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GYRATORS

Definition

A gyrator is a nonreciprocal electrical network. It is capable
of transforming signals or energy represented in terms of one
electrical quantity, such as voltage or magnetic field, to an-
other electrical quantity that may be of similar type or of a
complementary type, such as current or electric field. Such
networks are quite useful in electronic systems, since one of-
ten wishes to design systems with a limited set of component
types or with restrictions regarding certain physical param-
eters.

Historical Usage

Tellegen first proposed the idea of a gyrator in his original
work in 1948 (1). In this paper he explained that resistors,
capacitors, inductors, and ideal transformers were the four
basic circuit building blocks. However, these elements are all
reciprocal and could, therefore, only be expected to go into the
creation of reciprocal networks. Reciprocal networks are those
networks whose impedance (or admittance) matrices are sym-
metrical. In order to realize nonreciprocal networks, one
would need a nonreciprocal building block. Tellegen proposed
such a network, calling it a gyrator. This name was given
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because the equations produced for an electrical network with Equation (1) defines the port current and port voltage vec-
tors, I and V, respectively, in addition to the y-parameter ma-a gyrator were identical to those of a mechanical gyrostatic

network. As time went on other researchers (2–5) picked up trix, Y. By inverting this vector equation, one relates the port
voltages to the port currents with z-parameters. Specifically,on the idea and began to look for circuit realizations for this

abstract functional block. In addition, over the years other
systems, such as microwave circulators, have been recognized
as being analogous to gyrators, which helps in the under-
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standing of these systems.

where Z is the z-parameter matrix for the two-port. Using
models of the type shown in Eqs. (1) and (2), two-ports canTHE BASICS OF TWO-PORT GYRATORS
be compared by their two-port parameters—for example, y-
parameters. Two-ports characterized by symmetric y-parame-Introduction to Two-Ports and Passivity
ter matrices (equivalently z-parameter matrices) are called

A gyrator is a special type of electrical two-port network. Elec- reciprocal. Networks possessing this reciprocity are not neces-
trical two-port networks are any circuits where one can iden- sarily lossless, but can always be realized with reciprocal
tify two ports, or simply, two pairs of nodes to which one physical elements. Note that one-ports (two terminal ele-
might consider the connection of two pairs of wires. One of ments) are always reciprocal. The concept of a two-port can
the nodes at each port may be in common—for example, be extended in an obvious way to N-ports by considering the
ground may be common to both ports. Additionally, a bipolar voltage-current relationship measured using N pairs of termi-
transistor may be considered a two-port, where port 1 is the nals or, equivalently, N-ports.
base-emitter node pair, and port 2 is the collector-emitter
node pair. Mathematical Two-Port Definition of a Gyrator

Except for trivial cases, every two-port possesses a mathe-
In the context of this discussion, a gyrator is simply a specialmatical description relating the port voltages, V1 and V2, and
case of a linear two-port. While there are many possible two-associated port currents, I1 and I2. Figure 1 shows the stan-
port descriptions, the most common way of writing the basicdard reference labeling for the voltages and currents of a two-
equations relating the port parameters in a gyrator is as fol-port. Notice that the port currents are defined as flowing into
lows:the � voltage reference for each port. These sign conventions

make the definition of power regarding a two-port more pre- I2 = gV1; I1 = −gV2 (3)
cise. Specifically, the power as a function of time, P(t), deliv-
ered to a two-port is given by P(t) � V1(t)I1(t) � V2(t)I2(t), Using these equations it is simple to write the y-parameter
which is analogous to the definition in a one-port—that is, a two-port description for a gyrator as,
two terminal element. A two-port network is lossless when
the average power, P(t), delivered to the network is zero. A
network is called passive if the average power delivered to
the network is positive. Active networks are those networks
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where P(t) is negative on average. In general, the power deliv-
This suggests that a gyrator can be implemented with voltageered to a network can be positive or negative instantaneously,
controlled current sources, having gains of g and g, respec-regardless of its passivity. For example, a capacitor in a reso-
tively. By inverting the relations in Eq. (3), one obtains a gy-nant circuit alternately sinks and sources power instantane-
rator formulation based upon current controlled voltageously, despite its lossless average power consumption. Power
sources. Specifically,can be defined just as easily in the frequency domain, again

