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components are condenser, fan, circuits, and the like. It is
usually the case that within any population of components,
there are strong components with long lifetimes and weak
components with short lifetimes. To ensure that customers
receive only the strong components, a manufacturer will sub-
ject all the components to tests where typical or severe use
conditions are encountered. The weak components, in theory,
will fail, leaving only the strong components. A similar type
of test can be carried out after the components are assembled
into systems. In addition to uncovering weak systems, this
procedure is also used to uncover defects that were introduced
during assembly. We use the term burn-in for all these tests.
A basic issue is to find an optimal burn-in time.

In the following we give a general introduction to burn-in.
We discuss terminology, burn-in distributions, performance
criteria, cost functions associated with burn-in, mixture mod-
els, tail behavior for burn-in distribution, and a general opti-
mization result.

TERMINOLOGY

Besides the term burn-in, closely related terms are screen and
environmental stress screening (ESS). The AT&T Manual (1)
defines a screen to be an application of some stress to 100%
of the product to remove (or reduce the number of) defective
or potentially defective units. Fuqua (2) concurs with the
100% but states that this may be an inspection and stress is
not required. The same author describes ESS as a series of
tests conducted under environmental stresses to disclose la-
tent part and workmanship defects. Nelson (3) describes ESS
as involving accelerated testing under a combination of ran-
dom vibration and thermal cycling and shock. A more detailed
description of ESS is given in Kuo, Chien, and Kim (4).

The AT&T Manual (1) describes burn-in as one effective
method of screening (implying 100%) using two types of stress
(temperature and electric field). Burn-in is described by Nel-
son (3) as running units under design or accelerated condi-
tions for a suitable length of time. Tobias and Trindade (5)
restrict burn-in to high stress only and require that it be done
prior to shipment. The term reliability audit is used in the
AT&T Manual (1) to describe the situation where a small
number of complex systems are subjected to ordinary use and
then mild stress conditions to, respectively, eliminate early
system failures and accelerate aging so that weak systems
fail. Furthermore, this type of audit is done to obtain data to
compare equipment to certain standards set for it. In Berg-BURN-IN AND SCREENING
man (6), burn-in is defined in a general way as a preusage
condition of components performed to screen out the substan-Burn-in and screening are methods that are extensively used

in engineering. Their purpose is to eliminate weak items from dard components, often in a severe environment. The defini-
tion of burn-in in Jensen and Petersen (7) is basically thea population. The distinction between the terms burn-in and

screening is given later in this article. For the purposes of the same as in Bergman.
In this article we use the term burn-in in a general way,article, we use burn-in as our catch-all phrase.

The population referred to previously usually consists of similar to the usage of Bergman (6) and Jensen and Petersen
(7). It will mean in the present setting, some preusage opera-various engineering systems composed of items or parts that

are arranged together to form the system. These items or tion under which components or systems undergo normal or
stressed conditions. It can involve either 100% of the itemsparts, which we call components, operate for a certain amount

of time until they fail, as do the systems composed of these or some smaller subgroup (especially for complex systems or
subsystems), and it is not limited to eliminating weak compo-components. The systems might be electronic systems such as

circuit boards, and the components would be various types of nents.
A good introduction to some of the statistical ideas in burn-chips and printed circuits. Alternately the systems considered

could be mechanical, such as an air conditioner, where the in are contained in Jensen and Petersen (7). Some of the engi-
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neering as well as statistical ideas are contained in Fuqua (2) from them produces a mixture of subpopulations, and these
mixtures often have bathtub-shaped failure rates.and Tobias and Trindade (5). A useful reference is the AT&T

Manual (1). Two papers that review the engineering litera- Various papers have appeared in the statistical literature
providing models and formulas for bathtub-shaped failureture are Kuo and Kuo (8) and Leemis and Beneke (9), while

a paper by Block and Savits (10) reviews the statistics litera- rates. See Rajarshi and Rajarshi (11) for a review of this topic
and many references. One method of obtaining some of theseture. A book by Kuo et al. (4) contains very up-to-date statisti-

cal and engineering material. distributions is by mixing standard life distributions such as
the exponential, Weibull, and gamma. The AT&T Manual (1)
gives another model, called the AT&T model, for the failure

