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homogeneous transformation:

Ai(qi) =
[

Ri p1

0 1

]
(1)

where Ri(qi) is a 3 � 3 rotation matrix (R�1
i � RT

i ) and
pi(qi) � [xi yi zi]T � �3 is a translation vector. Ri and pi specify
the rotation matrix and translation vector of the frame on
link i with respect to frame on link i � 1, respectively. The
matrices Ai for a specific manipulator are given by the manu-
facturer.

Robot T Matrix

The position and orientation of the end effector with respect
to the base frame are given by the robot T matrix

T(q) = A1(q1)A2(q2) · · · An(qn) ≡
[

R(q) p(q)

0 1

]
(2)

where R(q) � R1(q1)R2(q2) � � � Rn(qn) is the cumulative rota-
tion matrix and p(q) � [x y z]T is the Cartesian position of the
end effector with respect to the base frame.ROBOT KINEMATICS

Now we are in position to define the robot forward kine-
matics and inverse kinematics. The former is concerned withIn the analysis of robotic systems, including mechanical ma-
computing the Cartesian position and orientation of the end

nipulators and mobile and space robots, we have to deal with
effector (i.e., tool frame) relative to the base frame once a set

the motion of (1) the parts (links) that constitute the robot of joint variables is given. That is, for a given q we compute
and (2) the objects that constitute the robot’s environment. T(q). On the other hand, the inverse kinematic problem is
The science that studies the motion of a robotic system with- concerned with computing all possible sets of joint variables
out considering the forces/torques that produce it is called ki- that locate the end effector at a prescribed Cartesian position
nematics. On the other hand, the science that studies the and orientation. Since the kinematic expressions are nonlin-
forces/torques required to produce motion is called dynamics. ear, finding q � �n given T(q) � �4�4 is not an easy task.

Robot kinematics is studied on different levels. On the Inverse kinematics is an important problem from a practical
first, static level, we are only concerned with relative position- point of view, and an intensive area of current research.
ing and orientation and not with velocities and accelerations. For most applications, we need to consider a robot in mo-
In this case, two major problems have been studied, mainly tion. In this case, we deal not only with position but also with
for serial-link manipulators: forward kinematics and inverse time derivatives of the joint variables, mainly velocity and
kinematics. To define these two terms formally, certain math- acceleration. An important question arises—how to describe
ematical tools are given next. the relationship between velocities q̇(t) in joint space and ve-

locities in ẏ(t) Cartesian space. Let a nonlinear transforma-
tion from the joint variable q � �n to another variable y �

MATRICES �p be given by

Link A Matrices y(t) = h(q(t)) (3)

Fixed-based serial-link rigid robot manipulators consist of a Differentiating yields
sequence of links connected by joints. A joint variable qi is
associated with each joint i. For revolute and prismatic (ex-
tensible) joints, the joint variables are an angle (in degrees) ẏ = ∂h

∂q
q̇ ≡ J(q)q (4)

and a length, respectively. The joint vector of an n-link ma-
nipulator is defined as q � [q1 q2 � � � qn]T � �n. A robot with where the mapping J(q) from joint-space velocities to
n joints has n degrees of freedom (i.e., n independent posi- Cartesian-space velocities is called the manipulator Jacobian,
tion variables). provided that y(t) represents the Cartesian position of the

To describe the position and orientation of the manipulator end effector.
in space, we affix a coordinate frame to each link. The base Since robot manipulators and mobile robots are intended
frame is attached to the manipulator base, link 0. The free to perform certain predefined tasks and interact with objects
end of the manipulator is the end effector. The tool frame is (a workpiece, another robot, obstacles, etc.) in their environ-
attached to the end effector. The Danavit–Hartenberg (DH) ment, their motions are constrained to a subset of the set of
convention (1) is commonly used to locate the coordinate attainable positions, velocities, and accelerations. We shall fo-
frame on the link. Thus, the orientation and translation of cus on these kinematically constrained robotic systems, in

particular carlike mobile robots. The contacts between the ro-link i with respect to link i � 1 is specified by the following
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bot wheels and the ground introduce nonholonomic effects tory, following a path, and point stabilization. Some nonlinear
feedback controllers have been proposed in the literaturesuch as the impossibility of sideways motion. An example of

this behavior is an automobile where the wheels can only roll [e.g., Kanayama et al. (5)] for solving the first problem. The
main idea behind these algorithms is to design velocity con-and spin, but not slide sideways. Nevertheless, we can park

an automobile at any desired position and orientation. trol inputs which stabilize the closed-loop system. A reference
cart generates the trajectory that the mobile robot is sup-
posed to follow. In path following, as in the previous case, weROBOT CONSTRAINTS
need to design velocity control inputs that stabilize a carlike
mobile robot in a given xy geometric path. The hardest prob-We consider a rigid robot M with generalized joint variables
lem is stabilization about a desired posture. One way to solveq � [q1 q2 � � � qn]T � Q � �n moving in a workspace �. In
this problem is given by Samson (6), where the velocity con-the robotic literature Q is called the robot configuration space.
trol inputs are time-varying functions. All these controllersSuppose that k independent constraints of the form ai(q,t) �
consider only the kinematic model (e.g., steering system) of0, i � 1, 2, . . ., k, apply to the motion of M. Grouping these
the mobile robot, and perfect velocity tracking is assumed toindependent scalar constraints in a matrix yields
generate the actual vehicle control inputs.