in a way analogous to one-ports. The Fourier transform of
power, P(�), as a function of frequency is given by, P(�) �
V1(�)I1(�)* � V2(�)I2(�)*, where the * indicates complex conju-
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gation.
The general description for a two-port is given by a relation where the z-parameter matrix, Z, is just the inverse of the y-

between its port voltages and currents. One such description parameter matrix, Y. Since it is most convenient to realize
is the so called y-parameter model given by, practical voltage controlled current source networks, as op-

posed to current controlled voltage source networks, the for-
mulation in Eq. (4) is generally preferred. For theoretical pur-
poses, of course, both formulations are useful. Using Eq. (4)
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it is simple to show that a gyrator is a lossless electrical net-
work. Specifically,

P = VVV TIII = ∣∣V1 V2
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The fact that gyrators are, in theory, lossless makes them at-
tractive in filter synthesis, and this will become clear later.Figure 1. Basic two-port model.
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Figure 2. Electrical circuit symbol for a gyrator.

Figure 4. Bandpass filter.

Properties of Gyrators

There are several properties which gyrators possess that inductor, capacitor) prototype, and replacing the inductors
make these circuits interesting for use in electronics. A first with capacitor/gyrator combinations. Consider the following
property is that these two-ports are not reciprocal networks, example of a very simple second-order bandpass filter shown
since their y-parameter matrices are not symmetric. In fact, in Fig. 4. After replacing the inductor with a gyrator/capaci-
these matrices are skew symmetric. It is well known to circuit tor combination, the filter is realized solely using RC (resis-
theorists that nonreciprocal networks cannot be realized with tor, capacitor) passive elements, as shown in Fig. 5. Some
only passive components—that is resistors, capacitors, and original related work appears in Refs. 6 and 7. Furthermore,
inductors. This means that gyrators are strictly active net- the filter can be tuned electronically if the gyration constant
works that must, therefore, be realized with active compo- can be varied electronically. An electronically tunable filter
nents, such as transistors or operational amplifiers. Two-port using gyrators will be shown later.
gyrators have been given their own circuit symbol which is A byproduct of the property under discussion is that series
shown in Fig. 2. The gyration constant, g is built into the and parallel circuits may be interchanged with the help of a
symbol. gyrator. Suppose one port, say port 2, of a gyrator is loaded

Perhaps the most important property of a gyrator is its with a parallel combination of elements. The admittance of
ability to transform admittances into impedances. Specifi- this combination is the sum of the admittances of each of the
cally, when an admittance is connected to one port of a gyra- elements. At the other port, port 1, the input impedance will
tor, the impedance looking into the other port is exactly a be a scaled version of this admittance; hence, a sum of imped-
scaled version of that admittance. The derivation can be ac- ances. Since the composite input impedance seen at port 1 is
complished with the help of Fig. 3, where Zload is the imped- given by a sum of impedances, it must be equivalent to a se-
ance attached to port 2, Yload is its reciprocal—that is, the ad- ries combination of elements. Therefore, the gyrator converts
mittance attached to port 2—and Zinput is the impedance seen a parallel network into a series network. Using similar logic,
looking into port 1. We have, it becomes clear that a series network connected to port 2 will

be reflected as a parallel network looking into port 1. These
results are summarized next.Zload = V2

−I2
; Zinput = V1

I1
= I2/g

−gV2
= 1

g2

1
Zload
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The gyration constant, g, determines the scale factor, but the
nature of the input impedance is determined by the admit-
tance attached to port 2. Therefore, if a capacitor is attached
to port 2, then we have,
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g2
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(8)
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This simple relation explains the vast majority of the gyra-
tor’s popularity in electronic design. It shows that a capacitor CIRCUIT REALIZATIONS FOR GYRATORS
can be used to replace an inductor in a circuit with the help
of a gyrator. Since inductors are rarely desirable in electronic The 2 Gm Cell Realization
circuits operating below about 1 GHz, this idea is quite ap-