BURN-IN DISTRIBUTIONS
rate of an electronics component. The initial part of the life-
time is modeled by a Weibull with decreasing failure rate,

The type of component that will benefit from burn-in can be
and the later part is modeled by an exponential. This model

described by the shape of its failure rate function. If the fail-
does not provide for wearout, but the Manual explains that

ure rate function is increasing, the component whose lifetime
the AT&T electronic equipment tends not to wear out before

has this failure rate is wearing out. Thus, if such a component
it is replaced. This model has been used extensively by Kuo

is subject to burn-in, some of its more reliable life is being
and his coauthors [see Kuo et al. (4) for a discussion]. This

used, and burn-in will not in general be beneficial. For burn-
model is also called the Weibull-exponential model in the sta-

in to be effective, components should have high failure rates
tistical literature.

initially and then improve. Burn-in for such distributions es-
sentially eliminates the part of the lifetime where there is a
high chance of failure. The class of lifetimes with bathtub-

PERFORMANCE CRITERIAshaped failure rates has this property. These distributions
have high failure rates initially (the infancy period), decrease

The purpose of burn-in is to improve the quality of productsto a constant (the middle life), and then eventually increase
after they have been produced. The quality of products can be(old age), which represents wearout. As indicated by the lan-
measured via various performance characteristics. Through-guage in the parentheses, these distributions are thought to
out most of this article, we assume that the failure rate func-describe human life and other biological systems. However,
tion of a product exhibits a bathtub shape and let t1 denotecertain electronic and mechanical lifetimes can also be mod-
its first change point (i.e., the first point the failure rate stopseled by these distributions. This distribution is appropriate
decreasing). Notice that both increasing and decreasing fail-for burn-in because burn-in eliminates the high-failure in-
ure rate functions are special cases of a failure rate functionfancy period, leaving a lifetime that begins near its middle
with bathtub-shaped failure rate. We will consider the follow-life period. We generally refer to the end of the infancy period
ing optimization problems pertinent to product performance.as the first change point and denote it by t1. Similarly the
References for many of the following criteria are contained inbeginning of the old age period is called the second change
Block and Savits (10). One recent reference is Mi (12) inpoint and is denoted by t2. See Fig. 1 for a typical bathtub
which availability criteria are discussed.curve and the effect of burn-in.

There are physical reasons for using bathtub-shaped dis-
tributions to describe many systems and components. As Maximizing Conditional Survival Probability
pointed out by Jensen and Petersen (7), many industrial pop-

Let F(t) be the distribution function of a product and F(t) �ulations are heterogeneous, and there are only a small num-
1 � F(t) its survival function. A product surviving the burn-ber of subpopulations. Although members of these subpopula-
in procedure which lasts for time b has a conditional survivaltions may not have bathtub-shaped failure rates, sampling
function Fb(t) � F(b � t)/F(b) for t � 0. In practice, we may
want this product to operate for a fixed mission time � with-
out failure. The probability of this event is given by Fb(�),
which is in fact the conditional probability for the product to
last for at least � units of time given that it has survived b
units of time. Certainly, we are interested in the optimal
burn-in time, say b*, that will maximize the preceding condi-
tional survival probability. That is, we need to find b*, which
maximizes F(b � �)/F(b).

Maximizing Mean Residual Life

The mean residual life at time t of a product is the mean of
the residual life of a product that has survived time t. To be
more precise, letting X be the random life of the product, then
the value of the mean residual life at time t is E(X � t�X �
t). Denoting this function by �(t), it can be shown that100K90K80K70K60K50K
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Figure 1. A typical bathtub curve and effect of burn-in. Reproduced
from Tobias and Trindade (5) with permission.

µ(t) =
∫ ∞

t F(x) dx

F(t)
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From the definition of mean residual life and the preceding fixed. Suppose that we burn in the system for time b. The
mean life of the system used in field is thus the mean residualexpression, we see that at time t � 0, �(0) is exactly the same

as the mean life of the product. The mean residual life is cer- life �(b) mentioned in the preceding subsection on maximiz-
ing mean residual life. Hence, this optimization problem istainly a natural measure of product performance. In practice,

we often want the product to have a long mean life in field equivalent to maximizing �(b).
operation. This goal can be achieved by the burn-in proce-
dure, and it is equivalent to finding the optimal burn-in time Maximizing Stable Interval Availability
b* that will maximize �(b).

