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the input to control systems, should be considered a ‘‘plan’’
and computed as a part of the design process. However, the
traditional control specialists considered extraneous every-
thing not immersed into a rigid mathematical paradigm.

STRIPS (5,6) and A* (7) became classical fundamentals of
planning in robotics. The subsequent development in the area
of robot path planning branched enormously:

• The problems of representation turned out to be very
critical.

• It became clear that both combinatorics of tasks and dy-
namics of systems are intertwined.

• Planning grew up hierarchically.
• The complexity of computations became the real limita-

tion for the development of theories.

The milestones in the evolution in the area of motion and
path planning are as follows:

• In 1966, Doran and Michie applied a graph-theoretic
mechanism for path planning (8).

• In 1968, Howden introduced the ‘‘Sofa Problem,’’ treating
the geometric problem of motion planning (9).

• In 1968, the A* algorithm was introduce by Hart, Nils-
son, and Rafael (7).

• In 1971, STRIPS was presented by Fikes, Hart, and Nils-
son (5,6).

• In 1979, the concept of search was attempted for dealingROBOT PATH PLANNING
with obstacles by Lozano-Perez and Wesley (10).

PLANNING AS A REACTION TO ANTICIPATION • In 1979, Albus introduced the methodology of task de-
composition for hierarchical systems; later it became a

Historical Overview part of the NIST-RCS methodology, with nested planning
processes at all levels of the control hierarchy (11).Path planning by a robot seems to be a natural step preceding

• In 1981, Lozano-Perez applied ‘‘configuration space’’ tothe functioning of its motion control system. Actually, path
manipulator’s planning (12).planning is just a component of the more general paradigm of

motion planning, which is important not only for robots but • In 1983, Julliere, Marce, and Place outlined their mobile
also for other objects and systems. Since the 1960s, interest robot with planning via tessellated space (13).
in motion planning has grown and spread to various domains • In 1984, Chavez and Meystel (14) introduced a concept
of application. of searching in the space of various (nonuniform) travers-

Motion planning is an intersection of three weakly related ability.
scientific paradigms: operation research (OR), artificial intel-

• In 1985, Hoperoft, Joseph, and Whitesides analyzed the
ligence (AI), and control theory. OR emerged in the 1940s and geometry of robotic arm movement in 2-D bounded re-
spurred the analysis of queues, graph theory, and methods of gions (15).
optimization. As an AI extension in the 1960s, the study of

• In 1986, Meystel demonstrated that the most efficientplanning targeted corresponding processes of human cogni-
(least computational complexity) functioning of a multi-tion, and the first effort in explicit analysis of planning algo-
level learning/control systems with search for the plan-rithms was related to human thought simulation (1). Newell,
ning can be provided by a proper choice of a ratio of lowerSimon, Nilsson, and other prominent researchers in AI devel-
level/higher level of resolution (16). This concept ofoped the fundamentals for the existing results in the area of
planning/control hierarchy became a strong theoreticalrobot motion planning. Traditionally for AI, planning was not
support for the hierarchical architecture of intelligentinvolved into any ‘‘dynamics,’’ which was always considered
system.the domain of control theory.

• In 1985 to 1987, Arbib’s school of control via ‘‘schemata’’In the 1970s, Fu, Saridis, and their students initiated re-
came up with a numerous schemes of ‘‘reactive’’ behavior.search of control systems, which incorporated planning and
This gave birth to a multiplicity of robot control conceptsrecognition (2,3), and which eventually brought to fruition a
which explored and exercised reactive behavior genera-new direction: intelligent control (4). As a discipline, intelli-
tion.gent control blends OR, AI, and control theory. It is concerned

with analysis of planning, particularly for robotics. After this, • During the period from 1985 to 1995, many researchers
associated problems of robotic motion planning withthe mainstream specialists in control theory realized that the

so-called ‘‘reference trajectory,’’ which is always regarded as short-term (local) reactive behavior (e.g., ‘‘obstacle avoid-
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ance’’). Nevertheless, the interest to the search in the Or—as a description of the set of behaviors which lead to
the goal in the desirable fashion. This description is rep-state space was perpetuating.
resented as a set of ‘‘schedules’’• In the meantime, the primary focus of robotics shifts to

the area of systems that do not require any planning (ro- Or—it is a state space trajectory that describes the behav-
botics with ‘‘situated behavior’’). Thus the interest in ior of system leading to the goal and providing satisfac-
planning diminishes (Brooks, MIT, Arkin, Georgia Tech) tion of constraints and conditions on some cost-function,
and the curiosity of researchers shifts toward emerging or cost-functional (these conditions might include: hav-
phenomena in robots with rudimentary intelligence. ing the value of this cost-function/cost-functional within

some interval, maximizing, or minimizing it)• In 1991, a comprehensive text has been published by La-
tombe (17), which outlines most of the theories and expe-
riences approved by the practice in a variety of applica- Thus, plan controls the system. It consists of two major
tions. It happened a whole decade after the first textbook components: the final state, which should be achieved in the
edited by Brady, J. Hollerbach, Johnson, Lozano-Perez, end of the planning interval, and the string of the intermedi-
and Mason (18). ate states, which are often supplemented by their time-sched-