The realization of gyrators in electronic form is quite simple;pealing. Capacitors and gyrators are conveniently realized
however, as usual, different circuit realizations are preferablewithin integrated circuits.
to others, depending on the application. To begin, consider theFilter synthesis based on the inductor simulation already
simplest generic realization comprised of a pair of transcon-described is usually done by starting with an RLC (resistor,
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Figure 5. Bandpass filter with inductor replaced by gyrator/ca-
pacitor.Figure 3. Reflecting load impedance with a gyrator.
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Figure 6. Realization of gyrator using transconductance amplifiers. Figure 8. Floating gyrator realization.

ductance amplifiers, as shown in Fig. 6. Each transconduc-
average voltage at each port. As one might expect, this addi-tance amplifier is assumed to have infinite input and output
tional circuitry is an unwelcome addition to the design. As aimpedance, with an output current equal to the transconduc-
result, this idea is rarely found in practical designs.tance, Gm � g, times the input voltage applied to the � and

There is an alternative for the simulation of a floating in-
 terminals. The circuit shown in Fig. 6 satisfies the basic

ductor using gyrators. A pair of gyrators is used with atwo-port relations for a gyrator, given by Eq. (3).
grounded impedance, Zload, as shown in Fig. 8. The equationsThe circuit of Fig. 6 does not implement the most general
describing this system are given by,form of a gyrator, since both ports of the gyrator realization

in the figure have ground in common. Therefore, only ground
referenced impedances may be transformed as described else-
where in this article. This limitation stems from the fact that
the transconductors in Fig. 6 have single-ended outputs. If
differential input/differential output transconductors are
used then a general floating gyrator realization is created—
that is, a gyrator whose ports need not be referenced in any
way to ground.

Unfortunately, the realization of fully differential gyrators
is not easy. In general, this realization requires more circuitry
and the management of common mode signals. Figure 7
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shows how a floating gyrator can be realized using single-
ended transconductors; however, this circuit suffers from Clearly, if a grounded capacitor is used as the grounded load
common mode problems. An analysis of this structure yields in Fig. 8, then a floating simulated inductor is realized. The
the following results: obvious benefit of this realization is that it requires only sin-

gle-ended transconductance amplifiers, configured as in Fig.
6, and a grounded internal load to obtain a floating input
port. Observe that no common mode problems exist with this
realization since common mode signals at the input port

I2+ = −gV1+; I2− − −gV1−; I1+ = gV2+; I1− − gV2−
⇒ I2 = I2+ = −I2− = −g(V1+ − V1−) = −gV1

I1 = I1+ = −I1− = g(V2+ − V2−) = gV2

(10)

cause cancelling currents at the grounded port. Even in prac-
tice, with unmatched gyrators, there is a negative feedbackThe crucial assumption embodied in Eq. (10) is that � and 

currents are equal and opposite one another. This can only effect regarding common mode errors which is highly desir-
able. The network of Fig. 8 is the preferred realization ofhappen if the � and  input voltages at the ports are exactly

equal and opposite. Since this special case cannot be relied floating inductors using capacitors and gyrators. Reference 8
represents some original work in this area.upon in practice, additional circuitry must be added to deal

with any common mode current component. To do this com-
pensation, more transconductors can be added to process the Realization With Operational Amplifiers

