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SERVOMECHANISMS

In the field of automatic control and control system technol-
ogy, it is often the case that one may wish to modify the be-
havior of a system that is influenced by external disturbances
so that certain desirable properties occur. For example, when
heating a room subject to outside temperature variations, one
may need to increase or decrease the input fuel rate to the
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heater of the room in order to maintain a constant indoor � �n will be said to lie in L � ( f � L �) if
temperature. A device that achieves this task is called a ser-
vomechanism controller. ‖ f‖ := sup

t≥0
‖ f (t)‖

This article reviews the theory of servomechanism control
and begins with an overview description of the mathematical is finite.
modeling of physical systems using state-space methods (1,2).
A number of problems that can be considered when using
such model representations are then presented. In particular, STATE-SPACE MODELS
the problem of dynamic inversion (3,4) of a system is consid-
ered, in which it is desired to find a controller such that the In the general representation of linear time-invariant, finite

dimensional systems, the state variable model, or state-spaceresulting controller cascade system has a unity diagonal be-
havior. The general problem of robust control and uncertain model, is a set of first-order coupled differential equations

written in vector matrix form. This representation preserveslinearized systems is then considered, dealing with the prem-
ise that any mathematical model of a physical system only the input-output relationship of the Laplace transfer function,

while representing internal characteristics of the modeledapproximates the actual behavior of the system. In this case,
given a stable linear time-invariant (LTI) model with real pa- system.

As an example, consider the general dynamic system Srameter perturbations, one problem of interest is to deter-
mine the largest parametric perturbation that may occur such given in Fig. 1, which has m inputs and r outputs. The state

variables of dynamic system S are defined as the set of num-that the resultant perturbed system remains stable; this is
called the real stability radius problem (5). bers

The robust servomechanism problem is then considered
(6–11) in which it is desired to find a controller for the system x1(t),x2(t), . . ., xn(t)
such that

that contain sufficient information about the history of the
system such that, if the values of1. the resultant closed loop system is stable, and

2. asymptotic error regulation and tracking occur for a x1, x2, . . ., xn
specified class of disturbance and reference signals.

are known at any time t0 together with knowledge of the sys-
tem input for t0 � t � t1, then the evolution of the n statesThis article concludes with the study of an adaptive servo-
and the r outputs of the system for t0 � t � t1 are completelymechanism control problem using switching mechanisms
defined. Hence, for the continuous-time case, dynamic system(12–21), in which very little a priori knowledge of the mathe-
S can be represented by a set of n first-order coupled differen-matical model of the system to be controlled is assumed to
tial equations given bybe known.

NOTATION

dxi(t)
dt

= fi[x1(t),x2(t), . . ., xn(t), u1(t), u2(t), . . ., um(t), t],

i ∈ {1, 2, . . ., n} (1a)

The following mathematical notation will be used in a fairly
where x1(t), x2(t), . . ., xn(t) are the n state variables of theconsistent manner throughout this article.
system, u1(t), u2(t), . . ., um(t) are the m input variables to theLet �, ��, �, and � denote, respectively, the set of real,
system, and f 1, f 2, . . ., fn are n scalar-valued functions. Inpositive real, natural, and complex numbers. �n will be the n-
addition, because the state variables completely define the dy-dimensional real vector space, �m�n will be the set of m � n
namic behavior of the system, the r outputs of system S canreal matrices, �� (��) will be the set of complex numbers with
also be expressed asstrictly negative (positive) real parts, and �0 will be the set of

complex numbers lying strictly on the imaginary axis. For
any x, y � �, yk(t) = gk[x1(t),x2(t), . . ., xn(t), u1(t),u2(t), . . ., um(t), t],

k ∈ {1,2, . . ., r} (1b)

where g1, g2, . . ., gr are r scalar-valued functions.x mod y := x − floor
�x

y

�
y

Matrix Representationwhere floor (�) rounds the expression (�) down to the nearest
integer. Because it is often mathematically more convenient to deal

With x � �n, denote its �-norm to be with vectors, define the state, output, and input vectors to be,

‖x‖ := max
1≤i≤n

|xi|

For any arbitrary A � �n�n and B � �m�n, let eig(A) denote
S

..
.

..
.

u1
u2

um

y1
y2

yrthe eigenvalues of A, and let rank(B) denote the rank of B.
Matrix A is said to be stable if eig(A) � �� and unstable oth- Figure 1. A block diagram of dynamic system S with m inputs and

r outputs.erwise. In addition, a piecewise continuous function f : [0, �)
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respectively, Remark 1. Consider Eq. (3), and define z0 :� Tx(t0), where
T�1 � �n�n is assumed to exist. The Laplace transform of Eq.
(3) then can be written asx(t) := [x1(t) x2(t) · · · xn(t)]T

y(t) := [y1(t) y2(t) · · · yr(t)]T

u(t) := [u1(t) u2(t) · · · um(t)]T
sZ(s) − z0 = TAT−1Z(s) + TBU (s)

Y (s) = CT−1Z(s) + DU (s)

where (x, y, u) � �n � �r � �m. Then Eq. (1) also can be
where Z(s), Y(s), and U(s) denote the vector Laplace trans-expressed equivalently in the vector matrix form given by
forms of z(t), y(t), and u(t), respectively. Therefore

dx(t)
dt

= f (x, u, t)

y(t) = g(x, u, t)