We need a controller structure that takes into account the[a1(q, t) · · · ak(q, t)]T ≡ A(q, t) = 0 (5)
specific vehicle dynamics. First, feedback velocity control in-
puts are designed for the kinematic steering system to makeEquation (5) can be used to reduce the order of the configura-
the position error asymptotically stable. Second, a feedbacktion space to an (n � k)-submanifold of Q. This type of con-
velocity-following control law is designed such that the mobilestraint is called a holonomic or integrable constraint. Obsta-
robot’s velocities converge asymptotically to the given velocitycles in the robot workspace can be represented as inequality
inputs. Finally, this second control signal is used by the com-holonomic constraints, that is, ai(q, t) � 0.
puted-torque feedback controller to compute the required tor-Another kinematic constraint has the form
ques for the actual mobile robot. This control approach can be
applied to a class of smooth kinematic system control velocityai(q, q̇, t) = 0 (6)
inputs. Therefore, the same design procedure works for all of

If the kinematic constraint (6) can be expressed as Eq. (5), it the three basic navigation problems.
is a holonomic or integrable constraint. Otherwise, the con-
straint is said to be nonintegrable or nonholonomic. If there Kinematics and Dynamics of a Mobile Platform
are k independent nonholonomic constraints of the form Eq.

The dynamical model of a mobile robot is given by(6), the space of attainable velocities q̇ � VQ is reduced to an
(n � k)-dimensional subspace without changing the dimen- M(q)q̈ + Vm(q, q̇)q̇ + F(q̇) + G(q) + τd = B(q)τ − AT(q)λ (8)
sion of the configuration space Q. Finally, the system may
have kinematic inequality constraints of the form ai(q, q̇, t) � where q � �3 is the position and orientation vector, M is a
0. A bounded steering angle of an automobile is a typical kine- symmetric, positive definite inertia matrix, Vm is a centripetal
matic inequality constraint. and Coriolis matrix, F is a friction vector, G is a gravity vec-

In this article we shall assume that all k kinematic equal- tor, 	d is a vector of disturbances including unmodeled dynam-
ity constraints are independent of time, and can be expressed ics, B is an input transformation matrix, 	 is a control input
as vector, A is a matrix associated with the constraints, and � is

a vector of constraint forces. The dynamics of the driving andAAA(q)q̇ = 0 (7)
steering motors should be included in the robot dynamics,
along with any gearing.Robotic systems subject to kinematic constraints are studied

Assume there are k independent nonholonomic constraintsby Barraquand and Latombe (2), and Murray et al. (3),
of the form (7). Let S(q) be a full-rank (n � k) matrix (formedamong others.
by a set of smooth and linearly independent vector fields
spanning the null space of A(q), that is,

NONHOLONOMIC MOBILE ROBOT

ST(q)AT(q) = 0 (9)
Wheeled vehicles and carlike mobile robots are typical exam-
ples of nonholonomic mechanical systems. Many researchers According to Eq. (7) and Eq. (9), it is possible to find an auxil-
treat the problem of motion under nonholonomic constraints iary vector time function v � �n�k such that, for all t,
using the kinematic model of a mobile robot, and assuming
no disturbances and known dynamics. This simplified repre- q̇ = S(q)v(t) (10)
sentation does not correspond to the reality of a moving vehi-
cle, which has unknown mass, friction, drive train compli- In fact, v(t) often has physical meaning, consisting of two com-

ponents—the commanded vehicle linear velocity vL(t), and theance, and backlash effects. In this section we provide a
framework that brings the two approaches together: nonholo- angular velocity �(t) or heading angle �. The matrix S(q) is

easily determined independently of the dynamics Eq. (8) fromnomic control results that deal with a kinematic steering sys-
tem, and full servo-level feedback control that takes into ac- the wheel configuration of the mobile robot. Thus, Eq. (10) is

the kinematic equation that expresses the constraints on q̇(t)count the mobile robot dynamics.
The navigation problem is classified into three basic prob- in terms of the velocity vector v(t) � [vL �]T. It does not in-

clude dynamical effects, and is known in the nonholonomiclems by Canudas de Wit et al. (4): tracking a reference trajec-
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literature as the steering system. In the case of omnidirec- Using the above expressions, it is possible to derive the for-
ward kinematics of the mobile base. The kinematic equationstional vehicles, S(q) is 3 � 3 and Eq. (10) corresponds to the

Newton’s law F � ma. of motion of C are
The nonholonomic mobile platform shown in Fig. 1 consists

of a vehicle with two driving wheels mounted on the same
axis, and a passive front wheel. The motion and orientation
are achieved by independent actuators (e.g., dc motors) pro-




ẋ
ẏ
θ̇


 =




cos θ −d sin θ

sin θ d cos θ

0 1




[
vL

ω

]
(13)

viding the necessary torques to the driving wheels. Another
common configuration uses the front wheel for driving and where �vL� � VM and ��� � WM, with VM and WM the maximum
steering. linear and angular velocities of the mobile robot.

The position of the robot in an inertial Cartesian frame �O, For the case of nonholonomic systems, the number of
X, Y� is completely specified by the vector q � [x y �] where states is greater than the number of control inputs. Therefore,
(x, y) and � are the coordinates of the reference point C and the Jacobian matrix S(q) is not a square matrix, and it is not
the orientation of the basis �C, XC, YC� with respect to the possible to find its direct inverse. However, the inverse kine-
inertial basis, respectively. Additionally, Fig. 1 shows the pa- matics can be approximately solved by using the pseudoin-
rameters of the mobile base that will be used to develop a verse matrix of the Jacobian; see Zhao and BeMent (8):
mathematical model of the vehicle:

v = S+(q)q̇ = [ST(q)S(q)]−1ST(q)q̇ (14)
m � mass of the mobile base, including the driving wheels

and the dc motors where
I � moment of inertia of the mobile base about a vertical

axis through C
2R � distance between the driving wheels

r � radius of the driving wheels
S+(q) =


 cos θ sin θ 0

−d sin θ

d2 + 1
d cos θ

d2 + 1
1

d2 + 1


 (15)