ule and are bounded in the value of admissible error.
Plan consists of task space/time decompositions, such asTen years of research and experience (1982-1991) helped

the subtasks that are distributed in space and time. It mayto clarify the important maxim: the process of robot motion
be represented as a PERT chart, Gannt diagram, a state tran-planning can be performed efficiently only by searching
sition graph, a set of schedules complemented by the accountwithin the state space and thus, determining both the final
of resources required (e.g., bill of materials, tools and man-goal, and the trajectory of motion leading to this goal. At the
power requirements, delivery schedules, and cost estimates).present time, search in the state space is a prevailing general
Each plan is characterized by its goal, time horizon, set oftechnique broadly applied for the algorithms of planning.
agents (performers), and its envelope.Nevertheless, many other concepts and systems exist too, in

Plan, Optimal is the plan that leads to the goal achieve-a multiplicity of research schools and domains of application.
ment while minimizing (or maximizing) a particular cost-
function, or a cost-functional. Optimal plans can be foundDefinitions Related to Planning
(synthesized) only as a result of the comparison among all

The following definitions are typical for the common diction- alternatives of feasible (admissible) plans.
aries (e.g., Merriam-Webster’s Collegiate Dictionary) Plan, Satisficing one of the admissible plans which is

Plan (as a noun) 1: a drawing, or diagram drawn on a within a narrowed set of constraints. It is one of the state
plane: as (a) a top or horizontal view of an object, (b) a large- space trajectories which is constructed within the desirable
scale map of a small area; 2(a) a method for achieving an boundaries specified by a customer who does not want to de-
end, (b) an often customary method of doing something; (c) a termine the cost-function. In other words, this is a sufficient,
procedure: a detailed formulation of a program of action; (d) satisfactory, but not necessarily ‘‘the best’’ plan.
goal, aim; 3: an orderly arrangement of parts of an overall Plan, Spatial is the state space trajectory (in the enhanced
design or objective; 4: a detailed program (as for payment or state space which includes inputs, outputs, and states of the
the provision of some service). system.) The state space trajectory should be represented at

Plan (as a verb) 1: to arrange the parts of: design; 2: to the output of the planning submodule as the result of selec-
devise or project the realization or achievement of (a pro- tion of agents and jobs assigned to them, their responsibili-
gram); 3: to have in mind: intend: to make plans. ties, and criteria of their performance.

These definitions can be applied to a module of intelligent Plan, Temporal is explained below, under schedule.
system which receives a goal, retrieves relevant knowledge in Plans, Admissible are all meaningful plans that can be
the world model, and creates strings of tasks for the actuators built within the specified constraints.
(or the similar modules below in the hierarchy; the latter con- Planning is the design of the course of events determined
sider them their ‘‘goals’’). within BG-module; design of the desirable state space trajec-

The professional definitions for specialists involved in tory; design of the feedforward control function, and, thus, the
planning and control of robots, are recommended by the NIST future for the system. Planning is performed in an assump-
research report on Behavior Generation in Intelligent Sys- tion that we know the agents of the adjacent higher level of
tems (including robots) (19). The system of behavior genera- resolution which will cooperate in the process of the further
tion is supposed to be constructed out of BG-modules, each delineation of the plan. This assumption corresponds to one
module equipped with a planner. Within this paradigm, plan particular alternative of the solution. Another alternative has
is the set of schedules for the group of agents which are sup- another assumption about performing agents and leads to an-
posed to execute these schedules as a cooperative effort and other plan. The design of the desirable motion of the system
accomplish the required job (achieve the goal) as a result of entails that many supportive components of operation also
this effort. To find this set of schedules different combinations should be planned: the algorithms of feedback compensation,
of agents should be tested, and different schedules should be inputs to the energy converters, the scope of sensing (focus of
explored. Plan is also defined: attention), and others.

Planning envelope is a subset of the state space with a cor-
responding world model which is submitted to BG at theAs the course of events determined within BG-module
higher level of resolution for refinement. Upon completion ofwhich is supposed to be reproduced in the world to

achieve the goal in the desirable fashion the planning process at a level, a part of this plan should be
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refined by searching for a more precise solution in the limited • A task command is an instruction to perform a named
task. This is an assignment presented in the code per-envelope around the planned trajectory. A subset of the plan

(for a limited time smaller than the planning horizon of the taining to a particular module of the system. A task com-
mand may have the form:level under consideration) is submitted to BG unit of the

higher level of resolution for a refinement.
Planning horizon is the time interval within which a plan

is meaningful. The degree of belief for each future state of

DO 〈Task name (parameters)〉 AFTER 〈Start State (or Event)〉
UNTIL 〈Goal State (or Event)〉

the plan falls off as time t grows large because the stochastic
Summarizing the specific definitions above, the followingcomponent of the operation affects the verifiability of the re-

definition of planning can be considered instrumental:sults. For some particular value of time in the future the de-
gree of belief is lower than the degree required for the deci-