Z(s) = (sI − TAT−1)−1TBU (s) + (sI − TAT−1)−1z0

= [T(sI − A)T−1]−1TBU (s) + [T(sI − A)T−1]−1z0

= T(sI − A)−1BU (s) + T(sI − A)−1T−1z0where f � �n and g � �r are vector-valued functions (1,2).
In practice, however, the assumption that a system is lin-

and so it follows thatear and time-invariant often is made; in this case, the state
equations for a multi-input multi-output (MIMO) LTI contin-
uous-time system can be given by

ẋ(t) = Ax(t) + Bu(t) (2a)

y(t) = Cx(t) + Du(t) (2b)

Y (s) =CT−1[T(sI − A)−1BU (s) + T(sI − A)−1T−1z0]

+ DU (s)

= [D + C(sI − A)−1B]U (s) + C(sI − A)−1T−1z0

= [D + C(sI − A)−1B]U (s) + C(sI − A)−1x0

where x � �n is the state vector, u � �m is the input vector,
Hence, Eq. (3) preserves the input-output relationship of dy-y � �r is the output vector, and (C, A, B, D) � �r�n � �n�n �
namic system S under any similarity transformation given�n�m � �r�m. Moreover, it should be noted that the state-space
by z(t) � Tx(t), where rank(T) � n, T � �n�n.representation for any LTI MIMO system is not unique be-

cause, upon defining z(t) :� Tx(t), where T�1 � �n�n is as-
To obtain the time-domain solution to Eq. (2), the inversesumed to exist, Eq. (2) can be written alternatively as

Laplace transforms of Eq. (4) can be taken to yield
ż(t) = TAT−1z(t) + TBu(t) (3a)

y(t) = CT−1z(t) + Du(t) (3b) x(t) = �(t, t0)x(t0) +
∫ t

t0

�(t, τ )Bu(τ ) dτ (5a)

For most physical systems, D is equal to zero because a
nonzero value of D indicates that at least one direct path be- and
tween one of the m system inputs and one of the r system
outputs exists. In addition, for the case of single-input single-
output (SISO) systems, m � r � 1, and matrices B and C y(t) = C�(t, t0)x(t0) + C

∫ t

t0

�(t, τ )Bu(τ ) dτ + Du(t) (5b)

reduce to column and row vectors, respectively.

where �(t, �) :� eA(t��) represents the matrix exponential (22)
Laplace Transform Solution of A. In addition, given a system modeled by Eq. (2), the fol-

lowing definitions can be made (1).Assuming that the Laplace transform of u(t) exists, the La-
place transform of Eq. (2) can be taken to yield

Definition 1. The dynamic system described in Eq. (2) [or
the pair (A, B)] is said to be controllable if, for any given ini-
tial state x(t0) � �n, for any finite terminal time t1 � t0, and

sX (s) − x0 = AX (s) + BU (s)

Y (s) = CX (s) + DU (s)
for any specified final state xf � �n, there exists a piecewise
continuous input u(t) � �m such that the solution of Eq. (2)where X(s), Y(s), and U(s) denote the vector Laplace trans-
satisfies x(t1) � xf. If such an input does not exist, then theforms of x(t), y(t), and u(t), respectively, and where the initial
system [or the pair (A, B)] is said to be uncontrollable.state x(t0) is denoted as x0. However, because

A dual to Definition 1 can also be given as shown next.X (s) = (sI − A)−1BU (s) + (sI − A)−1x0 (4a)

therefore Definition 2. The dynamic system described in Eq. (2) hav-
ing initial condition x(t0) � �n [or the pair (C, A)] is said to be
observable if, for any finite time t1 � t0, the initial state x(t0)Y (s) = [D + C(sI − A)−1B]U (s) + C(sI − A)−1x0 (4b)
can be determined from measurements of the system input,
u(t) � �m, and the system output, y(t) � �r, for t � [t0, t1]. IfIn Eq. (4b), [D � C(sI � A)�1B] is referred to as the transfer

function matrix of the LTI system S, whereas C(sI � A)�1 rep- such a reconstruction of state x(t0) does not exist, then the
system [or the pair (C, A)] is said to be unobservable.resents the initial condition matrix.
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In Eq. (2), one can show (1) that the system is controllable and hence
if and only if

rank [B AB A2B . . . An−1B] = n

and that the system is observable if and only if

eAt = I + At + (At)2

2
+ · · · (7a)

= V
[
I + V −1AVt + V −1A2Vt2

2
+ · · ·

]
V −1 (7b)

= V
[
I + V −1AVt + (V −1AVt)2

2
+ · · ·

]
V −1 (7c)

= V

[
I + Dt + (Dt)2

2
+ · · ·

]
V −1 (7d)

= VeD tV −1 (7e)

rank




C
CA
CA2

...
CAn−1




= n

Let x(0) :� [1 2]T and define
Furthermore, (A, B) is said to be stabilizable if the unstable
modes are controllable, and (C, A) is said to be detectable if
the unstable modes are observable. It therefore follows that
all controllable systems are stabilizable and that all observ-
able systems are detectable. Note, however, that the system

u(t) = [u1(t) u2(t)]
T

=
{

[1 2]T , t ≥ 0

[0 0]T , t < 0
in Eq. (2) can be stabilized using a feedback controller with
input y and output u if and only if (A, B) is stabilizable and so that
(C, A) is detectable.