P � intersection of the wheel axis with the axis of sym-
metry Under the assumption that the driving wheels do not slip and

C � reference point in the mobile base the angular displacement of each driving wheel is measured,
d � distance between P and C we can compute the heading angle by using the following rela-

tion (7):
The nonholonomic constraint states that the robot can only

move in the direction normal to the axis of the driving wheels,
that is, the mobile base satisfies the condition of pure rolling

θ = r
2R

(θr − θl) (16)

[see Sarkar et al. (7)], yielding the kinematic constraint
where �r and �l are the angular displacements of the right and
left driving wheels respectively. The Cartesian position of theẏ cos θ − ẋ sin θ − dθ̇ = 0 (11)
mobile robot can be estimated by integrating Eq. (13), where

It is easy to verify that S(q) is given by q0 � [x0 y0 �0]T is the vector of initial positions:

S(q) =




cos θ −d sin θ

sin θ d cos θ

0 1


 (12)

q =




x
y
θ


 =




x0

y0

θ0


 +




∫ t

t0

(vL cos θ − ωd sin θ ) dt∫ t

t0

(vL sin θ + ωd cos θ ) dt∫ t

t0

ω dt




(17)

The Lagrange formalism is used to derive the dynamic
equations of the mobile robot. In this case G(q) � 0, because
the trajectory of the mobile base is constrained to the hori-
zontal plane, so that its potential energy U remains constant.
The kinetic energy KE [see for instance Lewis et al. (9)] is
given by

ki
E = 1

2 miv
T
i vi + 1

2 ωT
i Iiωi, KE ≡

nl∑
i=1

ki
E = 1

2 q̇TM(q)q̇ (18)

The Lagrangian of the mobile platform is given by

Motor and
encoder
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Figure 1. A top view of a differential drive nonholonomic mobile
platform. Two dc motors provide the required torques to drive the
mobile robot in a two-dimensional space.

L(q, q̇) = KE(q, q̇) − Uref

L(q, q̇) = 1
2 m[(ẋ + dθ̇ sin θ )2 + ( ẏ − dθ̇ cos θ )2] + 1

2
PIθ̇2

L(q, q̇) = 1
2 mẋ2 + 1

2 mẏ2 + mẋdθ̇ sin θ − mẏdθ̇ cos θ + 1
2 Iθ̇2

I = PI + md2

(19)
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The equations of motion of the nonholonomic mobile base are mentioning. It has been shown that a nonholonomic system,
then given by under appropriate assumptions, is controllable; nevertheless,

its equilibrium point xe � 0 cannot be made asymptotically
stable by any smooth static state feedback. This is discussed
in detail by Bloch et al. (11). It has been shown by Yamamoto
and Yun (10) that a system with nonholonomic constraints
is not input-state linearizable, but it may be input–output
linearizable if the output function is chosen properly.

Let u be an auxiliary input. Then by applying the nonlin-
ear feedback

d
dt

∂L
∂q̇

− ∂L
∂q

= τ − ATλ

mẍ + md(θ̈ sin θ + θ̇2 cos θ ) = 1
r
(τr + τl) cos θ + λ sin θ

mÿ − md(θ̈ cos θ − θ̇2 sin θ ) = 1
r
(τr + τl) sin θ − λ cos θ

md(ẍ sin θ − ÿ cos θ ) + Iθ̈ = R
r

(τr − τl) + λd

(20)

τ = B−1(q)[M(q)u + Vm(q, q̇)v + F(v)] (25)where 	r and 	l are the torques applied to the right and left
driving wheels respectively, and � is the Lagrange multiplier.
Equation (20) can be expressed in the matrix form Eq. (8) one can convert the dynamic control problem into the kine-
where matic control problem

q̇ = S(q)v

v̇ = u
(26)

Equation (26) represents a state-space description of the non-
holonomic mobile robot and constitutes the basic framework
for defining its nonlinear control properties. See Refs. 11 and
12 and the references therein.

In performing the input transformation Eq. (25), it is as-
sumed that all the dynamical quantities (e.g., M, F, Vm) of the
vehicle are exactly known and 	d � 0. It is required to incorpo-
rate robust/adaptive control techniques if this is not the case.

Many approaches exist to selecting a velocity control, de-
noted by vc(t), for the steering system Eq. (22). In this section,
we desire to convert such a prescribed velocity control into a

M(q) =




m 0 md sin θ

0 m −md cos θ

md sin θ −md cos q I




Vm(q, q̇) =




0 0 mdθ̇ cos θ

0 0 mdθ̇ sin θ

0 0 0


 , G(q) = 0

B(q) = 1
r




cos θ cos θ

sin θ sin θ

R −R


 , τ =

[
τr

τl

]

AT(q) =




− sin θ

cos θ

−d




λ = −m(ẋ cos θ + ẏ sin θ )θ̇

(21)

torque control 	(t) for the actual physical cart. It is desirable
to have a common design algorithm capable of dealing withSimilar dynamical models have been reported in the litera-
the three basic nonholonomic navigation problems definedture; for instance in Ref. 10 the mass and inertia of the driv-
next:ing wheels are considered explicitly.