• Planning is a process of searching for appropriate futuresion making process. This value of time is called ‘‘planning
trajectories of motion leading to the goal. Searching ishorizon.’’
performed within the system of representation.Planning strategy orientation toward receiving either the

optimal or the satisficing plan.
Planning as a Stage of ControlReplanning is the process of planning which is performed

if the top-down and bottom-up processes of plan propagation A general control diagram is shown in Fig. 1. It starts with a
did not converge. The need in replanning can emerge (a) if reference trajectory (‘‘desired motion trajectory’’) at the input,
the initially selected version of plan distribution failed, (b) if and it ends with the output motion. The measured output dif-
the prescribed conditions of compensation fail to keep the pro- fers from the desired motion, and the difference between
cess within the prescribed boundaries, (c) if the world model them enables the feedback controller to perform the compen-
has changed or (d) if the goal has changed. sation. It turns out that the ‘‘feedforward’’ part of the control

Resources the following resources are usually taken into systems plays partially a role of a planner.
account for constructing the cost-function: time, energy, mate- Intuitively, it is to be expected that reacting to error will
rials, remaining life-span of the system, the degree of fault- be a relatively slow process compared to the predictive correc-
tolerance, and money. tion that is available via feedforward channel. By the virtue

Resolution is the property of the level of hierarchy which of existing outside the immediate scope of the feedback loop,
limits the distinguishability of details. (Synonyms are scale, the feedforward controller injects a priori known bias into the
granulation, coarseness). operation of that loop. Regardless of whether this bias con-

Schedule is another term for the ‘‘temporal plan’’; it is the sists of a nominal command applied by an expert to affect the
description of the development of the process in time. It ob- continuous operation of a machine in a factory, or whether its
tained by computing the state space trajectory within the is a linearizing or decoupling torque generation scheme for a
time domain. The schedule should focus upon the start and robotic manipulator, the planned command input is produced
the end events and provide for coordination, reduced queues, on the basis of the analysis of a system model in some form,
and elimination of the ‘‘bottlenecks.’’ Schedule can be also de- mathematical, linguistic (or both) in order to improve the per-
fined as a job-time event-gram. formance of the overall system.

Scheduling is the process of outlining the temporal devel- If a reference trajectory for such a system has been synthe-
opment of the motion trajectory. sized, then it is necessary for the feedforward controller to be

The following supporting definitions might be useful for in- the inverse dynamical model of the plant. Thus the only task
terpreting the other sections of this article. for the feedback part is to cancel the effects of unmodeled

dynamics and disturbances. The transfer function can be sim-
Supporting Definitions plified to unity if the plant and feedforward controller are ex-

act inverses of each other. In fact, the bulk of the existing• Behavior is the ordered set of consecutive-concurrent
results in the area are based on this assumption. The work ofchanges (in time) of the states registered at the output of
Brockett (20) is generally acknowledged as the first formala system (in space). In a goal-oriented system, behavior
treatment of the problem of the inversion of multivariable lin-is the result of executing a series of tasks.
ear time invariant systems and numerous papers (21–24) list• A task is a piece of work to be done, or an activity to be
extensions of those results to nonlinear, time-varying, andperformed. It can be described as a data structure repre-
discrete-time cases.senting the assignment.

• Action is an effort generated by the actuator producing
changes in the world.

• Space-time (spatio-temporal) representation presuming
description of the process as a sequence of time-tagged
states (temporal sequence) in which each state is a vector
in the space with coordinates corresponding to all vari-
ables of the process (including input, output, and inner
states variables).

• Goal is the state to be achieved or an objective toward
which task activity is directed (e.g., a particular event).
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A goal can be considered an event which successfully ter-
minates the task. Figure 1. Combined feedforward/feedback control architecture.
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Thus, if the reference trajectory is known, then planning merit in discussing a subset of problems in which the goal is
determined as attainment of a particular state.boils down to inverting this known trajectory. The general ap-

proach to planning as a synthesis of feedforward commands Behavior generation (19) can have many different mecha-
nisms of planning and execution. These mechanisms are notis to implement an algorithmic procedure (‘‘approximate in-

version’’) for the determination of a nominal input function or well known. A subset of problems will be discussed, in which
the goal is defined as attainment of a particular state. Mosttrajectory which leads to approximate tracking of the refer-

ence trajectory. of the realistic problems can be translated in this paradigm.
Other types of problems can also be imagined: in chess, theApproximate inversion is an algorithmic procedure for

planning an input function in some admissible input set goal is clear (to win) but this goal cannot be achieved by sim-
ply reaching a particular position in a space (even in a de-which, when applied to a plant, causes its outputs to follow a

trajectory which minimizes the deviation of those outputs scriptive space). Most of the problems related to the theory of
games and linked with pursuit and evasion are characterizedfrom a prescribed trajectory over some closed interval of time.

An input so determined shall be referred to as an approximate by a similar predicament and are not discussed here.
inverse of the reference trajectory over the input set.