Example 1. Consider the two input-two output MIMO sys- U (s) =
[

1
s

2
s

]T

tem given by

Then from Eqs. (5) and (7),[
ẋ1

ẋ2

]
=
[
−1 1

0 −2

]
︸ ︷︷ ︸

A

[
x1

x2

]
+
[

1 2
3 4

]
︸ ︷︷ ︸

B

[
u1

u2

]
(6a)

[
y1

y2

]
=
[

1 3
5 2

]
︸ ︷︷ ︸

C

[
x1

x2

]
(6b)

x(t) =
[

e−t e−t − e−2t

0 e−2t

][
1
2

]

+
∫ t

0

[
e−(t−τ ) e−(t−τ ) − e−2(t−τ )

0 e−2(t−τ )

][
1 2
3 4

][
1
2

]
dτ

=
[

10.5 − 13e−t + 3.5e−2t

5.5 − 3.5e−2t

]
, t ≥ 0

Observe that this system is controllable and observable since

andrank[B AB] = 2

and

rank

[
C

CA

]
= 2

y(t) =
[

1 3
5 2

]
x(t)

=
[

27 − 13e−t − 7e−2t

63.5 − 65e−t + 10.5e−2t

]
, t ≥ 0

One also can verify that the system is stable (eig(A) � ��1,
�2�), and that the transfer function matrix of Eq. (6) is given Additional information concerning various representations
as and canonical forms for both continuous- and discrete-time

state-space systems can be found, for example, in Refs. 1
and 2.

DYNAMIC INVERSION OF LTI MIMO SYSTEMS

In the general problem of dynamic inversion for LTI MIMO
continuous-time systems of the form given in Eq. (2), the goal

Y (s) = [D + C(sI − A)−1B]U (s)

=




2(5s + 7)

(s + 1)(s + 2)

2(7s + 10)

(s + 1)(s + 2)

(11s + 31)

(s + 1)(s + 2)

6(3s + 8)

(s + 1)(s + 2)


U (s)

is to obtain, if possible, a second LTI continuous-time dynami-
Note that cal system that, when cascaded with the original system, pro-

duces at its output the input to the original system. Such is-
sues typically arise when investigating filtering and
prediction theory, decoupling of multivariable control sys-
tems, pursuit-evasion games, and classical sensitivity theory
(3).

[
1 1
0 −1

]
︸ ︷︷ ︸

V

[
−1 0

0 −2

]
︸ ︷︷ ︸

D

= AV
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Define now can be considered. Such issues are of particular impor-
tance since any mathematical model of a physical plant only

G(s) := D + C(sI − A)−1B approximates the actual behavior of the plant. Correspond-
ingly, given a stable LTI system with real parameter pertur-to be the r � m rational transfer function matrix of Eq. (2),
bations, another area of interest is the real stability radiusand let Ĝ(s) be a r̂ � m̂ (possibly improper) transfer function
problem, in which it is desired to determine the largest para-matrix. The following definitions will be needed.
metric perturbation that may ocur such that the resultant

Definition 3. System Ĝ(s) is a left inverse (right inverse) of perturbed system still remains stable.
G(s) if Ĝ(s)G(s) � I (G(s)Ĝ(s) � I).

Parametric UncertaintyDefinition 4. System G(s) is left invertible (right invertible)
if, over the field of rational functions in s, rank[G(s)] � When modeling physical systems, it is generally the case that
m (rank[G(s)] � r). an exact knowledge of the physical parameters of the system

is not known, but that only an approximate knowledge is. ForNote that by Definition 3, it is required that m̂ � r and
instance, in a dc motor, the inductance of the electric coilthat r̂ � m. In addition, for the SISO case when m � r � 1,
windings may vary with time or may be measurable only to aleft and right invertibility of system G(s) are equivalent.
certain degree of precision. In this case, there exists an uncer-The following result gives a simple criterion that can be
tainty with respect to the physical parameters of the system,used to determine the right and/or left invertibility of a LTI
called parametric uncertainty. In designing control systemsMIMO continuous-time system in terms of its general matrix
for plants, it is desirable not only that the nominal plantparameters (C, A, B, D). In particular, the results presented
model should be satisfactorily controlled but also that thehere differ from the rank condition of the matrix whose
plant model, when subject to certain parametric uncertain-elements consist of the Markov parameters D, CB, . . .,
ties, should be adequately controlled. If such a requirementCAn�1B (3).
can be met, the controller is said to be robust against a cer-

Theorem 1. As in Ref. 4, consider the system given in Eq. tain type of specified parametric uncertainty.
(2), and its transfer function matrix G(s) � D � C(sI �
A)�1B. The following three conditions are equivalent: Uncertain Linearized Systems

1. G(s) has a left inverse. Although virtually all industrial plants are nonlinear in na-
ture, for controller synthesis purposes, it is common to ap-2. rank[G(s)] � m.
proximate the behavior of such systems by using LTI models.