The assumptions made in the previous subsection are re-
tained here. An interesting and useful quantity is interval

Minimizing the Mean Number of Failures
availability. For any fixed w � 0 and time t, the corresponding

Before Completion of a Mission
interval availability is defined as the probability that the sys-

Suppose that in field operation we use components that have tem is working failure-free in the entire interval [t, t � w].
survived the same burn-in procedure with time b. All these Except for a very few special cases, there is not closed form
components have the same distribution function Fb(t). At fail- expression for interval availability. However, from an engi-
ure, the failed components will be replaced by independent neering point of view, the long run behavior of interval avail-
ones, and this process continues until it reaches a predeter- ability is good enough for measuring the performance of the
mined mission time �. The number of failures in the interval system. The limit of interval availability as t � � is called
[0, �] is also a measure of product performance. If we want to the stable interval availability of the system and is denoted
have fewer failures in this interval, then we can again appeal by A(w). If the cumulative distributions of the system life and
to burn-in. Denote the number of failures in the interval by replacement time are denoted by H(t) and G(t), respectively,
Nb(�), the optimal burn-in time b* is obtained by maximizing then the expression for A(w) is given by
E[Nb(�)].

Maximizing Warranty Period
A(w) = 1∫ ∞

0 H(t) dt + ∫ ∞
0 G(t) dt

∫ ∞

w
H(t) dt

Let F(t) be a lifetime distribution function and � a given per-
Now, suppose that we use systems that have survived thecentage. We define the �-percentile residual life function by
same burn-in procedure for b units of time. In this case, the
distribution of the system life is Fb(t). If we still assume theqα ≡ F

−1
(α) ≡ inf {t ≥ 0 : F(t) ≤ 1 − α}

distribution of replacement times is G(t), then the stable in-
terval availability has the expressionThis quantity can be viewed as the warranty period for which

at most �-percent of components following the distribution
will fail. We use Fb(t) to denote the distribution function of Ab(w) = 1

µF (b) + ν

∫ ∞

w
Fb(t) dt

components that have survived burn-in time b. According to
the definition of �-percentile residual life function, we can

wheresimilarly define

qα(b) ≡ F−1
b (α) ≡ inf {t ≥ 0 : Fb(t) ≤ 1 − α} µF (b) =

∫ ∞
b F(t) dt

F(b)
and ν =

∫ ∞

0
G(t) dt

One problem is to determine how long we should burn in com-
A natural question is whether burn-in can be applied to in-ponents so that the associated warranty period will be max-
crease stable interval availability, and if so, how long shouldimized. The corresponding optimal burn-in time is thus deter-
the burn-in procedure last. That is, we need to find the opti-mined by maximizing q�(b).
mal time b* maximizes Ab(w). For all these performance crite-
ria, it has been proved that if the underlying distributionsMaximizing Stable Point Availability
F(t) exhibits a bathtub-shaped failure rate, then the optimal

Suppose that in field operation independent and identical burn-in time b* satisfies b* � t1 where t1 is the first change
components are used sequentially and one at a time. At each point of the failure rate function of F(t).
failure, the failed component is replaced by another new one,
with negligible detection and replacement times. We further
assume that the random times needed for completing these COST FUNCTIONS
replacements are independent of each other and have the
same distribution. For any given time t, the probability that It is appropriate to use the previously mentioned performance

criteria without considering cost resulting from burn-in whenthe system is in working state is called the instantaneous
availability of the system. The limit of the instantaneous those performance criteria are extremely important and cost

is not a major issue. There are many other circumstances,availability as t � � is called the stable point availability.
Stable point availability is a measure of system performance however, in which cost must be taken into consideration for

determining the optimal burn-in time. This is the topic of theand can be expressed as the ratio of the mean lifetime of the
system over the sum of the mean lifetime of the system and present section. In most of the following cases, it is shown

that if a bathtub-shaped failure rate is assumed, the optimalthe mean replacement time. Therefore, in order to increase
the stable point availability, we need only to increase the burn-in time (i.e., the time that minimizes cost) must occur

at or before the first change-point t1.mean lifetime of the system if the mean replacement time is
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Clarotti and Spizzichino Cost Function turer is interested in finding the optimal burn-in time b*
which can minimize the total mean cost incurred by both