Since the reference trajectory should be found, the full Problems Related to Planning
planning process should involve finding it, for example, by

Any problem of planning is associated withoptimizing the output motion of the system. Specifically, the
optimal control of systems via the calculus of variations and

• Actual existence of the present state (PS)Pontryagin’s principle should, in theory, provide both the ref-
• Actual, or potential existence of the goal state (GS)erence trajectories for a system as well as the inputs required

to generate them. In practice, optimal solutions are hard to • Knowledge of the values for all or part of the states as
generate for all but the simplest problems. In many other far as some particular goal is concerned (KS)
cases, such as those involving systems with large, distributed
parameters, and computer-based models, it is not possible to The cumulative costs of trajectories to a particular goal (or
apply the classical theory at all. goals) can be deduced from this knowledge. On the other

Optimization is typically performed by using the tools of hand, the knowledge of costs for the many trajectories tra-
searching. Search should be performed within some envelope versed in the past can be obtained, which is equivalent to
around the desired trajectory. Thus an envelope around the knowing cumulative costs from the initial state (PS) to the
desired trajectory should be submitted to the input as a pri- goal state (GS) (from which the values of the states can be de-
mary assignment. This envelope contains the initial and the duced).
goal-points. This envelope encloses the space for the subse- In other words, any problem of planning contains two com-
quent search of the optimum trajectory. ponents: the first one is to refine the goal (i.e., bring it to the

higher resolution.) The second one is to determine the motion
trajectory to this refined goal. These two parts can be per-PLANNING AS A PART OF BEHAVIOR GENERATION
formed together, or separately. Frequently they are dealt with
separately. In the latter case they are formulated as follows:Behavior Generation

Robotics is the integrated domain providing for blending the • Given PS, GS, and KS (all paths), find the subset of KS
goals and testing the means of achieving them, that is, a do- with a minimum cost, or with a preassigned cost, or with
main with a direct need for planning. In 1983, T. Lozano- a cost in a particular interval.
Perez introduced the idea of search in a ‘‘configuration space.’’ • Given PS and GS from the lower resolution level and KS
From the experience of using this search, it became clear that (all paths), find the GS with a particular value.
the exhaustive search would be computationally prohibitive if
the configuration space is tessellated with the accuracy re- In (25,26) two important issues are introduced for the area
quired for motion control. But this theory made one important of planning: controllability and recognizability. The controlla-
thing obvious: planning is an apogee of synthesizing the ad- bility issue arises when the number of controls is smaller
missible alternatives and searching for the trajectories en- than the number of independent parameters defining the ro-
tailed by these alternatives. bot’s configuration. The recognizability issue occurs when

This development helped to realize that planning should there are errors in control and sensing: how well the robot
combine the exhaustive (or meaningfully thorough) search off- can recognize goal achievement. Both issues can affect the
line, as a part of the algorithm of an off-line control. It was computational complexity of motion planning. The set of con-
about at this time that engineers stopped talking about con- trollability, recognizability, and complexity is especially im-
trol of actions and introduced a more balanced term-behavior portant to the development of autonomous robots.
generation. The latter became a code word for the joint pro-
cess of testing the alternatives within the mechanism of

Planning in a Representation Space with a Given Goal
‘‘planning’’ (open loop, feedforward control) blended with the
on-line finding the alternatives of feedback for error compen- The world is assumed to be judged upon by using its state

space (or the space of representation), which is interpreted assation (closed-loop control, or ‘‘execution’’).
Behavior generation alludes to many mechanisms of plan- a vector space with a number of important properties. Any

activity (motion) in the world (space of representation) can bening and execution. At the present time, these mechanisms
cannot be considered fully understood, and the general theory characterized by a trajectory of motion along which the ‘‘work-

ing point’’ or ‘‘present state’’ (PS) is traversing this space fromof planning can hardly be immediately attempted. There is
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one point (initial, or state, IS) to one or many other states of achieving the final goal. Both ‘‘proper’’ and ‘‘goal-oriented’’
representation can be transformed in each other.(goal states, GS). The goal states are given initially from the

external source as a ‘‘goal region,’’ or a ‘‘goal subspace,’’ in
which the goal state is not completely defined in a general Artifacts of Representation Space
case.

Representation of the world can be characterized by the fol-From the point of view of planning, state space does not
lowing artifacts:differ from the configuration space. Indeed, the upcoming be-

havior is represented as a trajectory in the state-space (and/
• Existence of states with boundaries determined by theor configuration space). One of the stages of planning (often

resolution of (each state is presented as a tessellatum, orthe initial one) is defining where exactly is the GS within the
an elementary unit of representation, the lowest possible‘‘goal region’’ (which was the ‘‘goal state’’ at the lower resolu-
bounds of attention)tion). In many practical problems, the designer should focus

• Characteristics of the tessellatum, which is defined as anupon planning procedures in which one or many GS remain
indistinguishability zone (consider that resolution of theunchanged through the entire period of their functioning (be-
space shows how far the ‘‘adjacent’’ tessellata, or statesfore they are achieved). Traversing from IS to GS is associ-
are located from the ‘‘present state’’ (PS) tessellatum)ated with consuming time, or another commodity (cost). So,

the straightforward exhaustive search is feasible which • Lists of coordinate values at a particular tessellatum in
allows for exploring all possible alternatives. space and time