3.

When doing so, it is assumed that the physical plant can be
described by the nonlinear system

ẋ = f (x, u) (8a)

y = g(x, u) (8b)

where (x, u, y) � �n � �m � �r are the plant states, inputs,
and outputs, respectively, and f � �n and g � �r are analytic
(but not necessarily known) functions. In addition, it is as-
sumed that for some constant input u � �m, there exists an
equilibrium point x � �n to Eq. (8) with y :� g(x, u) such that
f (x, u) � 0.

Let �x, �u, and �y denote, respectively, the perturbations

rank




− A B 0 0 . . . 0 0
−C D 0 0 . . . 0 0

I 0 −A B . . . 0 0
0 0 −C D . . . 0 0
0 0 I 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −A B
0 0 0 0 . . . −C D
0 0 0 0 . . . I 0




︸ ︷︷ ︸
(n + 1) × (n + m) columns

= (n + 1) × (n + m) about x, u, and y. Then the linearized model of the system
about the equilibrium point x, u, and y is given byCorollary 1. Condition 3 of Theorem 1 is equivalent to the

following condition: [
δẋ
δy

]
=
[

∂ f
∂x

∂ f
∂u

∂g
∂x

∂g
∂u

] [
δx
δu

]
+ higher order terms

x=x̄
u=ū

,

which can be described approximately by

[
δẋ
δy

]
=
[

A B
C D

][
δx
δu

]
+
[
�A �B
�C �D

][
δx
δu

]
(9)

rank




B AB . . . An−1B AnB
D CB . . . CAn−2B CAn−1B
0 D . . . CAn−3B CAn−2B
...

... . . .
...

...
0 0 . . . D CB
0 0 . . . 0 D




︸ ︷︷ ︸
(n + 1)m columns

= (n + 1)m

Eq. (9) implies that the linearized model of the system given
by Eq. (8) about x � x, u � u, and y � y, can be described as

ROBUST CONTROL

Using the general structure of state-space realizations, the
problems of robust control and uncertain linearized systems

δẋ = (A + �A)δx + (B + �B)δu (10a)

δy = (C + �C)δx + (D + �D)δu (10b)
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where (C, A, B, D) � �r�n � �n�n � �n�m � �r�m are real matri- ��1, A is stable. It may be verified using Eq. (11) that rR(A,
B, C) � 1.0009 and that rC(A, B, C) � 6.317 � 10�2. Hence, inces representing the nominal linearized model of the system,

and (	C, 	A, 	B, 	D) are real matrices representing the un- this particular example, the complex stability radius is ap-
proximately 16 times smaller than the real stability radius.certainty in the model description. It is to be noted that in

view of the approximation made in simplifying Eq. (8) to Eqs. As well, the smallest real perturbation matrix that destabi-
lizes this system is given by(9)–(10), no a priori structure can necessarily be imposed on

the form of the real perturbation matrices 	A, 	B, 	C, 	D.

Real Stability Radius Problem

Let the complex plane � be partitioned into two disjoint sub-

� =


 9.9980 × 10−4 9.9879 × 10−7 1.0009 × 10−5

1.0009 9.9989 × 10−4 1.0020 × 10−2

1.0030 × 10−4 1.0020 × 10−7 1.0041 × 10−6




sets �g and �b such that � � �g � �b, where �g is a specified
open region of ��; then in this section, the system ẋ � Ax will

THE SERVOMECHANISM PROBLEM
be said to be stable if eig(A) � �g. Let 
�g denote the bound-
ary of �g, and let � be either the real field � or the complex

In the servomechanism problem, it is desired to design a con-
field �.

troller for a system so that closed loop stability is maintained
Given a plant modeled by

and so that asymptotic tracking and rejection occur, respec-
tively, for a given class of reference and disturbance input

ẋ = Ax signals. This section studies controller synthesis methods for
the servomechanism problem when the plant is subject to un-where A � �n�n is real and stable, assume that the plant pa-
certainty. In particular, it is desired to design a controller sorameters are subject to uncertainty; that is
that asymptotic reference tracking and disturbance regula-
tion occur, in spite of the fact that the plant dynamics mayA → A + B�C
be perturbed by arbitrary large amounts, subject only to the
condition that the resultant closed loop perturbed system alsowhere B � �n�m, C � �r�n are real specified matrices, and 	
remains stable. This problem is called the robust servomecha-� �m�r is a matrix of uncertain parameters. Then the complex
nism problem.stability radius and the real stability radius are defined as

Preliminary Definitions and ResultsrC(A, B,C) := inf{σ (�) : � ∈ C
m×r , eig(A + B�C) ⊂/ C g }

The plant to be controlled is assumed to be described by the
and following linear time-invariant model:

rR(A, B,C) := inf{σ (�) : � ∈ R
m×r , eig(A + B�C) ⊂/ C g }

respectively, where � (�) denotes the largest singular value
(22) of (�).