The following is a cost function due to Clarotti and Spizzi-
burn-in and warranty. This question has been discussed by

chino (13). A component is burned-in for b units of time. If it
Mi (15).

fails during the procedure, a cost c0 is incurred. If it survives
burn-in, then it will be put into use in the field; in this case,

Burn-In and Age Replacement Policyif it fails before a mission time �, then an additional cost C �
c0 is incurred; and if it successfully operates during the mis- In this case we consider both burn-in and maintenance poli-
sion time, then a gain of K is received. Consequently, if the cies. In particular, we will use an age replacement policy T.
underlying distribution is F(t), then the mean cost function is Let cf denote the cost incurred for each failure in field opera-

tion, and let ca 	 cf the cost incurred for each nonfailed compo-
nent that is replaced at age T in field operation. Combiningc1(b) = c0F(b) + C[F(b + τ ) − F(b)] − KF(b + τ )

these costs with the burn-in cost k(b), we obtain the long-run
In the following discussion, we assume the total cost is the average cost per unit time as a function of the burn-in time b
sum of the cost of burn-in and the cost incurred in field appli- and the age replacement policy T
cation of the burned-in components.

Cost Resulting from Burn-In c(b, T ) = c f Fb(T ) + caFb(T ) + k(b)∫ T
0 Fb(t) dt

An attempt is made to burn-in a new component for b units
of time. If the component fails before time b, then it is re- The case where b and T are optimized simultaneously has
placed by a new one (or, if repairable, by a good as new one) been considered by Mi (16).
with a cost cs, and the burn-in procedure with the same time
b begins anew and continues until a component that has sur- Other Cost Functions
vived the burn-in period b is obtained. It is also assumed that

In the review papers of Kuo and Kuo (8), Leemis and Benekethe cost of burn-in per unit time is c0. Denoting the distribu-
(9), and the book by Kuo et al. (4), many other cost functionstion function of a new component by F(t), it can be shown that
are mentioned.the mean cost resulting from this burn-in procedure is given

by

GENERAL OPTIMIZATION RESULT

In the previous sections we listed several criteria that could
k(b) ≡ c0

∫ b
0 F(t) dt

F(b)
+ csF(b)

F(b)

be used for deciding how long burn-in should continue. These
are but a small sample of the various utility or objective func-It is easy to show that k(b) is an increasing function of b.
tions that have been considered in the burn-in literature. As
has been noted, a striking feature among these is that theBurn-In Cost Plus Cost and Gain for Mission Time Period
optimal burn-in time b* generally occurs at or before the first

Suppose that a component that has been burned-in and put change point t1 of the underlying bathtub distribution F(t).
into field operation fails before mission time �. A cost C is This result is intuitively satisfying and is believed to hold
then incurred. If the component does not fail, a gain of K is true for any ‘‘reasonable’’ objective function. It does also have
obtained. The total mean cost is expressed as important implications because it provides an upper bound

for burn-in. A recent result of Block et al. (17) attempts to
capture the essentials of this ‘‘folklore.’’

Consider an objective function C(b), which can be decom-
c2(b) = k(b) + C

F(b + τ ) − F(b)

F(b)
− K

F(b + τ )

F(b)

posed into two parts: C(b) � C1(b) � C2(b). We think of C1(b)
as the ‘‘cost’’ of burn-in, while C2(b) represents the gain dueBurn-In Cost and Gain Proportional
to burn-in. An immediate observation is that if C1(b) increasesto the Mean Life in Field Use
in b � t1 and C2(b) decreases in b � t1, then C(b) is increasing

Suppose that the operation of a burned-in component incurs in b � t1, and hence its minimum value must occur no later
a gain proportional to its mean life. The mean total cost is than t1.
then given by This framework simplifies and unifies many of the pre-

viously obtained optimization results. Maximization problems
and objective functions of the form C(b) � [C1(b)]/[C2(b)] can
be easily transformed into the preceding prototype by taking

c3(b) = k(b) − K

∫ ∞
b F(t) dt

F(b)

negatives and/or logarithms. Jong (18) has shown that most
of the objective functions studied in the literature can be castwhere K is the proportionality constant. See Mi (14) for an
in this framework.analysis of c2(b) and c3(b).

