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STRESS–STRENGTH RELATIONS

It is easy to understand that a structure will fail if the load
exceeds the capacity of the structure. If both the load and the
capacity hold a single deterministic value, it is simple to fig-
ure out if the structure will fail. In the real world, the load
on the structure rarely holds a deterministic value, and the

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



STRESS–STRENGTH RELATIONS 581

For the entire distribution of the strength, the probability
that the stress is smaller than the strength is

R =
∫ ∞

−∞
fS(S)

∫ S

−∞
fσ (σ ) dσ dS (2)

This probability is the reliability of the structure, and Eq. (2)
is the mathematical expression of the stress–strength inter-
ference model.

If both the stress and strength are normally distributed,
their probability density functions are�y���
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Figure 1. Stress–strength interference model.
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and
same is true for the capacity of the same type of structure.
The load and capacity are actually random variables or even
stochastic processes. If we consider the load and the capacity
to be random variables, we can use probability distributions
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to characterize the load and capacity. In order to calculate the
reliability of the structure when the load and the capacity are where �
, 

 are the mean and standard deviation of the
random variables, a method is needed. One such method, the stress, respectively, and �S, 
S are the mean and standard
stress–strength interference model, can be used. deviation of the strength, respectively.

The stress–strength interference model is an important Because the reliability of the structure is the probability
that the stress is smaller than the strength, we havemethod used for structural reliability design and analysis. It

can be used to calculate the probability that the load is
smaller than the capacity. This probability is considered to be R = P{σ < S} (5)
the reliability of the structure. The stress–strength interfer-
ence model should really be called load-capacity interference Equation (5) can be rewritten into
model because of its broad scope of applications. For struc-
tures, the stress can be an applied load or load-induced re- R = P{S − σ > 0} = P{δ > 0} (6)
sponse quantity that has the effect of causing the structure to
fail (such as stress, force, moment, strain, deformation, pres- where � � S � 
. Here � is also a normally distributed ran-
sure, or temperature). The strength can be the capacity of dom variable. Its mean and standard deviation are
structures to withstand the applied load, such as yield
strength, ultimate strength, yield moment, permissible defor- µδ = µS − µσ (7)
mation, allowable pressure, or temperature. The type of struc-
ture capacity depends on the type of the applied load and the and
failure criterion. In general, the principal driving force for
structural failure under mechanical loading is the stress and

σδ =
p

σ 2
S + σ 2

σ (8)
the corresponding capacity is the strength. Hence, the stress–
strength interference model was named. In this article, we

Therefore, the reliability of the structure iswill only refer to it as the stress–strength interference model.

MATHEMATICAL FORMULATION
R = P{δ > 0} =

∫ ∞

0
fδ (δ) dδ =

∫ ∞
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δ
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where f �(�) is the probability density function of random vari-Let us denote the stress and strength by 
 and S, respec-
able �. Let us introduce a new random variable Z through thetively. If the probability density functions of the stress and
transformationstrength are f
(
) and fS(S), respectively, the reliability of the

structure can then be calculated from f
(
) and fS(S). As
shown in Fig. 1, the probability that the strength falls in the
vicinity of S* is fS(S*) dS, and the probability that the stress

z = δ − µδ

σδ

(10)

is smaller than S* is 	S*

�� f
(
)d
. If these two events are inde-
pendent, the probability that they occur at the same time is Equation (9) can be rewritten into

dR =
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∫ ∞

− µ
δ

σ
δ

1√
2π

e− z2

2 dz =
∫ µδ /σδ

−∞

1√
2π

e− z2

2 dz = φ

�
µδ

σδ

�
(11)



582 STRESS–STRENGTH RELATIONS

By substituting the expressions of �� and 
� in Eqs. (7) and ual probability density functions of random variables X1, X2,
(8) into Eq. (11), we have . . ., Xn. Equation (2) is a special case of this. However, the

random variables are generally not statistically independent.
It is often difficult to obtain the joint probability density func-
tion of random variables. Even if this function is available,

R = φ

�
µS − µσ√
σ 2

S + σ 2
σ

�
= φ(β) (12)

the calculation of the multiple integral in Eq. (13) is also for-
midable. If a closed form solution is not available, a numericalwhere the parameter � is known as the reliability index and
method has to be used to calculate the reliability. In some�(�) is the cumulative distribution function of the standard

normal random variable. Values of the function �(�) for some other cases, the random variables may not be described well
specific � are listed in Table 1. An example that illustrates by any standard probability distributions, and the probability
the application of the preceding method follows. density functions of the random variables can be represented

in histograms or nonparametric statistical distributions only.
Example 1. Consider a structural part that sustains a nor- Numerical methods also have to be used in these cases.
mally distributed static load. Under this load, the tensile A straightforward numerical method to solve the stress–
stress of a critical location is also a normally distributed ran- strength interference model in Eq. (2) or (13) is numerical
dom variable. The mean and standard deviation for the ten- integration. The procedure for numerical integration can be
sile stress are 700 MPa and 200 MPa, respectively. The yield found in textbooks. In simple cases where only a few stress or
strength for the material of the part is also a normally distrib- strength related random variables are essential, it is easy to
uted random variable with the mean of 1200 MPa and the solve Eq. (13) by numerical integration. When the number
standard deviation of 150 MPa. of integration dimensions in Eq. (13) is relatively large, the