ẋ = Ax + Bu + Eω (12a)

y = Cx + Du + Fω (12b)

ym = Cmx + Dmu + Fmω (12c)

e = yr − y (12d)It is clear that rR(A, B, C) � rC(A, B, C). Let H(s) :� C(sI
� A)�1B; in this case, rC(A, B, C) and rR(A, B, C) can be deter-

where x � �n are the states, u � �m are the inputs that canmined as follows (5):
be manipulated, y � �r are the plant outputs that are to be
regulated, and ym � �rm are the plant outputs that can be
measured. Here � � � corresponds to the disturbances in
the system, which in general cannot necessarily be measured,
and e � �r is the error in the system, which is the difference
between the reference input signal yr, in which it is desired
that the output y should track, and the plant output y.

It is assumed that the disturbances � arise from the fol-

rC(A,B,C) = 1
sup

s∈∂Cg

σ̄ [H(s)]
(11a)

rR(A,B,C) = 1

sup
s∈∂Cg

inf
γ ∈(0,1]

σ2

[
Re[H(s)] −γ Im[H(s)]

1
γ

Im[H(s)] Re[H(s)]

] (11b)

lowing class of systems:

where �2(�) denotes the second largest singular value of (�), η̇1 = A1η1, ω = C1η1; η1 ∈ Rn1 (13a)
and Re(�) and Im(�) denote, respectively, the real and imagi-
nary parts of (�). Here, inf(�) is a unimodal function on (0, 1], and that the reference input signals yr arise from the follow-
so that rR(A, B, C) can be determined effectively. ing class of systems:

Example 2. Given η̇2 = A2η2, ρ = C2η2, yr = Gρ; η2 ∈ Rn2 (13b)

For nontriviality, assume that eig(A 1) � �� � �0 and that
eig(A 2) � �� � �0. It is also assumed with no loss of general-
ity that (C 1, A 1) and (C 2, A 2) are observable, and that

A =


 −1 103 10−3

−1 −1 0
1 1 −100




B � I, and C � I, let �g be the open left half of the complex
plane; then, because eig(A) � ��1 � j31.6, �100�, where j �

rank

[
E
F

]
= rank C1 = dim(ω)
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and Theorem 2. There exists a solution to the robust servomech-
anism problem for Eq. (12) if and only if the following condi-
tions all are satisfied:rank G = rank C2 = dim(ρ)

This family of signals includes most classes of signals that 1. (Cm, A, B) is stabilizable and detectable.
occur in application problems (e.g., constant, polynomial, si-

2. m � r.
nusoidal, polynomial-sinusoidal). The following definitions

3. The transmission zeros of (C, A, B, D) exclude thewill be used in subsequent discussions.
disturbance/tracking poles �i, i � �1, 2, . . ., p�.

4. y � ym (i.e., the outputs y are measurable).Definition 5. Given the systems represented by Eq. (13), let
��1, �2, . . ., �p� be the zeros of the least common multiple of

Remark 2. Conditions 2 and 3 in Theorem 2 are equivalentthe minimal polynomial of A 1 and the minimal polynomial
to the condition thatof A 2 (multiplicities repeated), and call

� := {λ1, λ2, . . ., λp}

the disturbance/tracking poles of Eq. (13).
rank

[
A − λiI B

C D

]
= n + r, i ∈ {1, 2, . . ., p} (15)

The following definitions of a stabilizing compensator andDefinition 6. Consider the system
a servocompensator are required for the ensuing devel-
opment.ẋ = Ax + Bu; u ∈ Rm , y ∈ Rr , x ∈ Rn (14a)

y = Cx + Du (14b)
Definition 8. Given the stabilizable and detectable system
(Cm, A, B, Dm) obtained from Eq. (12), a linear time-invariantThen � � � is said to be a transmission zero (10) of (C, A, B,
stabilizing compensatorD) if

rank
[
A − λI B

C D

]
< n + min(r, m)

ξ̇ = �1ξ + �2ym

u = K1ξ + K2ym

In particular, the transmission zeros are the zeros (multiplici- is defined to be a controller that stabilizes the resultant closed
ties included) of the greatest common divisor of all [n � loop system such that desired transient behavior occurs.
min(r, m)] � [n � min(r, m)] minors of

This compensator is not a unique device, and may be de-
signed by using a number of different techniques.

[
A − λI B

C D

]
Definition 9. Given the disturbance/tracking poles �i, i � �1,
2, . . ., p�, the matrix C � �p�p and the vector � � �p areDefinition 7. Given the system (C, A, B, D) in Eq. (14), as-
defined bysume that one or more of the transmission zeros of (C, A, B,

D) are contained in the closed right half complex plane �� �
�0; then (C, A, B, D) is said to be a nonminimum phase sys-
tem. If (C, A, B, D) is not a nonminimum phase system, then
it is said to be a minimum phase system.

The robust servomechanism problem for Eq. (12) consists
of finding a linear time-invariant controller that has inputs

C :=




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
−δ1 −δ2 −δ3 · · · −δp


 , γ :=




0

0
...