Burn-In and Warranty Policy
PRESERVATION RESULTS

Consider either a failure-free warranty policy or rebate war-
ranty policy. Suppose burned-in products are sold along with In the framework of the previous section, we were interested

in optimizing utility functions of the form C(b) � C1(b) �a warranty that has a fixed warranty period T. A manufac-
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C2(b). In most situations, the functions C1(b), C2(b) are them- ure rate of the mixture is � � inf
�S
. Another result shows
selves expressible as monotone functionals of simpler well- that the likelihood ratio ordering between two mixing proba-
known objects. For example, we can regard the mean residual bility measures P1 and P2 implies an ordering of the associ-
life function �(b) as a functional � defined on the class of life ated optimal burn-in times b*1 and b*2 . Block et al. (20) extend
distributions �(b) � �(Fb), where these results to the general mixture model. Generally a popu-

lation of products consists of different groups of components
that are not distinguishable but that have different qualities.
Accordingly, we can say that the entire population consists of

�(G) =
∫ ∞

0
G(t) dt

subpopulations of different strengths. In this general setting,
and Fb is the distribution function of the burned-in unit. Fur- these authors show the intuitively appealing result that the
thermore, � is monotone in the sense that if G1 is stochas- strongest subpopulation will eventually dominate the entire
tically less that G2 [i.e., if G1(t) � G2(t) for all t � 0, then population.
�(G1) � �(G2)]. In the following subsections we explore three different cri-

Thus it is important to have a collection of building blocks teria for determining the strongest subpopulation. More de-
for which properties are known. In particular, it is important tails on this are contained in Mi (21).
to understand the ramifications of the class of bathtub distri-
butions.

Failure Rate CriterionIn Block et al. (17), two different characterizations of a
bathtub-shaped function are given in terms of their sign- Suppose that each F(t, 
) has failure rate function r(t, 
) and
change properties. One application gives that if F has a bath- the limit a(
) � limt�� �(t, 
) exists. Under certain conditions,
tub-shaped failure rate function with the first change-point Block et al. (20) show that the failure rate function r(t) of the
t1, then Fb is stochastically decreasing in b � t1, that is, Fb is mixture converges as t goes to infinity; more precisely,
stochastically larger than Fc for t1 � b � c. Consequently, the
mean residual life function �(b) � �(Fb) is decreasing in b �
t1 and thus its maximum value occurs at or prior to t1.

lim
t→∞

r(t) = inf
λ∈S

a(λ) ≡ α

In a recent paper of Block et al. (19), these authors investi-
gate preservation properties of bathtub-shaped functions. A In this case we can use failure rate as a criterion: for any
main result in that paper gives conditions under which a fixed failure rate level c � �, designate a subpopulation �
 �
function of the form G(t) � N(t)/D(t) inherits the bathtub- S : a(
) 	 c� as the strong subpopulation and �
 � S : a(
) �
shaped property from the related function �(t) � N
(t)/D
(t). c� as the weak subpopulation. It can be shown that at time t
Furthermore, the change point of G is bounded by the change the proportion of the strong subpopulation that survived time
point of �. Many of the quantities of interest in reliability t is given by
have this form. Generally the associated function �(t) is easier
to work with. For example, in the case of the mean residual
life function, �(t) � 1/r(t), where r(t) is the failure rate func-
tion of the distribution F(t). It is shown that if r(t) has a bath-

Mt ({λ ∈ S : a(λ) < c}) =
∫

{λ∈S : a(λ)<c} F(t, λ)P(dλ)∫
S F(t, λ)P(dλ)

tub shape, then �(t) has an upside-down bathtub shape;
moreover, the first change point of �(t) occurs no later than The results obtained in Block et al. (20) imply that for any
that of r(t). Applications to other reliability functions include c � � the preceding proportion Mt(�
 � S : a(
) 	 c�) has limit
the variance residual life function, the uncertainty function, one as t � �.
and the coefficient of variation function. A detailed discussion
of a burn-in criterion using the coefficient of variation as the

Mean Residual Life Criterionobjective function is also given.