To calculate the reliability, or the probability that the part computational time becomes too long. Numerical integration
will not yield, we calculate the reliability index is no longer a practical method to solve Eq. (13). Monte Carlo

simulation technique can be used in this case. The procedure
for computing Eq. (13) by the Monte Carlo simulation can be
described in the following.

β = µS − µσ√
σ 2

S + σ 2
σ

= 1200 − 700√
1502 + 2002

= 2

First, a random number is generated for each variable X1,
From Table 1, the reliability of the part can be obtained as X2, . . ., Xn in Eq. (13) according to the joint probability den-
0.9772. sity function fX(x1, x2, . . ., xn). Then, these random numbers

are substituted into the reliability performance function � �
In the preceding context, we use random variable � � g(X1, X2, . . ., Xn). It is known that the structure will survive

S � 
 as the reliability performance function. When � � 0, when � � 0. Therefore, an estimate of the reliability can be
the strength exceeds the stress, and the structure will sur- obtained in the following equation by repeating the preceding
vive. When � � 0, the strength is smaller than the stress, and sampling process
the structure will fail. In general, the reliability of a structure
depends on many relevant design as well as load parameters,
which most likely are random variables. By denoting these R = Nδ>0

N
(14)

random variables as X1, X2, . . ., Xn, we can write the reliabil-
ity performance function into � � g(X1, X2, . . ., Xn). When

where N��0 is the number of simulation cycles in which � � 0,� � 0, the structure will survive. When � � 0, the structure
and N is the total number of simulation cycles. As N ap-will fail. � � 0 defines the boundary between the reliable and
proaches infinity, the estimated reliability R approaches theunreliable regions of the structure in the design parameter
true reliability R. The accuracy that the estimated reliabilityspace. A reliability performance function can be an explicit or
R represents the true reliability R can be evaluated in termsimplicit function of basic random variables, and it can be in a
of its variance. The variance of the estimated reliability cansimple or complicated form. If the joint probability density
be computed by assuming each simulation cycle to constitutefunction for X1, X2, . . ., Xn is expressed as fX(x1, x2, . . ., xn),
a Bernoulli trial. Therefore, the number of successes in Nthe reliability of structure can be calculated by
trials can be considered to follow a binomial distribution. The
variance of the estimated reliability can be computed approxi-
mately as

R =
∫∫

g(X1 ,X2 ,...,Xn )>0

· · ·
∫

fX (x1, X2, . . ., xn) dx1 dx2 · · · dxn (13)

Because Eq. (13) can be used to calculate the reliability of a Var(R) = (1 − R)R
N

(15)
complicated structure, it is considered as a generalized
stress–strength interference model.

Another better alternative to measure the statistical accuracyIf the random variables are statistically independent, the
joint probability density function is the product of the individ- of the estimated reliability is to use its coefficient of variation

Table 1. Reliability Index and Reliability

Reliability Index (�) 0 1 2 3 1.282 1.645 2.326 3.090 3.719
Reliability (R) 0.5 0.8413 0.9772 0.9987 0.9 0.95 0.99 0.999 0.9999
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criteria so that simulation efficiency increases. This is an-
other topic that needs to be addressed in the future.

The probability distributions of random variables are ei-
ther obtained from experimental or field measurements or de-
rived from other information. No matter how they are ob-
tained, they are based on a finite amount of data. This
introduces an uncertainty in the probability density func-
tions. This uncertainty will be carried over to the calculation
of reliability. The uncertainty associated with a calculated re-
liability can be expressed in terms of confidence level. There
are researches that deal with the confidence of reliability.
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However, applicable results are available only in simple cases
Figure 2. Estimated reliability according to Monte Carlo simulation. where both the stress and strength are normally distributed.

How to build the confidence in general situations is certainly
another challenge in the future.COV(R), which can be calculated by
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As shown in Fig. 2, the accuracy of estimated reliability

directly depends on the sample size in direct Monte Carlo STRIPING. See INTERLEAVED STORAGE.
simulation technique. To enhance the accuracy of the esti- STRIPLINE CIRCUITS. See MICROWAVE CIRCUITS.
mated reliability with moderate sample size, a more effective
and efficient sampling method is necessary. Some good exam-
ples are stratified sampling method, importance-sampling
method, Latin hypercube sampling method, and adaptive
sampling method. In all these methods, the basic random
variables are generated according to some carefully selected