• Lists of actions to be applied at a particular tessellatum
Planning as a Reaction to Anticipated Future in space and time in order to achieve a selected adjacent

tessellatum in space and timeResearchers in the area of reactive behavior introduced a
method of potential fields for producing comparatively sophis- • Existence of strings of states intermingled with the
ticated obstacle avoiding schemes of motion. Reactive behav- strings of actions required to receive next consecutive
ior is considered to be the antithesis of planning. This is not tessellata of these strings of states
so. Motion based upon planning can be called reactive, too. • Boundaries (largest possible bounds of the space) and ob-
The difference is that in reactive behavior robots usually re- stacles
act to the present situation. In the system with planning, one

• Costs of traversing from a state to a state and throughreacts, too: but one reacts to the anticipated future.
strings of statesThus planning can be considered an anticipatory reactive

behavior. The difference is in the fact that anticipation re-
In many cases, the states contain information which per-quires representation richer than the simple reactive behav-

tains to the part of the world which is beyond the ability toior requires.
achieve it, and this part is called ‘‘environment.’’ Another part
of the world is to be controlled: this is the system for whichTypes of Representation Available for Planning
the planning is to be performed. It will be referred to fre-

All representation spaces are acquired from the external real- quently as ‘‘self.’’ Thus part of the representation is related
ity by learning processes. Many types of learning are men- to ‘‘self,’’ including knowledge about actions which this ‘‘self ’’
tioned in the literature (supervised, unsupervised, reinforce- should undertake in order to traverse the environment.
ment, dynamic, PAC, etc.). Before classifying a need in a It is seen from the list of artifacts that all knowledge is
particular method of learning and deciding how to learn, one represented at a particular resolution. Thus the same reality
must figure out exactly what is to be learned. It is important can be represented at many resolutions and the ‘‘multiresolu-
to find out whether the process of learning can be separated tional representation’’ is presumed. The system of representa-
into two different learning processes: tion is expected to be organized in a multiresolutional fashion.

This will invoke the need to apply a number of special con-
1. That of finding the world representation straints and rules. The rules of inclusion (aggregation/decom-
2. That of finding the appropriate rules of action position) are especially important.

or these two kinds of learning are just two interrelated sides
CLASSIFICATION OF ROBOT PLANNING PROBLEMSof the same core learning process.

The following knowledge should be contained in the repre-
Geometric Modelssentation space. If no GS is given, any pair of state represen-

tations should contain implicitly the rule of moving from one This domain is strongly linked with practical problems. It also
state to another. In this case, while learning, one inadver- generates a variety of famous theoretical problems: the ‘‘sofa’’
tently considers any second state as a provisional GS. problem evolved into ‘‘piano-movers’’ problem. A thorough

Call ‘‘proper’’ representation a representation similar to survey is given in (27). An interesting geometric model based
the mathematical function and/or field description: at any upon Snell’s law is presented in (32).
point the derivative is available together with the value of the
function; the derivative can be considered an action required

Collision-Free Robot Path
to produce the change in the value of the function.

Call ‘‘goal-oriented’’ a representation in which the value of Most of the FINDPATH algorithms of the 1980s are based
upon searching for a minimum path string of vertices withinthe action at each given point is required for describing not

the best way of achieving an adjacent point, but the best way the socalled ‘‘visibility’’ graph [a graph comprising all vertices
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of the polygonal objects connected with visibility lines (28– plicity of goal tessellata of a particular level of resolution
31)]. under the condition of assigning the goal at a lower resolution

level, which is the fact in multiresolutional systems (e.g.,
Nonholonomic Path Planning NIST-RCS).

In nonredundant systems there is no problem of planning:Mobile robots can be considered single-body devices (car-like
only one trajectory of motion is available. Since the trajectoryrobots) or composed of several bodies (tractors towing several
of motion to be executed is a unique one, the problem is totrailers sequentially hooked). These robots are known to be
determine this trajectory and to provide tracking of it by annonholonomic, that is, they are subject to nonintegrable
appropriate control system. Many research results demon-equality kinematic constraints involving the velocity. The
strate that redundancy can be considered an important pre-number of controls is smaller than the dimension of the con-
condition (a) for the need of planning, and (b) for performingfiguration space. The range of possible controls has additional
planning successfully (59–62).inequality constraints due to mechanical stops in the steering

Figure 2 is a demonstration of the realistic situation of re-mechanism of the tractor. It is demonstrated for the nonholo-
dundancy typical for the most of the planning problems: therenomic multibody robots that the Controllability Rank Condi-
are many paths from two geographical points in the relieftion Theorem is applicable even when there are inequality
demonstrated in the picture. If the only requirement is ‘‘mini-constraints on the velocity, in addition to the equality con-
mum-time,’’ a comparison of several paths will decide thestraints (33–34).
path-winner. However, by introducing additional preferences
and components of the cost-functional, the redundancy can bePlanning in Unknown, or Partially Known Environment
effectively reduced and even eliminated.

