(1 � p) are both � 5. Basing on this approximation,
the following approximate 100(1 � �)% confidence interval for
the unknown CDF, F(t), at any given point t can be con-
structed:

Sn(t) = 1 − Rn(t) =


0 0 ≤ t < t(1)

1 − ∏i
j=1

nj − dj

nj
t( j) ≤ t < t( j+1), i = 1, . . ., E

1 t ≥ t(E )

(72)

where dj is the number of failures at t(j). For estimation of
variance of Sn (or Rn), Greenwood’s formula is used:

Sn(t) − zα/2

(
Sn(t)(1 − Sn(t))

n

)1/2

≤ F(t) ≤ Sn(t)

+ zα/2

(
Sn(t)(1 − Sn(t))

n

)1/2
(67)

where z� is the quantile of level � of the standard [N(0,1)]
normal distribution.

ˆVar[Sn(t)] = ˆVar[Rn(t)] =
∑

j:t
( j )<t

d j

n j (nj − dj )
(73)

The corresponding estimates for the reliability (survivor)
Example 7 Table 2 is a typical example of censored datafunction can be obtained using the obvious relationship
presentation (the left columns) suitable for different statisti-Rn(t) � 1 � Sn(t).
cal software tools. The EDF values estimated using Eq. (72)
are given in the right column.Confidence Intervals for Unknown Cumulative Distribution

Function
Percentile Life Estimation for Continuous Distributions

Using a complete or right censored sample from an unknown
For reliability applications, the lower confidence limit of theCDF, one can get the strict confidence intervals for the un-
100pth percentile (or the quantile of level p) of time to failureknown CDF, F(t). This can be done using the Clopper-Pearson

procedure for constructing the confidence intervals for a bino-
mial parameter p: The lower confidence limit, Fl(t), at the
point t where Sn(t) � r/n (r � 0, 1, 2, . . ., n), is the largest
value of p that satisfies the equation:

Ip(r,n − r + 1) ≤ α/2 (68)

and the respective upper confidence limit, Fu(t), is the small-
est p that satisfies the equation:

I1−p(n − r, r + 1) ≤ α/2 (69)

where Ix(a, b) is the incomplete beta function given by

Ip(a, b) = �(α + β)p

�(α)�(β)

∫ p

0xα−1
(1 − x)β−1 dx, 0 ≤ p ≤ 1, α > 0

(70)

Kaplan-Meier (Product-Limit) Estimate. The point and confi-
dence estimation considered are not applicable to multiply
censored data. For such samples, the product-limit estimate,
which is the MLE of the CDF, can be applied.

Table 2. Failure Time Sample and Respective
Product-Limit Estimate

Ordered Failure or Censoring Times,
i t(i) or t*(i) Sn(t(i))

0 0 0
1 707 0.067
2 728 0.133
3 950* 0.133
4 972 0.206
5 1017 0.278
6 1100* 0.278
7 1260 0.358
8 1494 0.438
9 1500* 0.438

10 1586 0.532
11 1697 0.626
12 1742 0.719
13 1794 0.813
14 1968 0.906
15 2000* 0.906
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4. J. W. Provan, Probabilistic Approaches to the Material-Relatedis one of the most important interval estimates. The random
Reliability of Fracture-Sensitive Structures, in J. W. Provan (ed.),variable T(�, p) is called the lower limit of the 100pth percen-
Probabilistic Fracture Mechanics and Reliability, Dordrecht: Mar-tile tp, which corresponds to the confidence probability, � (� �
tinus Nijhoff, 1987.1 � �), if these quantities satisfy the relationship

5. B. V. Gnedenko and I. A. Ushakov, Probabilistic Reliability Engi-
neering, New York: Wiley, 1995.

6. D. R. Cox and P. A. W. Lewis, The Statistical Analysis of Series ofPr
{∫ ∞

T (γ ,p)

dF ≥ 1 − p
}

= γ

Events, New York: Wiley, 1968.

7. J. F. Lawless, Statistical Models and Methods for Lifetime Data,where F(t) is the CDF of TTF. Let t(r) be the TTF of the rth
New York: Wiley, 1982.

failure obtained from a sample of size n from F(t). The TTF
8. L. J. Bain and M. Engelhardt, Statistical Analysis of Reliabilityt(r) is the lower �-confidence limit of the 100pth percentile, tp, and Life-testing Models, New York: Marcel Dekker, 1991.

if its number, r, satisfies the inequality:
9. R. E. Barlow and F. Proschan, Tolerance and confidence limits for

classes of distributions based on failure rates, Ann. Math. Stat., 37Ip(r, n − r + 1) ≥ γ (74)
(6): 1966.

where Ip(a, b) is the above-mentioned incomplete beta func-
Reading Listtion, Eq. (70).

It should be noted that for a given � and a given p, this H. Martz and R. Waller, Bayesian Reliability Analysis, New York:
confidence limit does not exist for any value of sample size Wiley, 1982.
n. For a given � and p, there is a minimum necessary sample W. Nelson, Applied Life Data Analysis, New York: Wiley, 1982.
size nm(p, �), for which t(1) (the time moment of occurrence of
the first failure) is the lower �-confidence limit of the percen- MARK KAMINSKIY
tile tp; in other words, nm(p, �) is a solution of Eq. (74) with University of Maryland
respect to n, when r � 1.

The procedure for constructing a lower � confidence limit
of the 100pth percentile tp does not require very large sample
sizes. For example, for � � (1 � p) � 0.9, nm(0.1, 0.9) � 22.

Percentile Life Estimation for Aging Distributions. When con-
structing confidence limits in the class of continuous distribu-
tions, a basic limitation of the procedure is the size of the
minimum necessary sample, nm. This limitation has stimu-
lated interest in obtaining a solution for the narrower reliabil-
ity class of aging, that is, for IFR distributions. The lower �-
confidence limit of the 100pth percentile, tp, for IFR distribu-
tion tp(�, p, r) is given by Barlow and Proschan (9):

t(γ , p, r) = Ts(t(r) ) · min

(
2 ln(1/(1 − p))

χ2
γ (2r)

,
1
n

)
(75)

where

Ts(t(r) ) =
r∑

i=1

t(i) + (n − r)t(r)

is the total time on test. This formula gives the lower confi-
dence limit for any sample size. It should be mentioned that
if (for a given n, p, and �) t(r) is the confidence limit for the
class of continuous distribution, it always has a larger mean
value than the mean of the limit given by the IFR procedure.
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