The system Eq. (8) is now transformed into a more appro-
priate representation for control purposes. Differentiating Eq. Tracking a Reference Trajectory. The trajectory tracking
(10), substituting this result in Eq. (8), and then multiplying problem for nonholonomic vehicles is posed as follows.
by ST, we can eliminate the constraint term AT(q)�. The com- Let there be prescribed a reference vehicle
plete equations of motion of the nonholonomic mobile plat-
form are given by

q̇ = SSSv (22)
ẋr = vr cos θr, ẏr = vr sin θr, θ̇r = ωr

qr = [xr yr θr]T, vr = [vr ωr]T
(27)

STMSv̇ + ST(MṠ + VmS)v + F + τ d = STBτ (23)

with vr � 0 for all t. Find a smooth velocity control vc(t)where v(t) � �n�k is a velocity vector. By appropriate defini- such that limt��(qr � q) � 0. Then compute the auxiliary
tions we can rewrite Eq. (23) as follows: input u(t) and the torque input 	(t) such that v � vc as

t � �.M(q)v̇ + Vm(q, q̇)v + F(v) + τ d = B(q)τ , τ ≡ Bτ (24)
Path Following. Given a path P(x, y) in the plane and the

mobile robot linear velocity vL(t), find a smooth (angu-The true model of the vehicle is thus given by combining Eq.
lar) velocity control input �c(t) such that limt�� e� � 0(22) and Eq. (24). However, in the latter equation it turns out
and limt�� b(t) � 0, where e� and b(t) are the orientationthat B is square and invertible, so that standard computed-

torque techniques can be used to compute the required vehi- error and the distance between a reference point in the
cle control 	. mobile robot and the path P, respectively. Then com-

pute the auxiliary input u(t) and the torque input 	(t)
Control Design such that � � �c as t � �.

Point Stabilization. Given an arbitrary configuration qr,Nonholonomic systems are a special class of nonlinear sys-
tems. They exhibit certain control properties that are worth find a velocity control input vc(t) such that limt�� (qr �
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A velocity control input that achieves tracking for Eq. (26) is
given by Kanayama et al. (5):

vc =
[

vr cos e3 + k1e1

ωr + k2vre2 + k3vr sin e3

]
(29)

where k1, k2, k3 � 0 are design parameters. Then the proposed
nonlinear feedback acceleration control input is

u = v̇c + Kc(vc − v) (30)

where Kc is a positive definite, diagonal matrix. It is common
in the literature to assume simply that u � v̇c, called perfect
velocity tracking, which cannot be assured to yield tracking
for the actual cart. The asymptotic stability of the system
with respect to the reference trajectory can be proved by using
standard Lyapunov methods (see LYAPUNOV METHODS). Define
an auxiliary velocity error

Mobile 
robotq = y

x

θ

qr = yr

xr

θ

Path: P (x, y)

e3 = eθ

e2

e1
Reference

vehicle

b(t)

Y

X

yr

xr

y

xO

r

ec = v − vc =
[

e4

e5

]
=

[
vL − vc1

ω − vc2

]
(31)

Figure 2. Relative position of the nonholonomic mobile robot with
respect to a reference vehicle. The three basic navigation problems By using Eq. (30), we obtain
deal with the method of realizing stable control algorithms such that
the position and orientation errors tend to zero. ėc = −Kcec (32)

Then the velocity vector of the mobile base satisfies v � vc asq) � 0. Then compute the auxiliary input u(t) and the
t � �. Then, consider the following Lyapunov function candi-torque input 	(t) such that v � vc as t � �.
date:

Figure 2 illustrates the three basic navigation problems.

Tracking a Reference Trajectory V = k1(e2
1 + e2

2) + 2k1

k2
(1 − cos e3) + 1

2k4

�
e2

4 + k1

k2k3vr
e2

5

�

(33)A general structure for the tracking control system is pre-
sented in Fig. 3. In this figure, complete knowledge of the

where V � 0, and V � 0 only if ep � 0 and ec � 0. It can bedynamics of the cart is assumed, so that Eq. (25) is used to
shown that V̇ � 0 and the entire error e � [eT

p eT
c ]T � 0 as t �compute 	(t) given u(t).

�. Therefore, the closed-loop system is uniformly asymptoti-It is assumed that a solution to the steering system
cally stable. Note that Eq. (33) takes into account the velocitytracking problem is available. This is denoted by vc(t). Thus,
error produced by the dynamic computed-torque controller.the tracking error vector is expressed in a frame linked to the

mobile platform:
Control Design by Feedback Linearization. This control de-

sign technique has been investigated by a number of re-
searchers (7,10). In this section, we apply this approach to
our simplified mobile robot. Moreover, we show that controlla-
bility of the system is lost at the intersection point of the
wheel axis and the axis of symmetry (P in Fig. 1).

ep = Te(qr − q)


e1

e2

e3


 =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1







xr − x
yr − y
θr − θ


 (28)

Figure 3. Kinematic and dynamic com-
puted-torque control structure. The com-
puted-torque controller generates the in-
puts to the actual mobile base such that
the linear and angular velocities converge
to the corresponding velocities generated
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u = Φ –1(w –    v)

v v

u

q q qw

Computed–
torque

controller

τ Mobile
robot S(q) h(q)qΦ⋅

⋅

⋅⋅ ⋅ ⋅

⋅⋅

w = yd + Kv (yd – y) + Kp (yd – y)

yd

⋅
⋅

⋅

⋅ ⋅

yd

yd

Kv

Kp

–

–

y

y

y = J(q)q

∫
⋅

⋅

q

v = 
vL

ω
q = 

x
y
θ

y = 
xr

yr

xa = f (xa) + g (xa) u

Figure 4. Control structure for trajectory tracking based on input–output feedback lineariza-
tion. It is assumed that the reference point (xm, ym) is not chosen on the wheel axis. After per-
forming input–output feedback linearization, standard linear control design techniques (e.g., PD)
can be applied.

