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bryonic stage. There are excellent research results in some
specific areas, although there is no generalized theory (except
possibly in the field of mechanical strength). One of the expla-
nations of this fact is the fast pace of modern technology. The
past thirty to thirty-five years have dramatically changed the
face of electronics: instead of clumsy and ineffective electronic
components, superminiaturized and extremely intelligent
chips have appeared.

Many models of mechanical reliability (strength-loading
models, wearing out, etc.) have a long history but tradition-
ally are not included in reliability theory. (See STRESS-

STRENGTH RELATIONS.)
Strictly speaking, this branch of technological research and

RELIABILITY THEORY development, dealing with physical models, is not usually in-
cluded in current reliability theory.

Reliability theory is a relatively young branch of applied
mathematics, dealing most of all with probabilistic and statis-

MATHEMATICAL MODELStical methods with applications to physical failure analysis.
Probabilistic methods can be considered to be a part of gen-

Mathematical models of systems with different structureseral operations research, which, in turn, represents a collec-
represent one of the more developed directions of reliabilitytion of applied mathematical methods gathered within the
theory. These models present the system’s main structures:frame of system analysis methodology.
series, parallel, different series-parallel and parallel-seriesThe first work on modern reliability theory can be traced
structures, complex types of redundancy (like k-out-of-n, dy-to early 1950s. Over the next two decades, practical and theo-
namic redundancy, etc.), two-pole and multipole networks,retical work on reliability sky rocketed. A number of first-rate
cold standby, and so on. (See RELIABILITY ANALYSIS OF REDUN-monographs were published in the United States and the
DANT AND FAULT-TOLERANT SYSTEMS.)then Soviet Union. An incomplete list of early books pub-

In most mathematical reliability models, units are as-lished in English can be found in Refs. 1–6. At the beginning,
sumed to be independent, which allows us to obtain practicalthis intensive development of reliability theory was primarily
results for different reliability indices (5,6,8–10). Another im-stimulated by military needs. Later complex and critical civil-
portant assumption concerns an exponential distribution ofian systems (e.g., crewed satellites, huge telecommunication
time to failure (or between failures). Many results in thenetworks, and nuclear power plants) used reliability analysis.
closed form are obtained under this assumption. ApplicabilityReliability theory is the basis for reliability engineering. It
of these assumptions is discussed below.includes the following main branches:

Network structures of general form can be analyzed with
Monte Carlo simulation (see MONTE CARLO SIMULATION). SuchPhysical models of failures of electronic objects of different
models usually are not restricted by pure reliability analysis.types (mainly, on a component level).
For instance, models of telecommunication networks include

Physical models of failures of mechanical objects of differ- a possibility of analysis of different structure of traffic, proto-
ent types. cols, possibility of buffering messages, time delays, and so on.

Mathematical models of systems with different types of There are mathematical models analyzing the probability
structures (series, redundant, network type, etc.). of connection in two-pole and multipole networks. For exam-

ple, lower and upper bounds (Esary-Proschan and Litvak-Mathematical models of different stochastic processes de-
Ushakov) for two-pole networks are obtained (2,8,9).scribing operating and renewing (repair or replacement)

Important theoretical results were obtained for the so-of objects.
called increasing/decreasing failure rate distributions (IFRMathematical models of software reliability.
and DFR). These results allow us to transfer some results ob-Stochastic simulation of the system behavior under the in-
tained for models based on the assumption of exponential dis-fluence of a failure mode.
tribution of time between failure on models with arbitrary

Optimization models of redundancy and spares; preventive distributions (2).
and regular maintenance; and technical diagnosis.

Statistical inferences and test planning.
MATHEMATICAL MODELS OF STOCHASTIC PROCESSESModels for special tests (e.g., accelerated)

Mathematical models of stochastic processes describe the be-
havior of different systems in time. The simplest models arePHYSICAL MODELS OF FAILURES
based on the Poisson process, which is a point process. Inter-
vals between neighboring events have exponential distribu-Physical models of failures of electronic and mechanical ob-

jects are, probably, the most important application of reliabil- tion in a Poisson process. For repairable systems with a com-
plex structure, the most developed reliability models areity theory. These models allow us to improve processes of pro-

duction and testing various components and equipment. based on Markov processes. A Markov process is a process
with discrete states that last for an exponentially distributedSuccessful applications have been reported in the literature