Let �(t, 
) denote the mean residual life function for each 

� S and assume that the limit b(
) � limt���(t, 
) exists. ForBURN-IN AND MIXTURE MODELS
any fixed level c 	 � � sup
�Sb(
), we designate the subpopu-
lation �
 � S : b(
) � c� as the strong subpopulation and �
 �Mixtures are important not only because they give an expla-
S : b(
) � c� as the weak subpopulation. As before, Mi (21)nation of a bathtub-shaped failure rate but also because they
shows that the proportion of the strong subpopulation whichreflect practical concerns as described in the introduction. For

the model of a general mixture, let S be the index set, F(t, 
), has survived time t has limit one as t � �; in other words,

 � S be the distribution of any 
 subpopulation, and let P be
a probability measure on S. The distribution of the mixture lim

t→∞
Mt ({λ ∈ S : b(λ) > c}) = 1

is then given by

for any c 	 � � sup
�Sb(
).
F(t) =

∫
S

F(t, λ)P(dλ)

Conditional Survival Probability Criterion
Clarotti and Spizzichino (13) considered the special case of

Mi (21) also considers using the conditional survival functionmixtures of exponentials. That is, in their model, F(t, 
) �
F(t � x, 
)/F(t, 
) to define the notion of a strong subpopula-1 � exp(�
t) for every 
 � S. Combining their cost function
tion and uses a result of Rojo (22) to obtain results similar toc1(b) with this mixture model, they derived some interesting

results. One result gives that the limiting behavior of the fail- those of the preceding two subsections.
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EVENTUAL MONOTONICITY OF and Joe (27) and represents a number of results contained in
Theorems 2.1 and 2.2 of that paper.FAILURE RATES OF MIXTURES

These authors consider a mixture of two lifetime distribu-
tions with densities f 1, f 2, survival functions F1, F2, failureAs mentioned in an earlier section, burn-in is usually applied
rate functions r1, r2, and weights p and q � 1 � p where 0 	to distributions that arise as mixtures. These distributions
p 	 1. The mixed density is then written asoften have failure rates that are bathtub-shaped. Conse-

quently, the study of the behavior of mixture distributions
f (t) = p f1(t) + (1 − p) f2(t)and in particular the question of when their failure rates are

bathtub-shaped are of great importance. Preliminary investi-
and the mixed survival function isgations have focused on the tails of the failure rates of mix-

ture distributions. For failure rate functions to be bathtub-
F(t) = pF1(t) + (1 − p)F2(t)shaped, they must at least initially decrease and eventually

increase. Burn-in is intimately connected with an initial de-
The failure rate of the mixture is r(t) � f (t)/F(t), which is a

crease in the failure rate function. Because most components complicated function of the individual failure rates r1(t) and
or systems are subject to eventual wearout, intuitively the r2(t). It is assumed that the second failure rate is eventually
right tail of the failure rate should eventually be increasing. stronger than the first in the sense that r1(t) � r2(t) for all
In this section, we focus on the right tail of the distribution. large values of t. They also make some technical assumptions

One of the earlier studies of mixtures of distributions was to ensure that the failure rates behave like ratios of polyno-
Proschan (23). In this study, the question of why the lifetimes mial functions because almost every major life distribution
of cooling systems of aircraft had failure rates that decreased has this property. Under appropriate conditions, if
was discussed. It turns out that these lifetimes came from
several exponential populations that, of course, had constant
failure rates. Collectively, the overall failure rate appeared to

r1(t)
r2(t)

is increasing in t

be decreasing. The explanation given by the author was that
the resulting population consisted of a mixture of exponen- and has an infinite limit, then
tials and consequently had a decreasing failure rate. An intu-
itive explanation is that there is a stronger component and
weaker components and over the course of time the effect of

r(t)
r2(t)

is decreasing in t

the weaker components dissipates and the stronger compo-
nent takes over. In terms of failure rates, the overall failure Notice that, in particular, if r2(t) is also decreasing, then r(t)
rate decreases to the stronger failure rate. Although this re- is decreasing, which is the desired result.