Figure 4 depicts the block diagram of the input–output The system Eq. (37) is input–output-linearizable if and only
if the decoupling matrix �(q) is full-rank. The decoupling ma-feedback linearization control scheme. Equation (25) can be

rewritten as trix is given by

ẋa = f (xa) + g(xa)u

y = h(xa)
(34) �(q) = J(q)S(q) =

[
cos θ −ym cos θ − (d + xm) sin θ

sin θ −ym sin θ + (d + xm) cos θ

]
(38)

where the augmented state vector is xa � [qT vT]T � [x y � vL where J(q) � �h/�q is the Jacobian matrix and ��(q)� � d �
�]T and xm. Thus, the input–output linearization problem is solvable

if xm � �d, that is, the reference point cannot be chosen on
the wheel axis of the mobile base.

If the state feedback
f (xa) =

[
S(q)v

0

]
, g(xa) =

[
0
I

]
(35)

u = �−1(w − �̇v) (39)Since we are interested in position control, the selected
output is a function of the mobile robot position q(t). The di-

is applied, Eq. (37) becomesmension of the output vector is at most n � k with q � �n

and k nonholonomic constraints. We also choose a reference
ÿ = w (40)point in the mobile base denoted by (xm, ym). Thus, the output

equation becomes
where w(t) is an auxiliary control input. Let yd(t) denote the
reference trajectory; then the auxiliary control input is given
by

w = ÿd + Kv( ẏd − ẏ) + Kp(yd − y) (41)

y = h(q) = [h1(q) h2(q)]T =
[

xr

yr

]

=
[

x
y

]
+

[
cos θ − sin θ

sin θ cos θ

][
xm

ym

]
(36)

where Kp, Kv � 0 are design parameters. Defining the
tracking error as e � y � yd, it is clear from Eq. (40) and Eq.

Applying the standard approach of input–output lineariza- (41) that e � 0 as t � �.
tion in Ref. 13—that is, differentiate y(t) until u(t) appears, Simulation Result. We have discussed two approaches that
and design u(t) to cancel the nonlinearities—we obtain solve the trajectory tracking problem for a nonholonomic mo-

bile robot. The computed-torque algorithm is the same in both
methods; however, the way of designing the acceleration con-ÿ = �̇(q)v + �(q)u (37)
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trol input is different. The first method uses a technique where
called backstepping to extend a kinematic controller to a dy-
namic controller; see Refs. 14 and 15. In the second approach
such an extension is carried out by input–output feedback

ξ = ω − vL cos eθ

µ(s)
1 − µ(s)b

(43)

linearization. Nevertheless, the two control structures given
in Fig. 1 and Fig. 2 may exhibit similar behavior. Suppose the A kinematic nonlinear feedback that renders the system Eq.
mobile robot has to follow a straight line with initial coordi- (42) asymptotically stable is given by
nates (0, 0) and inclination 45	. The initial state of the mobile
platform is q0 � [3 1 0	]. A typical mobile robot trajectory
using either method is depicted in Fig. 5. Note that the mobile ξ = −k1b

sin eθ

eθ

− k2eθ (44)

base describes a trajectory that satisfies the nonholonomic
constraints without any path planning involved. where k1, k2 � 0 are design parameters. The new auxiliary

velocity control input vc(t) becomes
Path Following. As in the trajectory-tracking case, the kine-

matic–dynamic control law that solves the path-following
problem can be implemented by either a nonlinear feedback
design or an input–output feedback linearization design. In

vc =

 vL

vL cos eθ

µ(s)
1 − µ(s)b

− k1b
sin eθ

eθ

− k2eθ


 (45)

path following the geometry of the path P(x, y) is given and
the control objective is to follow the path as close as possible. Now the acceleration input u(t) in Eq. (30) is computed using
For this purpose, the kinematic model of the mobile robot is vc in Eq. (45). Finally u will be used by the computed-torque
transformed into a new set of coordinates which includes the dynamic controller to compute the required motor torques.

To apply input–output feedback linearization, the outputgeometry of the path. Let C be a reference point in the mobile
function y � h( 
 ) in Eq. (34) must be an appropriate functionbase, and D be the orthogonal projection of C on P(x, y). The
of the distance between the mobile base and the given pathsigned distance CD is denoted by b(t). It is assumed that the
P(x, y). Some choices for h( 
 ) are given in Ref. (13).linear velocity vL � 0 and the curvature of the path �(s) is

smooth and bounded. Let s denote the signed arc length along
the path from a predefined initial position to D. The orienta- Asymptotic Stabilization of a Class of Nonholonomic Systems
tion error is denoted by e� (see Fig. 2).

Feedback stabilization deals with finding feedback controlThe path-following problem consists in finding a control
laws such that an equilibrium point of the closed-loop systemlaw such that limt�� e� � 0 and limt�� b(t) � 0, given a path
is asymptotically stable. Unfortunately, the linearization ofP(x, y) and the linear velocity vL(t). In Ref. 4, the following
nonholonomic systems about any equilibrium point is not as-

kinematic model is given: ymptotically stabilizable. Moreover, there exists no smooth
time-invariant state-feedback that makes an equilibrium
point of the closed-loop system locally asymptotically stable
(16). Therefore, feedback linearization techniques cannot be

ḃ = vL sin eθ

ėθ = ξ
(42)

applied to nonholonomic systems directly.
A variety of techniques have been proposed in the nonholo-

nomic literature to solve the asymptotic stabilization problem.
A comprehensive summary of these techniques and other non-
holonomic issues is given by Kolmanovsky and McClamroch
(17). These techniques can be classified as (1) continuous
time-varying stabilization (CTVS), (2) discontinuous time-in-
variant stabilization (DTIS), and (3) hybrid stabilization (HS).
In CTVS the feedback control signals are smooth and time-
periodic. In contrast, DTIS uses piecewise continuous control-
lers and sliding mode controllers. HS consists in designing
a discrete-event supervisor and a set of low-level continuous
controllers. The discrete-event supervisor coordinates the low-
level controllers (by mode switching) to make an equilibrium
point asymptotically stable. We shall discuss CTVS, since it
can be implemented directly using the control structure
shown in Fig. 3.