Planning in unknown environment is a problem that defies
orientation to derive the search process from the concrete

Uncertainty and Probabilistic Techniques for Path Planningknowledge of the environment. Indeed, the map of a maze
might be unknown but the strategy of behavior in a maze Most of the techniques for searching the minimum-cost paths
should exist. In this and numerous other situations it is re- on the graph are deterministic ones, and introduction of un-
quired to have a ‘‘winning’’ strategy of actions under condition certainty became a new source of challenge (35–37). An ap-
of lacking or absent information. There is an area of research proach to motion planning with uncertainty for mobile robots
oriented toward finding the most general rules of dealing with is introduced in (38). Given a model of the robot’s environ-
different types of environment (56–58). ment, a ‘‘sensory uncertainty field’’ (SUF) is computed over

the robot’s configuration space. At every configuration, the
Planning in Redundant Systems SUF is an estimate of the distribution of possible errors in

the ‘‘sensed configuration’’ and it is computed by matching theNonredundant systems have a unique trajectory of motion
data given by the robot sensors against the model. A plannerfrom a state to a state. Redundant system is defined as a sys-
is using SUF to generate paths minimizing the expected er-tem in which more than one trajectory of motion is available
rors. SUF has been explored for a classical line-stripingfrom one state to another. It can be demonstrated for many
camera/laser range sensor.realistic couples of ‘‘system-environment’’ that

Planning relies on information that becomes available to
• They have a multiplicity of traversing trajectories from a the sensors during execution, to allow the robot to correctly

IS to a GS. identify the states it traverses. The set of states should be
chosen, the motion command should be associated with every• These trajectories can have different costs.
state, and the state evolution should be evaluated. The inter-
dependence of these tasks can be avoided by assuming theThese systems contain a multiplicity of alternatives of
existence of landmark regions in the workspace, which couldspace traversal. Redundancy grows when the system is con-
be considered ‘‘islands of perfection,’’ where the position sens-sidered to be a stochastic one. The number of available alter-

natives grows even higher when one considers also a multi- ing and motion control are accurate (39).

Figure 2. Multiplicity of plan alterna-
tives.
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visual feedback to the user. A prototype of the IO, which inte-
grates basic versions of four major components: localization,
target tracking, motion planning, and robot control, has been
implemented. Initial experiments using this prototype, which
demonstrate the successful integration of these components
and the utility of the overall system, have been performed.

A particular problem of computing robot motion strategies
is outlined in (42). The task is to maintain visibility of a mov-
ing target in a cluttered workspace. Both motion constraints
(as considered in standard motion planning) and visibility
constraints (as considered in visual tracking) are taken in ac-

IS

Submitted to HR
level as a result

of planning at LR
level

? ?

? ?

? ?

?
?

GS

GS

Which trajectory to choose?

Which is the goal for the HR level?
count. A minimum path criterion is applied. Predictability of

Figure 3. Two parts of planning problem. the target is taken in account. For the predictable case, an
algorithm that computes optimal, numerical solutions has
been developed. For the more challenging case of a partially

PLANNING OF ACTIONS VERSUS PLANNING OF STATES predictable target, two on-line algorithms have been devel-
oped, each which attempts to maintain future visibility with

Algorithms of Planning limited prediction. One strategy maximizes the probability
that the target will remain in view in a subsequent time step,Planning constructs the goal states, and/or the preferable
and the other maximizes the minimum time in which the tar-strings of states connecting the present state with the goal
get could escape the visibility region.states. One of the successful techniques is associated with

task decomposition (40). Task decomposition is related to the
Local Planning: Potential Field for World Representationconsecutive refinement, that is, to consecutive increase of the

resolution of representation for both actions and states.
Genetic SearchThe first component of the planning algorithm is transla-

tion of the goal state description from the language of low The most pervasive method for navigating with minimal plan-
resolution to the level of high resolution. Frequently, it is as- ning effort is using potential field construction around the ob-
sociated with increasing of the total number of the state vari- stacles (43,44). Potential field presumes adding to the world
ables. In all cases, it is associated with increasing the scale of representation such properties that will increase the cost of
representation, or with reduction of the indistinguishability moving into particular directions. An approach to robot path
zone, or the size of the tessellatum associated with a particu- planning is proposed in (45), consisting of building and
lar variable (see Fig. 3). searching a graph connecting the local minima of a potential

The second component is the simulation of all available function defined over the robot’s configuration space. The
alternatives of the motion from the initial state (IS) to one or planner based on this approach allows to solve problems for
several goal states (GS) and selection of the ‘‘best’’ trajectory. robots with many more degrees of freedom. The power of the
Procedurally, this simulation is performed as a search, that planner derives both from the ‘‘good’’ properties of the poten-
is, via combinatorial construction of all possible strings tial function and from the efficiency of the techniques used to
(groups). To make this combinatorial search for a desirable escape the local minima of this function. The most powerful
group more efficient one reduces the space of searching by of these techniques is a Monte-Carlo technique, which escapes
focusing attention, that is, by preselection of the subset of the local minima by executing Brownian motions. The overall ap-
state space for further searching. proach is made possible by the systematic use of distributed

Thus all planning algorithms consist of two components: representations (bitmaps) for both the robot’s workspace and
(1) a module for exploration of spatial distribution of the tra- configuration space. Genetic search is one of the tools for local
jectory, and (2) a module for exploration of the temporal dis- planning. In some environments it gives positive results and
tribution. No algorithm of planning is conceivable without can be recommended for use (46,47).
these two components.