0

1




(16)

ym, yr, and outputs u for the plant so that:

where the coefficients �i are given by the coefficients of the
1. The resultant closed loop system is stable. polynomial �p

i�1 (� � �i); that is,
2. Asymptotic tracking occurs; that is,

lim
t→∞

e(t) = 0, ∀x(0) ∈ Rn , ∀η1(0) ∈ Rn1 , ∀η2(0) ∈ Rn2 λp + δpλp−1 + · · · + δ2λ + δ1 :=
p∏

i=1

(λ − λi)

for all controller initial conditions. The following compensator, called a servocompensator, is of
3. For any arbitrary perturbations in the plant model primary importance in the design of controllers to solve the

given by Eq. (12) (including, for example, changes in robust servomechanism problem (6).
model order, plant parameters, or plant dynamics) that
do not cause the resultant perturbed closed loop system Definition 10. Consider the class of disturbance/reference
to become unstable, condition 2 holds. signals given by Eq. (13) and consider the system given by

Eq. (12); then a servocompensator for Eq. (12) is a controller
Main Results with input e � �r and output � � �rp given by
The following results are obtained concerning the existence of

η̇ = C ∗η + B∗e (17a)a solution to the robust servomechanism problem (6,7).
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where and detectable system:

C ∗ := block diag(C , C , . . ., C︸ ︷︷ ︸
r

) (17b)

B∗ := block diag(γ , γ , . . ., γ︸ ︷︷ ︸
r

) (17c)

and where C and � are given by Eq. (16).

[
ẋ
η̇

]
=
[

A 0
−B∗C C ∗

][
x
η

]
+
[

B
−B∗D

]
u

ỹm =


Cm 0

0 I
0 0



[

x
η

]
+


Dm

0
I


u

The servocompensator is unique within the class of coordi- From Lemma 1, the centralized fixed modes (if any) of
nate transformations and nonsingular input transformations.
In addition, given the servocompensator defined in Eq. (17),
let D � �r�rp be defined by

{[
Cm 0
0 I

]
,

[
A 0

−B∗C C ∗

]
,

[
B

−B∗D

]}
D := block diag(α, α, . . ., α︸ ︷︷ ︸

r

)

are equal to the centralized fixed modes of (Cm, A, B, Dm). It
is to be noted, however, that the controller given by Eq. (18)

where � � �1�p is given by always has order � rp.
Some properties of the robust servomechanism controller

(6) represented by Eq. (18) follow:α := [1 0 0 · · · 0]

The servocompensator has the following properties.
1. In the robust servomechanism problem, it is only re-

quired to know the disturbance/tracking poles ��1, �2,
Lemma 1. As in Ref. 9, given the plant modeled by Eq. (12), . . ., �p�; that is, it is not necessary to know E or F of
assume that the existence conditions of Theorem 2 all hold; Eq. (12) nor A 1, A 2, C 1, C 2, or G of Eq. (13).
then: 2. A controller exists generically (11) for almost all plants

described by Eq. (12), provided that: (a) m � r, and (b)
the outputs y can be measured. If either (a) or (b) fails1. The system
to hold, there is no solution to the robust servomecha-
nism problem.{[

Cm 0
0 I

]
,

[
A 0

−B∗C C ∗

]
,

[
B

−B∗D

]}

is stabilizable and detectable and has centralized fixed Example 3. Consider the unstable two input-two output
modes (8) (i.e., those modes of the system that are not headbox model taken from Ref. 9, where
both simultaneously controllable and observable) equal
to the centralized fixed modes of (Cm, A, B, Dm).

2. The transmission zeros of

{
[0 D],

[
A 0

−B∗C C ∗

]
,

[
B

−B∗D

]}

are equal to the transmission zeros of (C, A, B, D).

Robust Servomechanism Controller

Consider the system given by Eq. (12) and assume that the

[
ẋ1

ẋ2

]
=
[

0.395 0.01145
−0.011 0

]
︸ ︷︷ ︸

A

[
x1

x2

]

+
[

0.03362 1.038
0.000966 0

]
︸ ︷︷ ︸

B

u + Eω

[
y1

y2

]
=
[

1 0
0 1

]
︸ ︷︷ ︸

C

[
x1

x2

]
+ Fω

existence conditions of Theorem 2 hold; then the following
LTI controller solves the robust servomechanism problem for

with ym � y, and assume that it is desired to solve the robustEq. (12) (7):
servomechanism problem for constant reference and constant
disturbance input signals. In this case, the disturbance/u = ξ + Kη (18)
tracking poles are equal to �0�, and one can verify that the
existence conditions given in Theorem 2 hold. In addition,

where � � �rp is the output of the servocompensator given by since the servocompensator (17) is given as
Eq. (17) and � is the output of a stabilizing compensator S

with inputs ym, yr, �, and u. S and K are constructed to stabi-
η̇ = yr − ylize and give desired behavior to the following stabilizable
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it follows that the augmented system is ler design methods that endeavor to use as little a priori plant
information as possible (12–21). The motivation for this inter-
est stems from the fact that it is generally difficult and often
impossible to obtain an accurate model representation of an
actual industrial plant.