Continuous Time-Varying Stabilization. Smooth time-peri-
odic control laws for nonholonomic mobile robots were intro-
duced by Samson (6,18). In this section we solve the asymp-
totic stabilization problem as an extension of the trajectory

Y
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)
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1.5

1.0

0.5

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
X(m) tracking problem, that is, using the control structure shown

in Fig. 3. The trajectory tracking problem is given by Eq. (27).Figure 5. A typical mobile robot trajectory if either a backstepping
controller or a feedback linearizing controller is utilized. It is assumed, without loss of generality, that the reference
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cart moves along the x axis, that is,

ẋr = vr, qr = [xr 0 0]T, vr = [vr 0]T (46)

Therefore, the point stabilization problem reduces to finding
a reference velocity vr(t) and a velocity control vc(t) such that
limt�� (qr � q) � 0 and limt�� xr � 0. Then compute the auxil-
iary input u(t) and the torque input �(t) such that
v � vc as t � �. A possible solution has been proposed in Ref.
4, where

vr = −k5xr + g(ep, t) (47)

and

g(ep, t) = ‖ep‖2 sin t (48)

The velocity control vc(t) and its derivative are be given by

vc =

 vr cos e3 + k1e1

k2vr
sin e3

e3
e2 + k3e3


 (49)

v̇c =

 v̇r cos e3

k2v̇r
sin e3

e3
e2




+

k1 0 −vr sin e3

0 k2vr
sin e3

e3
k2vr

e3 cos e3 − sin e3

e2
3

e2 + k3


 ė

(50)

where k1, k2, k3, k5 � 0 are design parameters. The accelera-
tion input and the control torque are computed by Eq. (30)
and Eq. (25), respectively. Typical behavior of this smooth
time-periodic control law is depicted in Fig. 6(a).
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Note that the rates of convergence provided by smooth
Figure 6. Mobile robot’s trajectory. (a) The rate of convergence using

time-periodic laws are at most t�1/2, that is, nonexponential. a smooth time-varying feedback is at most t�1/2. (b) On the other hand,
Thus nonsmooth feedback laws with exponential rate of con- on applying the controller Eq. (53) the robot’s state converges to the
vergence have been proposed in the literature; see for in- origin exponentially.
stance M’Closkey and Murray (19). In this approach the
change of coordinates

where

ρ(η) = (η4
1 + η4

2 + η2
3 )1/4 (54)

Typical behavior of this exponentially stabilizing time-peri-




η1

η2

η3


 =




cos θ sin θ 0
0 0 1

sin θ − cos θ 0







x
y
θ


 (51)

odic control law is depicted in Fig. 6(b).
is used to transform the kinematic model of the mobile robot

Current Topics of Research in Nonholonomic Systemsgiven in Eq. (26) to a chained form
Most of the control techniques for nonholonomic systems (e.g.,
nonholonomic mobile robots) assume that the dynamics of the
system is perfectly known. Therefore the nonlinear feedback
given by Eq. (25) can be used to convert the system into Eq.
(26). This is a major simplification that may not hold in prac-
tice. Surprisingly, there are few references that consider

η̇1 = v1

η̇2 = v2

η̇3 = n1v2

v̇1 = u1

v̇2 = u2

(52)

adaptive/robust approaches for nonholonomic mechanical sys-
tems. In this subsection we provide a basic framework that

A periodic time-varying control law that renders the equilib- can accommodate the so-called intelligent control techniques
rium of Eq. (52) globally exponentially stable is given by such as neural networks and fuzzy logic systems; see for in-

stance Ref. 20.
Given the desired control velocity vc(t) [(e.g., Eq. (29) or Eq.

(49)], define now the velocity tracking error as

ec = vc − v (55)

vc(t) =
[

vc1

vc2

]
=




−η1 + η3

ρ(η)
cos t

−η2 − η2
3

ρ3(η)
sin t


 (53)
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Differentiating Eq. (55) and using Eq. (24), the nonholonomic violated, it is possible to compute the bound on the position
robot dynamics may be written in terms of the velocity error ep(t). Unfortunately, systematic methods to design
tracking error as adaptive/robust controllers for nonholonomic systems are un-

known.
M(q)ėc = −Vm(q, q̇)ec − τ + f + τ d (56)

where the important nonlinear robot function is KINEMATICS OF A HYPERREDUNDANT ROBOT

f = M(q)v̇c + Vm(q, q̇)vc + F(v) (57)
In a kinematically redundant robot the number of degrees of
freedom (DOF) is larger than the dimension of the workspace.The function f ( 
 ) contains all the nonholonomic robot param-
This means that the robot has more joints than the minimumeters such as masses, moments of inertia, friction coefficients,
required to perform a given task. The extra DOF can be usedand so on. These quantities are often imperfectly known and
to avoid obstacles and singularities in the workspace, opti-difficult to determine. Therefore, a suitable control input for
mize the robot’s motion with respect to a cost function, andvelocity following is given by the computed-torque-like control
move in a highly constrained environment. The forward kine-