Gyrators may be realized with operational amplifiers; how-
ever, modifications must be made to account for the fact that
these are voltage controlled voltage sources. A voltage con-
trolled current source (VCCS) may be created using an op
amp, as is well known, using the circuit of Fig. 9. A gyrator
can then be realized with a second VCCS preceded by an in-
verter, recalling that the gains in different directions have
opposite signs. A more clever variation of this idea is shown
in Fig. 10, where only two op amps are required to implement
the entire gyrator. Of course, this gyrator is ground refer-
enced as, for example, is the one in Fig. 6. Floating gyrator
structures can be implemented using the ideas stated, and
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similarly, a floating inductor may be synthesized via a pair of
ground-referenced gyrators implemented with op amps and aFigure 7. Floating gyrator implementation.
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Figure 11. Transistor realization of a gyrator.
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Figure 9. VCCS realization using an op amp. cally, they suffer from finite input and output impedance, and
these impedances vary as a function of the transconductance.
As a result, the tuning range of OTA tuned filters can be lim-

grounded capacitor. References 6 and 7 give more discussion ited. Furthermore, at higher frequencies the complexity of
of the topics in the last two sections. OTAs introduces unwanted phase shift which degrades the

behavior of the gyrator, as well as compromising the usable
Other Realizations tuning range. Finally, these circuits become quite nonlinear

for inputs above a few tens of millivolts, which limits the dy-Gyrators may be realized with any active circuitry that can
namic range of the resulting filters.implement either a VCCS or a CCVS (current controlled volt-

age source). For example, a simple transistor level realization
for a gyrator appears in Fig. 11. Q1–Q3 create a first trans- FILTER REALIZATION USING GYRATORS
conductance amplifier, and Q4 implements an inverting
transconductance amplifier. The signal levels must be re- This section considers the general problem of filter synthesis
stricted with such an implementation due to the nonlinearity based on gyrators. Basically, synthesis with gyrators involves
of the transistor junctions. either the substitution of inductors, in the practical case, or

Alternatively, the transconductance amplifiers comprising the partition of state equations.
the gyrator may be implemented using operational transcon-
ductance amplifiers (OTAs). OTAs are essentially bipolar dif- Replacement of Inductors in Ladder Networks
ferential pairs loaded with current sources in such a way as

The replacement of inductors in filters has already been im-to create a nearly ideal transconductance amplifier. An exam-
plied. In this section, the idea is generalized. Consider theple of an integrated version of an OTA is the LM3080 inte-
case where a prototype passive RLC filter has been specified.grated circuit manufactured by National Semiconductor Corp.
This is usually done, starting from a filter specification, usingof Santa Clara, CA. An important feature of OTAs is that
filter design tables or software to produce one of a variety oftheir transconductance can be tuned over a wide range by
passive filter structures. Special cases will be considered invarying a control current. As a result, gyrators made using
the discussion that follows. All other cases are obvious varia-OTAs are electronically tunable. This is quite desirable in ap-
tions.plications where one wishes to electronically tune a filter. An

The first case considered is that of a doubly terminatedexample of this capability is given later.
highpass RLC ladder network, shown schematically in Fig.Of course, there are limitations imposed by the use of
12. It is desirable to replace the grounded inductors withOTAs since these circuits are not ideal in practice. Specifi-
gyrator/capacitor combinations. Given the prototype design
values for the inductors, Lk, for k � 1 to N, one simply re-
places each grounded inductor with one gyrator terminated
with a capacitance, Ck, given by the formula,

Ck = g2
kLk (12)

where gk represents the gyration constant for the kth gyrator.
In practice, all gyration constants might be chosen to be equal
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Figure 10. Gyrator realization using op amps. Figure 12. Doubly terminated passive ladder highpass filter.
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Figure 15. Replacement of series LC with two gyrators and two ca-
pacitors.
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Figure 13. RLC notch filter. practical value since the pair of gyrators now allows two pa-
rameters to be tuned in this active filter realization. Specifi-
cally, the filter design equations are given as follows:

for reasons of simplicity in the circuit design, and possibly for
the purpose of optimizing noise and distortion performance.
The resulting gyrator-based implementation is now an active
filter containing 2N capacitors and N gyrators.