(4,7). Nevertheless, this part of reliability theory is in its em- time. Transitions between them occur in accordance with the
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so-called embedded Markov chain. The main feature of such STOCHASTIC SIMULATION
models is their so-called Markov property, which means that
a current behavior of the process does not depend on its entire Stochastic simulation is a powerful method of analysis of

structure reliability and time-dependent behavior of complexprehistory. This assumption, although it seems artificial, sat-
isfies many real-life situations (5,6,8,9). More exotic models systems. This method in its modern form was formulated

some 50 years ago by John von Neuman strictly for calcula-grounded on semi-Markov processes permit one to consider a
process with arbitrary distribution of time for visiting differ- tion purposes. Monte Carlo simulation is based on an imita-

tion of real-system behavior on a computer using numbersent states. It is relevant that semi-Markov reliability models
are driven by pure academic interest, because there is no sta- generated randomly with the required properties. For such a

simulation, one needs to know the system structure, the mu-tistical data for practical use.
The powerful asymptotic methods of reliability analysis of tual operation of the system’s units, algorithm for system op-

eration, and so on, which should be given in a strict descrip-the so-called ‘‘highly reliable systems’’ were developed in the
past decade. (In such highly reliable systems, the probability tive form. The algorithm of simulation allows us to avoid the

use of analytical (mathematical) descriptions in the form ofof failure or the coefficient of unavailability of the system is
much less than one.) These methods are based on Khinchin formulas and equations (see MONTE CARLO SIMULATION).

Briefly speaking, the procedure of Monte Carlo simulationand Renyi limit theorems on thinning stochastic point pro-
cesses and on the Grigelionis–Pogozhev limit theorem on su- consists of generating a sequence of system states, checking

each state with respect to formulated system failure criteria,perposition of stochastic processes (8).
The limit theorems on thinning state that if one excludes and then transiting to the next state in accordance with gen-

erated random numbers. (Each new event in the system isevents from an arbitrary point process in correspondence with
a Bernoulli trial, a Poisson process will be formed asymptoti- determined by respective random variables calculated on the

basis of inverse transformation of random numbers generatedcally in the limit (with a natural normalization procedure).
For practical problems, failures of a highly reliable redundant by the computer.)

Simulation results, which are very similar to results fromsystem will appear approximately at exponentially distrib-
uted random time intervals. testing or using a real system (although in ‘‘compressed’’

time) can be processed afterward as ordinary field reliabilityThe second limit theorem states that if one superimposes
independent and ‘‘equally small’’ arbitrary stochastic point data. The accuracy of the final result is determined by the

total time of simulation (i.e., by the size of a sample of ob-processes, a Poisson process will be formed asymptotically in
the limit. For practical problems, for instance, failures of a tained data).

Highly reliable systems, where failures occur very seldomseries system consisting of a large number of units will form
approximately a Poisson process. (in other words, many changes of system’s states could occur

between system failures), need special accelerating of the sim-These limit theorems opened wide the prospects for ob-
taining constructive results for analyzing highly reliable sys- ulation process. The reader can find discussion on this special

topic elsewhere (9).tems (5,8) (see REPAIRABLE SYSTEMS).
There are different modifications of stochastic simulation

beyond this general description, each of which is used in a
MATHEMATICAL MODELS OF SOFTWARE RELIABILITY particular case.

Reliability Optimization ModelsMathematical modeling of software reliability is another po-
tentially important direction. One of the main causes of mod- Reliability optimization models are very significant, because
ern sophisticated electronic equipment failure is bugs in the reliability analysis should not be just a post mortem analysis.
software. Engineers could create a perfect hardware design, It determines the place and role of cost-effective analysis in
but a system as a whole can be insufficient in its performance. reliability theory (see OPTIMIZATION IN DESIGN FOR RELIABILITY).
Software has significant differences from hardware, especially Such a model should distinguish the following:
where the application of reliability theory is concerned:

Optimal redundancy and spares
Bug appearance in time depends on the system use (some Optimal preventive and regular maintenance

bugs affect one system and do not affect another be- Optimal technical diagnosis
cause of a different use)

Bug appearance is not stochastic as in hardware (it again Optimal Redundancy
depends on the schedule of its use)

Optimal redundancy is the most important and most devel-
Bug appearance in all identical software items is strictly oped reliability tool used today. The problem, formulated in

dependent; each copy of software is an exact replica of verbal terms, is as follows:
a master copy.

1. To reach the required reliability level of the system by
means of minimum possible cost, that is,All these factors clearly show that a blind application of

standard reliability methods developed for hardware is not
correct for software. Some models (like the reliability growth min

1≤k≤n
{C(x1, x2, . . ., xn)|R(x1, x2, . . ., xn) ≥ RR}

model) are appropriate, but correct reliability models of soft-
ware still remain largely enigmatic. Probably, software relia- where xk is the number of redundant (spare) units of

type k, n is the number of different groups of redundantbility models should be based on principally new concepts.
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units, C(x1, x2, . . ., xn) is the system cost, R(x1, x2, . . ., Optimal Maintenance
xn) is the system reliability, respectively, under condi- The optimal maintenance problem consists of choosing the pe-
tion that there are (x1, x2, . . ., xn) redundant (spare) riod and depth of maintenance. Maintenance might be regu-
units in the system, and RR is the required reliablity. lar and preventive. (The latter model of dynamic optimal re-