τ = f̂ + Kcec − γ (58) matics of a redundant manipulator is solved in a similar fash-
ion to that of a nonredundant manipulator. However, in thewith Kc a diagonal, positive definite gain matrix, and f̂ an esti-
case of redundant manipulators the inverse kinematics prob-mate of the robot function f that is provided by an adaptive
lem is ill posed; that is, there may be an infinite number ofnetwork (e.g., neural network or fuzzy logic). The robustifying
solutions for a given tool-frame position and orientation.signal � is required to compensate unmodeled dynamics and/
Moreover, for a given reference trajectory of the end effectoror unmodeled unstructured disturbances. Using this control
yd(t) � �m, there may exist an infinite number of trajectoriesin Eq. (56), the closed-loop system becomes
q(t) � �n in joint space. We need a performance index to
choose among these possible solutions of the inverse kine-Mėc = −(Kc + Vm)ec + f̃ + τ d + γ (59)
matic problem. Optimization techniques have traditionally

where the velocity tracking error is driven by the functional been used to find a solution of the kinematic problem in re-
estimation error f̃ � f � f̂. The robustifying signal � can be dundant manipulators. The main idea is to find a joint veloc-
selected by several techniques, including sliding-mode and ity vector q̇ that minimizes the weighted cost function
others, under the general aegis of robust control methods. (See
ROBUST CONTROL.) Jq̇ = 1

2 q̇TWq̇ (60)
For good performance, the bound on ec(t) should be in some

sense small enough, because it will directly affect the position subject to
error ep(t). Thus, the nonholonomic control system consists of
two subsystems: (1) a kinematic controller, and (2) a dynamic ẏd = J(q)q̇ (61)
controller. The dynamic controller provides the required tor-
ques, so that the robot’s velocity tracks a reference velocity where W � �n�n is a positive definite symmetric weighting
input. As perfect velocity tracking does not hold in practice,

matrix, and J � �m�n is the manipulator Jacobian. The solu-the dynamic controller generates a velocity error ec(t), which
tion to this optimization problem is given byis assumed to be bounded by some known constant. This error

can be seen as a disturbance for the kinematic system; see
Fig. 7. Assuming that the nonholonomic constraints are not q̇ = W−1JT(JW−1JT)−1ẏd ≡ J†

Wẏd (62)

where J†
W � �n�m is called the weighted pseudoinverse.

The result of a very large degree of kinematic redundancy
is a hyperredundant manipulator. Hyperredundant robots are
analogous to snakes, elephant trunks, and tentacles. Some ex-
amples of hyperredundant robot morphologies are depicted in
Fig. 8. Figure 8(a) shows a redundant robot which consists of
a large number of rigid links. Figure 8(b) presents a continu-
ously deformable robot. Finally, Fig. 8(c) depicts a variable-
geometry truss (VGT) robot. These hyperredundant robots are
useful in performing tasks in highly constrained workspaces.
These tasks may include inspection of space stations, active
endoscopy for noninvasive surgery, or inspection of nuclear
reactor cores. In the last twenty years many implementations
and practical applications of hyperredundant robots have
been reported. See for instance Ref. 21 and the references
therein.

Traditional methods for solving the inverse kinematics of
redundant manipulators [e.g., the pseudoinverse (51)] are not

Computed–torque
controller

Kinematic model

x⋅ =  vLcosθ
y⋅
⋅

=  vLsin

= ω
θ

θ

Kinematic
controller

–

v q

ec

vc ep qr

adequate for many hyperredundant structures, where the
large number of DOF makes these methods computationallyFigure 7. Block diagram of the closed-loop nonholonomic control sys-
impractical. This section follows the lines and notation oftem. The velocity error ec(t) produced by the dynamic controller may

be considered as a disturbance of the closed-loop kinematic system. Chirikjian and Burdick (22,23). They have developed efficient
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Figure 8. Examples of hyperredundant
robot morphologies. The special features
of this class of mechanical systems make
them suitable for performing a variety of
tasks in highly constrained environments.
(Modified from Ref. 23, Copyright 
IEEE 1995.)
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kinematic methods for hyperredundant robots based on con- The Backbone-Curve Representation
figuration optimization rather than trajectory optimization.

The optimization procedures outlined in the previous section
For the hyperredundant case where the robot is built in a

can be very difficult to apply to continuous-morphology hyp-
modular fashion [see Fig. 8(c)], configuration optimization

erredundant robots [e.g., Fig. 8(b)]. Therefore, some alterna-
seems to provide a more convenient framework than trajec-

tive techniques have been developed by a number of authors.
tory optimization. To be specific, a function of the robot’s con-

We briefly discuss the technique developed by Chirikjian and
figuration is minimized while satisfying end-effector position

Burdick (23), which provides a fairly general framework for
constraints

computing the kinematics of most of hyperredundant manipu-
lator topologies. The key idea is that many hyperredundant
robot morphologies can be represented by a geometric ab-

min
q

Jq(q) = 1
2 qTWq (63)

straction (Fig. 9) called the backbone-curve model. The back-
subject to bone curve may be extensible or inextensible, depending on the

robot’s mechanical design. Furthermore, a backbone reference
set is defined by a backbone-curve parametrization and a setC(q) = F(q) − yd = 0 (64)
of reference frames that evolve along the curve. Thus, the ki-

In order to solve this optimization problem we can use, for nematic problem is solved in two steps. First, the time evolu-
instance, the Lagrange–Newton approach. The Lagrangian is tion of the backbone reference set is determined. Then, the
given by backbone kinematic solution is used to specify the joint vari-

ables (i.e., displacements) of the actual robot. In the case of
modular hyperredundant manipulators as shown in Fig. 8(c),L(q, λ) = Jq(q) + λTC(q) (65)

where 
 denotes the Lagrange multipliers. Local extrema are
found by solving the following matrix equation with initial
estimates q0 and 
0:

[
δqk

δλk

]
= −

[
P(qk, λk) JT(qk)

JT(qk) 0

]−1 [
∇Jq(qk) + JT(qk)λk

C(qk)

]