The doubly terminated lowpass filter structure obtained by
swapping the positions of the inductors and the capacitors in
the highpass filter of Fig. 12 is the dual filter network to that
previously shown. Again, each of the inductors can be re-
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placed by a gyrator loaded by a capacitor, whose value is com-
puted using Eq. (12). However, this time the gyrator struc- Using this result, it is easy to see that both the notch fre-
tures will have to be the floating implementation described quency, �0, and the sharpness of the notch, proportional to
later. The complexity, in principle, of the final realization will Q, can be controlled independently using only the gyration
equal that of the highpass example; however, each of the gy- constants, g1 and g2. Using an OTA implementation of the
rators will require twice as much circuitry for its realization, gyrators as discussed elsewhere, this tuning is relatively
therefore, the final circuit implementation will require consid- simple.
erably more circuitry as N gets larger.

A more complex filter variation is that of a bandpass RLC Synthesis Based on Gyrators
filter. A doubly terminated bandpass filter can be created

Clearly, the above inductor replacement strategy could be ap-starting from the highpass prototype of Fig. 12 by replacing
plied in reverse to replace capacitors with inductors; however,each grounded inductor with a grounded parallel combination
this is not a good option in practical cases. This is becauseof a capacitor and inductor, and each series capacitor with a
capacitors are easier to realize at frequencies below 1 GHz,series combination of a capacitor and an inductor. The re-
and capacitors are of generally higher quality than inductorssulting filter is of order 4N, instead of 2N, as it must be to
in this range of frequencies. Although inductors may be ofrealize a bandpass equivalent. Again, gyrators may be used
greater interest at very high frequencies, the use of gyratorsto replace each inductor, using methods like Eq. (12). Half of
at very high frequencies is limited by the nonideal behaviorthe inductors may be replaced using simple ground referenced
of the active circuitry used to realize them. It is of interest togyrators, while the rest must be realized using the floating
note here that, as with any active circuit, there is excessversion.
phase shift introduced by the transconductors at high fre-An interesting final variation of this idea is demonstrated
quencies, making the gyrators take on complex gyration con-using the notch (bandstop) filter of Fig. 13. Here, the
stants at high frequencies, as suggested later in the article.grounded inductor can be replaced by a gyrator and a
Furthermore, the finite output impedance of the transconduc-grounded capacitor as outlined above. An alternative ap-
tors limits their available dc gain. The net result of these ef-proach is to replace the grounded series LC (inductor, capaci-
fects is to cause simulated inductors to exhibit a reduced Q attor) combination using a gyrator loaded by a grounded paral-
both the low and high end of the frequency spectrum. In somelel LC combination as shown in Fig. 14. Then replace the
situations this may introduce instability; however, this can begrounded inductor with another gyrator and a grounded ca-
compensated for by careful design.pacitor. This is shown in Fig. 15. While this idea may seem

Another option exists for the generic design of active filtersto be wasteful in terms of component count, it shows how to
using gyrators. This option can be exercised by casting theexploit the property described elsewhere in this article re-
equations for a given filter in the Gm–C format. This is donegarding the conversion of series impedances combinations to
by writing the state equations for the desired filter in theparallel impedance combinations. In addition, this circuit has
standard form,

d
dt

xxx = Axxx + bbbu; y = cccTxxx + du; H(s) = y
u

= cccT(sI − A)−1bbb + d

where xxx = (x1, x2, . . ., xN )T (14)

where the input, u, and the output, y, are assumed scalars,
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x is the N � 1 state vector, A is the N by N state matrix, b
and cT are N dimensional vectors, and d is a scalar. Now as-Figure 14. Gyrator based parallel to series conversion.
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sume that the input, u, is a voltage, and let each of the state
variables, xk, be equated to the voltage, vk, on some grounded
capacitor, Ck. The derivative of this voltage, times the capaci-
tance value, is equal to the current in the respective capaci-
tor. Using this idea the state equations may be converted into

++

+
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–
–

Gm01u
g

C
C

R y

v1 v2

current equations of the form,
Figure 17. General synthesis realization for a bandpass filter.
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Let us now assume that the input, u, is a voltage denoted by

C
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(15)
vin. By equating the state variables, x1 and x2, to respective
voltages, v1 and v2, and scaling each equation by the samewhere the dot above a variable denotes time differentiation.
capacitance value, C, for convenience, one obtains,The realization of a filter based on these equations produces

a filter composed of grounded capacitors, with transconduc-
tance amplifiers bridging between the capacitor nodes and the
input. The class of Gm–C filters, sometimes referred to as
OTA–C filters, is based exclusively on this formulation.