The need in planning is determined by the multialterna- Global Planning: Search for the Trajectories
tive character of the reality. The process of planning can be

The most general way of planning is by global searching. Itmade more efficient by using appropriate heuristics.
consists of the following stages:

Visibility-Based Planning
1. Populate the world with the randomly assigned ‘‘points’’

The ‘‘intelligent observer’’ (IO) is introduced in (41) as a mo- that become vertices of the search graph.
bile robot that moves through an indoor environment while

2. Connect them in the vicinity.
autonomously observing moving targets selected by a human

3. Determine the cost of edges.operator. The robot carries one or more cameras, which allow
4. Run the graph search algorithm (e.g., Dijkstra algo-it to track objects while at the same time sensing its own

rithm or A*).location. It interacts with a human user, who issues task-level
commands, such as indicating a target to track by clicking in
a camera image. The user could be located far away from the There are some problems that can be resolved in each par-

ticular case. Indeed, the ‘‘density’’ of future vertices of theobserver itself, communicating with the robot over a network.
As the IO performs its tasks, the system provides real-time search graph is to be selected. The concept of ‘‘vicinity’’ should
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be discussed, and the value of this vicinity should be properly All this information arrives in the form of experiences
which record states, actions between each couple of states,evaluated. Different techniques of pruning the search-tree

should be discussed. This area is explored in (48–52). and evaluation of the outcome. The collection of information
obtained in one or several of these ways forms knowledge ofSeveral randomized path planners have been proposed

(48–54). They are recommended to a variety of robots. A gen- space (KS).
If the information base contains all tessellata of the spaceeral planning scheme is introduced that consists of randomly

sampling the robot’s configuration space. The choice of points with all costs among the adjacent tessellata, it is usually
called the representation. Thus the representation can be con-candidates can be determined by a relation between the prob-

ability of failure and the running time. The running time only sidered equivalent to the multiplicity of explanations of how
to traverse, or how to move. All kinds of learning, mentionedgrows as the absolute value of the logarithm of the probability

of failure that one is willing to tolerate. above, are equivalent: they belong to the same potential data-
base reflecting reality exhaustively.

LINKAGE BETWEEN PLANNING AND LEARNING
Links Between Planning and Learning

Learning as a Source of Representation Planning is learning from experience in the domain of imagi-
nation: searching in the state space is exploration of theseLearning is defined as knowledge acquisition via experience
imaginary experiences. Planning is performed by searchingof functioning. Thus learning is development and enhance-
within a limited subspacement of the representation space under various goals. The

representation can be characterized in the following ways:
• For a state with a particular value (designing the goal)

• By a set of trajectories (to one or more goals) previously • For a string (a group) of states connecting SP and GP
traversed satisfying some conditions on the cumulative cost (plan-

• By a set of trajectories (to one or more goals) previously ning of the course of actions)
found and traversed

• By a set of trajectories (to one or more goals) previously The process of searching is associated either with collect-
found and not traversed ing the additional information about experiences, or with ex-

• By the totality of (set of all possible) trajectories tracting from KS the implicit information about the state and
moving from state to state, or learning. In other words, plan-• By a set of trajectories executed in the space in a ran-

dom way ning is inseparable from and complementary to learning.
Learning is a source of the multiscale (multiresolutional,
multigranular) representation. Figure 4 illustrates how theOne can see that this knowledge contains implicitly both

the description of the environment and the description of the multiscale representation emerges by consecutive generaliza-
tion of the experiences. On the contrary, planning presumesactions required to traverse a trajectory in this environment.

Moreover, if some particular system is the source of knowl- consecutive refinement of the imaginary experiences. For both
generalization and refinement, a set of procedures is used in-edge, then the collected knowledge contains information

about properties of the system which moved in the envi- cluding grouping (G), focusing attention (FA), and combinato-
rial search (CS), which are together denoted GFACS.ronment.
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i + 1

Search
i + 1

GFACS GFACS

Goal

Represents
i

Search
i

GFACS GFACS Plan

Represents
i – 1

Search
i – 1

GFACS GFACS Plan

PlanInfo

PlanningLearning

GFACS GFACS Plan

States

Actions

L P
PlanInput

Info

Goal

Simulation

(a) (b)

Figure 4. On the relations between planning and learning: functioning of GFACS in the joint
learning–planning process. (a) Learning in a hierarchy, (b) learning at a level.
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This unified planning/learning process is always oriented The strictness of this formulation may be relaxed by con-
sidering a stochastic measure for associating a confidencetoward improvement of functioning in engineering systems

(improvement of accuracy in an adaptive controller) and/or level with the generalization to construct the concept of �-gen-
eralization nearly everywhere. Thustoward increasing the probability of survival (emergence of

the advanced viruses for the known diseases that can resist
various medications, e.g., antibiotics). Thus this joint process
can be related to a system as well as to populations of sys- P

[∥∥∥∥
∫ t f

t0

[y′(t) − y(t)] dt
∥∥∥∥ < ε

]
< τ

tems, and determines their evolution.

is a statement of the belief that the constraint holds with a
PLANNING IN ARCHITECTURES OF BEHAVIOR GENERATION probability defined by the preassigned threshold �.