(66)

where

P(qk, λk) = ∇2Jq(qk) +
m∑

i=1

λi∇2Ci(q) (67)

The new estimates of the extrema are given by the update
rule

qk+1 = qk + δqk

λk+1 = λk + δλk
(68)

Backbone curve

Reference framex(s,t)

Physical robot

X

Z

Y

s

e1

e2

e3

The convergence of the algorithm is quadratic if the initial
estimates are good. However, the computation of the Hessian Figure 9. Backbone-curve abstraction. The backbone curve provides
matrix [i.e., the second derivatives of F(q)] for nonserial hy- a framework to study the kinematics of many hyperredundant robots
perredundant manipulators [e.g., Fig. 8(b,c)] may be ex- in a unified and systematic manner. (Reproduced from Ref. 23, Copy-

right  IEEE 1995.)tremely difficult.
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a fitting procedure is required to determine the actuator dis- q � �n: joint variables
placements that make the robot fit the backbone curve as q̇ � �n: manipulator joint rates
closely as possible. � � �n: joint torques

CM: system center of mass
FREE-FLOATING SPACE MANIPULATORS rcm: position of CM with respect to the inertial frame

rE: position of end effector with respect to the inertial
Robotic technologies for space servicing and exploration have frame
become an intensive area of research in the last past two de-

rs: position of spacecraft with respect to the inertial framecades; see Bejczy et al. (24). Since a space robot has to per-
vs: linear velocity of the spacecraftform tasks in an environment different from the surface of
ṙE: linear velocity of the end effectorthe earth, new problems unique to space robotics have

emerged. A space robot has to be economical in power con- ai, bi: link vectors (see Fig. 10)
sumption, volume, and mass. It has to carry out tasks under k

�

i: unit vector along the rotational axis of joint i
zero gravity. Furthermore, space robots are flexible due to
their light weight. The CM linear velocity is 0ṙcm � 0 for free-floating manipula-

A free-flying or free-floating space manipulator consists of tors where the linear momentum is constant. The position of
a free base (e.g., a spacecraft) and a manipulator mounted on the end effector is given in Yoshida and Umetani (27) as
it. In a free-flying case the position and attitude of the free
base may be controlled by thrusters. Some control and path-
planning problems arise from the fact that the manipulator rE = rs + b0 +

n∑
i=1

(ai + bi) (69)
motion may disturb the position and attitude of the free base.
On the other hand, the base’s position and attitude are not

Differentiating yieldsactuated during the manipulator operation and can move
freely. It has been pointed out by Dubowsky and Papado-
poulos (25) that free-floating robots may have dynamic singu- ṙE = vs + ω0 × (rE − rs) +

n∑
i=1

[�ki × (rE − ri)]q̇i (70)
larities, a unique feature not present in conventional terres-
trial manipulators. Various control and planning methods for

The angular velocity of the end effector is given byspace robots have been developed as extensions of methods
applied to conventional manipulators; see for instance Ref.
26. These techniques can be grouped into four classes ac-
cording to Dubowsky and Papadopoulos (25):

ωE = ω0 +
n∑

i=1

�kiq̇i (71)

The basic kinematics of the free-floating space robot can be1. The free-base position and attitude are fixed. The space-
expressed ascraft actuators compensate for disturbances caused by

the manipulator motion.
2. The spacecraft’s attitude is controlled, but not its trans-

lation.

[
ṙE

ωE

]
≡ vE = Js

[
ṙs

ω0

]
+ Jq̇ = J∗q̇ (72)

3. The spacecraft can rotate and translate as a result of
where J* � �6�n is called the generalized Jacobian matrixmanipulator motions. This case corresponds to a free-
(GJM). The GJM for free-floating systems is an extension offloating manipulator where the space robot is controlled
the Jacobian matrix J for the fixed-base manipulators. Con-by its joint actuators only.
trol algorithms applied to fixed-base (i.e., terrestrial) manipu-4. The last category consists of free-flying robots. In this
lators can be used in controlling a free-floating robot providedcase the spacecraft and the manipulator are controlled
that dynamic singularities are avoided. It is worth men-in a coordinated way such that a desired location and
tioning that if the mass m0 and the inertia tensor I0 of theorientation in space is reached by the robot’s end ef-
spacecraft approach infinity, then J* � J, that is, the GJMfector.
converges to the conventional Jacobian matrix.

The dynamics of a free-floating manipulator obtained us-We focus our analysis on free-floating space robots. Unlike
ing a Lagrangian approach arefree-flying robots, free-floating systems do not have the disad-

vantage of a limited life because of the use of jet fuel.
M∗(q)q̈ + V∗

m(q, q̇)q̇ = τ (73)

Modeling of Free-Floating Space Manipulators
where M*(q) is the symmetric, positive definite inertia ma-
trix, V*m is a centripetal and Coriolis matrix, and � is a controlIn this section we follow the notation in Ref. 25 to determine

the kinematic and dynamic model of free-floating space ro- input vector. If the control task is to move the manipulator
with respect to its free base, then conventional computed-bots. Figure 10 shows a general model of an N-DOF space

manipulator with revolute joints. It is assumed that the ma- torque control techniques can be applied. For a comprehen-
sive analysis of computed-torque methods for rigid manipula-nipulator is composed of rigid bodies and no external forces

or torques act on the system, so that the total momentum is tors the reader is referred to Lewis et al. (9). Furthermore, if
the control task requires one to drive the end effector to aconserved. Link 0 denotes the spacecraft, and the notation is

as follows: fixed position and orientation, any control algorithm devel-
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Figure 10. A free-floating space manipu-
lator. The spacecraft (link 0) can rotate
and translate freely as a result of manipu-
lator motions. The space robot is only con-
trolled by its joint actuators.
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