A gyrator-based synthesis is possible by partitioning the
Gm matrix into symmetric and skew symmetric matrices. The
idea is best described by an example. Suppose a second order
version of the gm–C formulation is given. The Gm matrix can
always be decomposed as follows:

∣∣∣∣∣
Cv̇1

Cv̇2

∣∣∣∣∣ =
∣∣∣∣∣
−Cω0/Q −Cω0

Cω0 0

∣∣∣∣∣
∣∣∣∣∣
v1

v2

∣∣∣∣∣ +
∣∣∣∣∣
Cω0

0

∣∣∣∣∣ vin

=
∣∣∣∣∣
−Cω0/Q 0

0 0

∣∣∣∣∣
∣∣∣∣∣
v1

v2

∣∣∣∣∣ +
∣∣∣∣∣

0 −Cω0

Cω0 0

∣∣∣∣∣
∣∣∣∣∣
v1

v2

∣∣∣∣∣ +
∣∣∣∣∣
Cω0

0

∣∣∣∣∣ vin

= Gm1vvv + Gm2vvv + gggm0vin

where vvv =
∣∣∣∣∣
v1

v2

∣∣∣∣∣

(18)

Recognizing that C�0 has units of conductance, one may eas-
ily realize this bandpass filter with only a resistor, imple-
menting Gm1, a gyrator, implementing Gm2, and a transconduc-

Gm =
∣∣∣∣∣
gm11 gm12

gm21 gm22

∣∣∣∣∣ = Gm1 + Gm2

=
∣∣∣∣∣

gm11 gm12 + g
gm21 − g gm22

∣∣∣∣∣ +
∣∣∣∣∣
0 −g
g 0

∣∣∣∣∣
(16)

tance amplifier realizing the nonzero term in gm0. This
realization is shown in Fig. 17, where gm01 � C�0 and R �where the off-diagonal elements of Gm1 are equal, making this
Q/C�0. Observe that this realization is essentially the samea symmetric matrix. Clearly, Gm2 is a skew symmetric matrix.
as that obtained by replacing the grounded inductor in theWith this partitioning of the transconductance matrix, it is
bandpass filter of Fig. 4 with a gyrator/capacitor combination.possible to realize the system in Eq. (16) using one reciprocal

The generalization of this synthesis technique to arbitrarytwo-port, characterized by Gm1, and a second two-port, charac-
order systems is straightforward, although cumbersome. Interized by Gm2, that is a gyrator. Figure 16 shows the realiza-
this case, the Gm matrix is again partitioned into symmetriction associated with this decomposition assuming a single in-
and skew symmetric matrices; however, each related off-diag-put term in Eq. (15) and a special case for the output—that
onal pair of elements in the skew symmetric Gm2 matrix mustis, gm02 � 0 and y � x1 � v1. The reciprocal two-port can often
be realized with a separate gyrator. This will not be much ofbe realized with only resistors, but in general may require
a problem if the matrix is sparse, which can often be arrangedactive circuitry.
in setting up the state equations. The N-port gyrator de-This special case considered can be further explained with
scribed in, for example, Refs. 9 and 10 can be used to realizea specific example. Suppose the second order system of Eq.
the entire Gm2 matrix at one time.(16) is the bandpass filter described with the following state

space description:
ADVANCED TOPICS

Energy and Initial Conditions

Gyrators have already been shown to be lossless two-ports.
This idea can be extended to show a duality between the en-
ergy stored on a capacitor and the energy stored in an induc-
tor. Suppose a capacitor, of value C, is connected to one port
of a gyrator. Further suppose that this capacitor is charged to
a voltage, V. Then the energy stored in this capacitor is given

++

+

–

–

– –

–

gm01

gm2

u
g

y

v1 v2

C

Reciprocal
two-port

Gm1

C

by ��CV 2. As described earlier, the impedance seen looking into
the other port of the gyrator is an equivalent inductor. GivenFigure 16. Generic synthesis of a second order Gm-C filter.
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the lossless nature of the gyrator, this equivalent inductor the op amps has caused the y-parameter matrix to no longer
be skew symmetric, which in itself adds loss to the system.should be expected to have the same apparent stored energy.