2. To reach the maximum possible reliability level under dundancy is similar to problems of optimal maintenance.)
the condition that the system cost does not exceed a Several mathematical models of maintenance have been con-
specified level CS, that is, sidered (9,12). It seems that the main effort should be made

in designing adaptive procedures of optimal maintenance.max
1≤k≤n

{R(x1, x2, . . ., xn)|C(x1, x2, . . ., xn) ≤ CS}
Optimal Failure Diagnosis

These models have a restricted usage in built-in redun- Optimal failure diagnosis mathematical models of search and
dancy because normally the number of redundant units does localization of failures are very simple and mostly illustrative.
not exceed two or three for a group of operating units. How- In some sense, this problem (mathematical models of diag-
ever, the optimal allocation of spares is a very important engi- nosis) belongs to the past when technical diagnosis was per-
neering task whose successful solution can bring an essential formed manually. Program controlled technical diagnosis
cost reduction. (built-in control) solves this problem very effectively. This di-

For a solution of direct and inverse problems of optimal rection presents a number of promising engineering solutions,
redundancy, one uses the method of steepest descent, dy- although there is no collection of stable technological
namic programming (including the Kettelle algorithm), methods.
branch and bound method, and others. The structure of opti-
mal redundancy problems is such that both goal functions,

STATISTICAL INFERENCES AND TEST PLANNINGC(x1, x2, . . ., xn) and R(x1, x2, . . ., xn) can be presented for
practical applications in additive form:

Collection of information about failures (location of failure, its
cause, time from the previous failure, etc.) is an important
phase in feedback from equipment users to equipment design-
ers. Data about failures are processed and kept in special da-
tabases for use by designers (see STATISTICAL ANALYSIS OF RE-

LIABILITY DATA). Practically, there are no specific statistical

C(x1, x2, . . ., xn) =
n∑

k=1

ckxk and

ln R(x1, x2, . . ., xn) =
n∑

k=1

ln Rk(xk)

methods for reliability data processing. One uses standard
methods of point and confidence estimation.This allows us to apply a simplest method–steepest descent

for practical solutions. A detailed description of methodology A special case is represented by truncated data where
some observations have been interrupted before a failure mayfor solving optimal redundancy problem with realistic exam-

ples has been presented (2,8,9,11). have occurred. In this case Kaplan-Meier estimates or its
modification [for instance, estimate proposed by I. Pavlov andIf there are no strict cost restrictions or exact reliability

requirements, there arises a cost-effectiveness trade-off prob- I. Ushakov (9)] are used.
A new, specific reliability approach uses confidence estima-lem of the Pareto optimization type. An explanation of this

solution (in simple terms) is as follows. One finds the maxi- tion of a system on the basis of test results of its units (7–
9,13,14). This approach is very important because it allowsmum possible reliability given some advance restriction on

the system cost. Assume that this solution is not satisfactory. the incorporation of unit test results into the system mathe-
matical model and obtains the final results after system test-It is possible to increase an admissible system cost and see

what new reliability level is achieved. The decision maker de- ing. This method is especially important for developing sys-
tems in the future. It should be emphasized that a specialcides if it is reasonable to spend that money for reliability

improvement and to take the next step in the same direction. branch of statistical inferences in reliability relies on a Bayes-
ian approach (14) (see BAYESIAN INFERENCE IN RELIABILITY).Some discussion of the topic above can be found elsewhere

(8,9). Standard acceptance-rejection procedures are used in mass
production. An important direction in statistical reliablity isLastly, the optimal redundancy problem with several re-

strictions (simultaneously taking into account cost, weight, test planning. It provides an early understanding about the
number of units for test, the length of testing, and so on. Thevolume, etc.) also arises in engineering practice (2,8).

The optimal redundancy problem is very close to the opti- sequential analysis (Wald method) presents an example of a
flexible acceptance–rejection procedure with a current testingmal inventory supply problem. Indeed, it is impossible to con-

sider spares allocation without considering refilling the stock procedure (9).
Highly reliable objects (e.g., modern electronic compo-(periodically or by request). Some problems of such a type

have been considered (9). nents) need a huge number of items tested for a long period
of time. To avoid the enormous cost of such tests and at theClose problems of the so-called dynamic redundancy con-

cerns an intermediate case between ‘‘static’’ optimal redun- same time to obtain the required results, special accelerated
tests can be used. During these tests, items operate underdancy and optimal inventory supply. In this case the failure

of a unit leads to system failure; however, the advance re- different stresses (temperature, humidity, vibration, etc., de-
pending on the specific task), which cause faster occurrenceplacement cannot be a cause of the system failure. One

chooses (in advance or on the basis of current information) of failures. The main problem is to use such an acceleration
of stress that the increased failure rate still preserves themoments when operating units are replaced by standby

units (8). mechanism of failure. Having gotten statistical results, spe-
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cial models based on the principles of automodality are used.
More details are given elsewhere (Refs. 9 and 15; also see
ACCELERATION MEASUREMENT.)
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