For an example of the use of the preceding, consider twosult has since been observed in special cases, one of the first
Weibull distributions with failure rates ri(t) � �i�it�i, i � 1, 2general results of this type occurs in Block et al. (20) for con-
with the second failure rate being stronger eventually (i.e.,tinuous distributions. The result of these authors, discussed
�1 � �2). Thenin a previous section, is that the failure rate of a mixture

eventually approaches the limiting failure rate of the strong-
est component. A companion result appears in Mi (24) for dis-
crete distributions.

r1(t)
r2(t)

= θ1γ1

θ2γ2
tγ1−γ2

Gurland and Sethuraman (25, 26) made the observation
is increasing in t and has an infinite limit. By the precedingthat mixtures that contained distributions with rapidly in-
equation r(t)/r2(t) is decreasing in t. For �2 	 1, r2(t) has acreasing failure rates could be eventually decreasing. In the
decreasing failure rate and so the mixture r(t) is eventuallyfollowing we will describe some results of Block and Joe (27),
decreasing. This result is not so easy to verify directly.which put all the preceding results in context and give gen-

eral conditions for mixtures to have eventually increasing or
Conditions Under Which Mixtures Experience Wearoutdecreasing failure rates. The reasons for the importance of

this work follow: (1) it is important to know the behavior that Another result obtained by Block and Joe (27) gives that for
occurs when populations are pooled (this pooling can occur a wide variety of failure distributions, a mixture eventually
naturally as described previously or can be done by statisti- inherits the monotonicity of its strongest component. For ex-
cians to increase sample size), and (2) it is useful, for model- ample, if the strongest component is eventually increasing,
ing purposes, to have available a distribution with a particu- so is the mixture. This is equivalent to saying the mixture
lar failure shape (e.g., a bathtub-shaped distribution). experiences wearout. Notice that by way of contrast the result

of the previous example gives that the mixture is eventually
decreasing, which is not what one would expect of many phys-Eventually Decreasing Mixtures
ical systems.

More general versions of the observations of Gurland and Most standard failure rate distributions such as the Wei-
Sethuraman (25, 26) were obtained by Block and Joe (27). bull, the gamma, and the lognormal have failure rates that
Many of the results of Gurland and Sethuraman have to do approach constant or infinite limits at a reasonable rate as
with mixtures of exponential distributions and other lifetime time increases. We categorize these distributions by saying
distributions having an increasing failure rate. These mix- that their failure rates approach a limit at polynomial rate.
tures turn out to have eventually decreasing failure rates. See Block and Joe (27) for a more precise definition of polyno-

mial rate and for the definition of the following distribution.The result that we mention later is from the paper of Block
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21. J. Mi, Age-smooth properties of mixture models, Technical Re-A truncated extreme distribution has a failure rate that ap-
port, Department of Statistics, Florida International University,proaches a limit much more quickly than the preceding fail-
Miami, FL, 1997.ure rates. This failure rate is said to have an exponential rate.

22. J. Rojo, Characterization of some concepts of aging, IEEE Trans.Using this terminology we can state the main result of Block
Reliab., 44: 285–290, 1995.and Joe (27).

23. F. Proschan, Theoretical explanation of observed decreasing fail-Consider a mixture model with two components in which
ure rate, Technometrics, 7 (4): 375–383, 1963.the second component is stronger and both components have

monotone failure rates that approach constants r1 and r2 at 24. J. Mi, Limiting behavior of mixtures of discrete lifetime distribu-
tions, Naval Res. Logistics, 43: 365–380, 1996.polynomial rates with r1 � r2. Under a technical condition on

the derivatives of the failure rates, the failure rate of the mix- 25. J. Gurland and J. Sethuraman, Reversal of increasing failure
rates when pooling failure data, Technometrics, 36: 416–418,ture has eventual monotonicity in the same direction as the
1994.strongest component.

Consider the mixture of two gamma distributions with 26. J. Gurland and J. Sethuraman, How pooling failure data may
reverse increasing failure rate, J. Amer. Stat. Assoc., 90 (432):densities proportional to t�i�1 exp(��it) for i � 1, 2. Assume
1416–1423, 1995.that �i � 1 for i � 1, 2 so that the distributions have increas-

ing failure rates and also that �1 � �2 so that the second dis- 27. H. W. Block and H. Joe, Tail behavior of the failure rate function
of mixtures, Lifetime Data Analysis, 3: 269–288, 1997.tribution is stronger than the first. The result mentioned pre-

viously gives that any mixture of these two distributions has
HENRY W. BLOCKeventually an increasing failure rate.
THOMAS H. SAVITS

University of Pittsburgh
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