Currently, one method to deal effectively with the specific
problem of parametric plant uncertainty is adaptive control
(23–25). However, while the controllers employed in such
schemes typically are nonlinear and time-varying, and consist
of a compensator augmented with a tuning mechanism that

[
ẋ
η̇

]
=
[

A 0
−C 0

]
︸ ︷︷ ︸

A

[
x
η

]
+
[

B
0

]
︸︷︷︸

B

u +
[

E
−F

]
ω +

[
0
I

]
yr

[
y
η

]
=
[

C 0
0 I

]
︸ ︷︷ ︸

C

[
x
η

]
+
[

F
0

]
ω

adjusts the compensator gains, important a priori plant infor-
Observe now that (A, B) is controllable and that C � I; hence, mation still is required. For example, in conventional model
pole placement can be used to design the feedback control law reference adaptive control of a SISO system, the four classical

assumptions typically made are that (23,24)

1. the plant is minimum phase;u =
[

11.387 −7246.4 0 12422
−3.6395 234.69 1.9268 −402.35

][
y
η

]
2. an upper bound on the plant order exists and is known;
3. the relative degree is known; andwhich yields closed loop eigenvalues of ��1, �2, �3, �4�.

Moreover, for the case when 4. the sign of the high-frequency gain is known.

Although recent developments have been able to remove con-
dition 4 (26,27) and to weaken conditions 2 (28) and 3 (29,30),
specific plant information [e.g., any plant zeros that lie in the
open right half complex plane must be known to lie in a finite
set (31)] still is needed.

This section examines one particular robust multivariable
switching approach that has been successfully implemented

E =
[

1
1

]

F =
[

2
5

]

x(0) = 0

ω(t) = 1
(16–18) using very little a priori system information. The con-
troller proposed here is a self-tuning switching controller,and
which has the property that, after a finite time, the controller
stops switching and simplifies to a LTI controller.

Preliminary Definitions and Results
yr(t) =

[
1

−1

]

Plant Model. Let each elementone can see that a desirable transient response as well as
tracking and regulation also occur as shown in Fig. 2. Pi := (Ai, Bi,Ci, Di, Ei, Fi), i ∈ {1, 2, . . ., s}, s ∈ N

belonging to the finite set of possible plants to be controlled
ADAPTIVE SWITCHING CONTROL

During the past several years, there has been a considerable
P :=

s⋃
i=1

Pi

amount of interest and effort made toward developing control-
be of the finite dimensional form

ẋ = Aix + Biu + Eiω

y = Cix + Diu + Fiω

e := yr − y

where x � �ni is the state, u � �m is the control input that
can be manipulated, y � �r is the plant output that is to be
regulated, � � �q is the disturbance, and e � �r is the differ-
ence between the specified reference input yr and the plant
output y. In the discussion that follows, we do not assume
that ni, Ai, Bi, Ci, Di, Ei, or Fi are known necessarily.

Class of Candidate Controllers. Let each candidate feedback
controller be of the finite dimensional form given by

5

4

3

2

1

0

–1

–2

P
la

n
t 

o
u

tp
u

ts

0 1 2 3 4 5 6 7 8

Time (s)

y1 (solid)

y2 (dash-dot)

Figure 2. A sample output response of the final compensated head-
box given in Example 3.

Ki :

{
η̇ = Giη + Hiy + Jiyr

u = Kiη + Liy + Miyr
, i ∈ {1,2, . . ., s}
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where s � �, � � �gi, Gi � �gi�gi, Hi � �gi�r, Ji � �gi�r, Ki �
�m�gi, Li � �m�r, and Mi � �m�r.

Remark 3. Given D � �r�m, then for almost all (11) L �
�m�r, (I � DL) � �r�r is invertible. Hence, given a fixed matrix
D, then (I � DL) is invertible for generic L.

The following definition also will be needed.

Definition 11. A function f : � � �� is said to be a bounding
function ( f � BF) if it is strictly increasing and if, for all con-
stants (c0, c1, c2) � �� � �� � ��,

Plant
P ∈ P

ω

u

y

x(0)

Switch

Controller
K1

yr

Controller
Ks

Figure 3. A schematic block diagram of Controller 1.

The switching mechanism described by Controller 1 is

f (i)

c0 + c1(i − 1) + c2

i−1∑
j=1

f ( j)

→ ∞

schematically depicted in Fig. 3. In Controller 1, norm bounds
on �(t) and ef(t) are used in an attempt to detect closed loopas i � �.
instability, which might be caused if Controller K i is applied
to plant Pj, i � j. If this upper bound is met at any time dur-

Proposition 1. There exists a bounding function (e.g., f (i) � ing the tuning process, then a controller switch occurs, and �
i exp(i2)). is reset to zero immediately following this switch. This reset

action is performed because all candidate feedback controllers
Main Results need not necessarily be of the same order and because past

experimental investigations (16) have indicated that reducedFor the situation when yr(t) and �(t) are bounded piecewise
tuning transient responses generally can be attained via suchcontinuous signals, label Controller 1 as
a scheme. However, for the case when all candidate control-
lers have the same order, �(t�

k ) need not necessarily be reset
to zero after each switch; one can choose to continue to form
�(t) using the set of piecewise LTI systems given by (Gi, Hi,
Ji) with �(t�

k ) � �(tk).
The following result can now be obtained (18).