However, in the case of an inductor the energy stored is Hence, in general, practical gyrators exhibit loss and asym-
metry—that is, they lack skew symmetry—in their transfer��LI 2, where I is the current flowing in the inductor. A capaci-

tor is in equilibrium with an open circuit across it, and an characteristics.
Another possibility, considering Eq. 20, is for the diagonalinductor is in equilibrium with a short across it. Hence, by

shorting the port of the gyrator opposite the capacitor, a cur- elements, g11 and g22, to be purely imaginary. In this case, the
power computed in Eq. (20) is imaginary, which translates torent flows that will be equal to the equilibrium current in the

equivalent inductor. The following analysis shows that the purely reactive power. When dissipated power is purely reac-
tive, no average power is dissipated. Hence, a gyrator withstored energy in the equivalent inductor equals that actually

stored on the capacitor. purely imaginary diagonal elements is still lossless. Such a
device could be synthesized by adding reactive elements in
series or parallel with the ports of the gyrator, since the diag-
onal elements, g11 and g22, amount to the input admittance

1
2

LI 2 = 1
2

C
g2

(gV )2 = 1
2

CV 2 (19)

looking into the respective ports of the gyrator. Furthermore,
The natural consequence of this energy relationship is that stray capacitance or inductance associated with the inputs or
the current at the inductive port cannot change instantane- the active circuitry making up the gyrator does not contribute
ously, since the voltage at the capacitive port cannot change to loss.
instantaneously. Hence, initial conditions can be readily
translated from one port to another. These facts demonstrate The Hall Effect Device and Isolators
that the gyrator is truly an energy conservative two-port, sat-

It has been observed that Hall effect devices implement aisfying any intuition that one might have regarding its oper-
lossy gyrator. This is because the physics of these devices isation.
such that the two electric field controlled ports behave as a
pair as if they were a gyrator with loss—that is, g11 and g22 inNonideal Effects
Eq. (20) are nonzero and not purely imaginary. The physics

Gyrators, in practice, cannot be made to be ideal. Therefore, of such devices is explained in Ref. 11.
practical gyrators are not lossless. Instead they introduce Figure 18 shows an interesting usage for a Hall effect gyra-
small losses into the system. This is explained by modifying tor, and in fact any lossy gyrator. In the figure, a gyrator,
the y-parameter matrix for the gyrator to include diagonal assumed to have the y-parameter matrix of Eq. (20), has
terms. With these terms the two-port is no longer lossless, as bridging components, RP1 and RP2, added around it. Then a
is clear from this analysis: pair of sources, VS1 and VS2, with respective source resistance,

RS1 and RS2, are attached as shown. With a little effort the
response of this circuit from the sources to the port voltages
of the gyrator can be found to be,

III =YVVV =
∣∣∣∣∣g11 −g

g g22

∣∣∣∣∣VVV = GVVV

⇒ VVV TIII = VVV T GVVV = g11V
2
1 + g22V

2
2

(20)

If the diagonal elements, g11 and g22, are both positive, then
the two-port described in the equation in lossy, since the
power delivered to this two-port must be positive. In practice,

∣∣∣∣∣V1

V2

∣∣∣∣∣ = α

∣∣∣∣∣GS1(g22 + GS2 + GP) −GS2(GP + g)

GS1(GP − g) GS2(g11 + GS1 + GP)

∣∣∣∣∣
∣∣∣∣∣V1

V2

∣∣∣∣∣
where α = (g11 + GS1 + GP)(g22 + GS2 + GP) + G2

P − g2

GP = GP1 + GP2 (22)
the loss terms arise naturally from the fact that the transcon-
ductors comprising the gyrator are nonideal. For example, the