This formulation can be extended to an ordered collection
Hierarchical Multiresolutional Organization of Planning of k epsilons ��1, �2, . . ., �k�, thereby defining a hierarchy of k

models which describe the same input-output behavior withAn important premise for introducing multiscale algorithms
increasing degrees of accuracy. The necessity of consideringof planning is organization of a multiscale (multiresolutional,
all elements of the input and output vectors as time varyingmultigranular) world model. It is presumed that each system
functions may also be relaxed so that at some level ‘i’, uki

[t0, tf]can be represented as a multiscale model, that is, as a hierar-
could be considered constant in the interval, whereas at somechy of models that differ in their degree of detail. This will
lower level (at higher resolution) the same input may be rep-allow for planning and control at each level of resolution (19).
resented as a time-varying function.The multiscale world model, as well as multiscale system of

The ability to formulate the world models with this hierar-planning/control modules, requires consecutive bottom-up
chical generalization will be shown in the following examplegeneralization of the available information. Levels of general-
to be an essential device for coping with the complexity asso-ization and the overall multiscale representation, as dis-
ciated with the planning of system operation in a combinedcussed here, are considered to be depictions of the same object
feedforward–feedback controller.with different degrees of accuracy. The preceding statement

is given in mathematical form by applying concepts of the sin-
Results of Planning the Path of the Vehiclegle-level state-space representation for the (not necessarily

linear time-invariant) system (63–65): Figure 5 depicts the process of planning via snapshots of the
screens presented to the user during planning. The process of
search is shown in the left part of Fig. 5. The upper part

x(t) = A(x, u, t) × (t) + B(x, u, t)u(t)

y(t) = C(x, u, t) × (t) shows the search in full space at low resolution. The lower
part shows search in a reduced search space but at higherwhere
resolution. The final trajectory of the vehicle is shown in the

x ∈ Rn, u ∈ Rm, y ∈ Rp, t ∈ R+

Thus it is possible to form a solution of these equations as
mappings describing the state transition and output func-
tions:

� : Rn × Rm × R+ → Rn × R+

� : Rn × Rm × R+ → Rp × R+

so that for any input function ‘‘u’’ on the interval [t0, tf] it is
possible to determine the corresponding output function ‘‘y’’
on the same interval. If it can be shown that there exists a
pair of functions

�′ : Rn′ × Rm′ × R+ → Rn′ × R+

� ′ : Rn′ × Rm′ × R+ → Rp′ × R+

for which n� is strictly less than n, and for which the same
input function ‘‘u’’ generates the output function ‘‘y’’ such that
inequality ∣∣∣∣∣

∫ t f

t0

[y′(t) − y(t)] dt

∣∣∣∣∣ < ε

holds for all admissible inputs in the input function space

(a)

(b)

Results of high-
resolution search

Animation of motion
at high resolution

Results of low-
resolution search

where � is a value which depends on the level of resolution
under consideration. Then it is claimed that Figure 5. Planning via search in a multiresolutional state space. (a)

Search in the whole space at low resolution, (b) search in the reduced
space at high resolution.{�′, � ′} is an ε-generalization of {�, �}
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right part of the figure for a workspace including a garage, This triplet of computational procedures is characteristic
for intelligence and probably is the elementary computationalwall, and gate.

The order of synthesis of this result can be seen beginning unit of intelligence. Its purpose is transformation of large vol-
umes of information into a manageable form which ensureswith Fig. 5, which is a depiction of the search tree at the low

level of resolution, overlaid on the description of the work- success of functioning. The way it functions in a joint learn-
ing-planning process explains the pervasive character of hier-space. The kinematics of the vehicle are clearly absent from

this consideration as can be seen by the result of search at archical architectures in all domains of activities.
The need in GFACS is stimulated by the property ofthe first level in the upper right part of Fig. 5 (the thin-line

trajectory), but are evident in the bold-line trajectory in the knowledge representations to contain a multiplicity of alter-
natives of space traversal (which is a property of representa-same figure, which is the result of search at the next level:

one can see the maneuvering of the vehicle. The search at this tions to be redundant). Redundancy of representations deter-
mines the need in GFACS: otherwise the known systemshigh-resolution level is depicted in the lower parts of Figs. 4

and 5, where the reduced search tree of that level is shown. would not be able to function efficiently (it is possible that
redundancy of representations is a precondition for the possi-This sequence of figures demonstrates that it is possible to

synthesize complex maneuvers such as reversing and K-turns bility of life and the need in intelligence).
without using expert rule-base generated by a human being.
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