ėf = −λef + λe, λ ∈ R+

η̇(t) = G(t)η(t) + H(t)y(t) + J(t)yr(t)

η(t+
k ) ≡ 0

u(t) = K(t)η(t) + L(t)y(t) + M(t)yr(t)

Theorem 3. Consider a plant P � P with Controller 1 ap-where k � �1, 2, 3, . . .�, i :� [(k � 1) mod s] � 1,
plied at time t � 0; then for every f � BF and � � ��, for
every bounded piecewise continuous reference and distur-
bance signal, and for every initial condition z̃(0) :� [x(0)T

(G(t),H(t), J(t),K(t), L(t), M(t))

:= (Gi, Hi, Ji, Ki, Li, Mi), t ∈ (tk, tk+1]
�(0)T ef(0)T]T for which Assumption 1 holds, the closed loop
system has the properties that:

t1 :� 0, and where, for each k � 2 such that tk�1 � �, the
switching time tk is defined by 1. there exist a finite time tss � 0 and constant matrices

(Gss, Hss, Jss, Kss, Lss, Mss) such that (G(t), H(t), J(t), K(t),
L(t), M(t)) � (Gss, Hss, Jss, Kss, Lss, Mss) for all t � tss;

2. the controller states � � L �, the plant states x � L �,
and the filtered error signal states ef � L �; and

3. if the reference and disturbance inputs are constant sig-

tk :=




min t such that
i) t > tk−1, and if this minimum exists
ii) ‖[η(t)T ef(t)

T ]T‖ = f (k − 1)

∞ otherwise
nals, then for almost all controller parameters (Gss, Hss,

with f � BF. In addition, let Assumption 1 be the following: Kss, Lss), asymptotic error regulation occurs.

In Theorem 3, the class of reference and disturbance sig-1. ��(0)� � f (1);
nals potentially allowable for the servomechanism controller2. �ef(0)� � f (1);
design (6) of K i and the implementation of Controller 1 actu-

3. for each plant Pi and for each corresponding applied ally is larger than the family of constant signals provided
Controller K i, i � �1, 2, . . ., s�, the closed loop system that yr � L � and � � L �. For instance, the class of signals
is stable and controller parameters (Gi, Hi, Ji, Ki, Li, given by Eq. (13) may be allowed. Moreover, Theorem 3
Mi) provide acceptable reference tracking/disturbance clearly will also hold even if the finite number of candidate
rejection when the plant Pi is subject to bounded controllers is greater than or equal to the number of possible
piecewise constant reference and disturbance inputs; plants.

4. for each plant Pi, (Ci, Ai) is detectable; and In addition, in Theorem 3, the requirement that yr(t) and
�(t) be bounded piecewise continuous functions and the re-5. for each i, j � �1, 2, . . ., s�, (I � DiLj) is invertible (see

Remark 3). striction that switching cannot occur infinitely fast guaran-
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5. L. Qui et al., A formula for computation of the real stability ra-tees the existence and uniqueness of a solution to the set of
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ẋf = Af xf + Bf e
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by
9. E. J. Davison and B. M. Scherzinger, Perfect control of the robust
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689–702, 1987.
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x

η

ef




︸ ︷︷ ︸
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ω

µ1

µ2
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plants, Proc. 1995 Amer. Control Conf., 1995, pp. 1015–1020.
19. A. S. Morse, Supervisory control of families of linear set-pointMoreover, if �[�T

1 �T
2]T� � 0, property 3 of Theorem 3 will once

controllers—Part 1: Exact matching, IEEE Trans. Autom. Con-again be recovered.
trol, 41 (10): 1413–1431, 1996.Finally, it should be noted that in contrast with conven-

20. D. E. Miller, M. Chang, and E. J. Davison, An approach to switch-tional parameter-based methods utilized in adaptive control,
ing control: Theory and application, in A. S. Morse (ed.), Controlthe nonparametric approach of Controller 1 possesses the de-
Using Logic-Based Switching, London: Springer-Verlag, 1997,sirable property of being very robust to large plant uncertain-
pp. 234–247.ties. Unfortunately, however, one particular disadvantage of

21. K. S. Narendra and J. Balakrishnan, Adaptive control using mul-this scheme is the potential closed loop susceptibility to sub-
tiple models, IEEE Trans. Autom. Control, 42 (2): 171–187, 1997.stantial output transient responses.

22. G. H. Golub and C. F. Van Loan, Matrix Computations, Balti-
more: Johns Hopkins University Press, 1989.

BIBLIOGRAPHY 23. A. S. Morse, Global stability of parameter-adaptive control sys-
tems, IEEE Trans. Autom. Control, 25 (3): 433–439, 1980.

1. B. C. Kuo, Automatic Control Systems, 7th ed., Englewood Cliffs, 24. K. S. Narendra, Y. H. Lin, and L. S. Valavani, Stable adaptive
NJ: Prentice Hall, 1995. controller design, part II: Proof of stability, IEEE Trans. Autom.

Control, 25 (3): 440–448, 1980.2. C. L. Phillips and R. D. Harbor, Feedback Control Systems, 3rd
ed., Englewood Cliffs, NJ: Prentice Hall, 1996. 25. K. J. Åström, Adaptive Control, 2nd ed., Reading, MA: Addison-
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