By choosing the sum of the bridging elements equal to gyra-input and output impedance of the transconductors will not
tion constant, g, the response at port 2 can be made totallybe infinite in a practical device. In this case, g11 and g22 are
independent of VS1, as opposed to the response at port 1 whichthe nonzero input admittance of the transconductors.
will depend upon both sources. This creates a circuit called anFurthermore, the transfer characteristics will not in gen-
isolator which can be found in various applications, especiallyeral be ideal. As an example, consider the case of the gyrator
microwaves and optics.realized using op amps as in Fig. 10. Suppose the op amps

have a finite gain, A. Then the y-parameter matrix can be
derived, and is found to be,

Y =
∣∣∣∣∣ g0 −G
G − δG g0

∣∣∣∣∣
where G = 1

R
; g0 = 2(1 − K)G

δG = 2(1 − K2)G; K = 1
1 + 2/A

(21)

A is the open loop voltage gain of the operational amplifiers.

I1

V1

RS1

Rp1

Rp2

VS1

++

–

Two-port
network

I2

V2

RS2

VS2

+ +

–

Notice that this Y matrix corresponds to an ideal gyrator
when A becomes infinite. Also observe that the finite gain of Figure 18. Connection for a lossy gyrator to implement an isolator.
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5. H. Y. Lam, Analog and Digital Filters: Design and Realization,Multiport and Gyrators
Englewood Cliffs, NJ: Prentice-Hall, 1979.

The concept of a gyrator need not be restricted solely to two- 6. R. S. H. Riordan, Simulated inductors using differential amplifi-
port networks. In fact, an N-port gyrator can be contrived as ers, Electron. Lett., 3: 50–51, 1967.
a natural extension of the two-port gyrator. As one might ex- 7. D. F. Sheahan and H. J. Orchard, Bandpass filter realisation us-
pect, the N-port gyrator must inherit the key properties of ing gyrators, Electron. Lett., 3 (1): 40–42, 1967.
the two-port type. First, it must be a nonreciprocal lossless 8. D. F. Sheahan, Gyrator-floatation circuit, Electron. Lett., 3 (1):
network. Secondly, it must reflect impedances in a way simi- 39–40, 1967.
lar to the two-port gyrator. In general, N-port gyrators have 9. Synthesis of active RC systems with a multiport gyrator and a
not found use in electrical systems. For a detailed discussion defined structure, IEEE Trans. Circuits Syst., CAS-27: 191–
of such networks refer to Refs. 9 and 10. 199, 1980.

There is one special case, however, of an N-port complex 10. A. G. J. Holt and R. L. Linggard, The multiterminal gyrator,
gyrator, for N � 3, which has found extensive use in micro- Proc. IEEE, 56: 1354–1355, 1968.
wave systems—namely, the circulator. While practical circu- 11. A. G. Milnes, Semiconductor Devices and Integrated Electronics,
lators are quite complex structures, electrically speaking, New York: Van Nostrand Reinhold, 1980.
they can be viewed over a certain range of frequency to be an 12. R. H. Knerr, A proposed lumped-element switching circulator
approximately lossless three-port complex gyrator. Reference principle, IEEE Trans. Microw. Theory Tech., MTT-20: 396–
12 describes the three-port y-parameter matrix for a circula- 401, 1972.
tor. Specifically, 13. J. Helszajn, Synthesis of octave-band quarter-wave coupled semi-

tracking stripline junction circulators, IEEE Trans. Microw. The-
ory Tech., 43: 573–581, 1995.

DOUGLAS R. FREY

Y =

∣∣∣∣∣∣∣
α β γ

−β∗ α β

−γ ∗ −β∗ α

∣∣∣∣∣∣∣ (23)

Lehigh University

where the superscript * denotes complex conjugation. It is re-
ferred to as being complex since the lower triangular matrix
part of Y is the negative of the conjugate transpose of the GYRATORS. See MISSILE CONTROL.
upper triangular part. The power, P, delivered to a three-port GYROMAGNETIC WAVEGUIDES. See FERRITE-

having this y-parameter matrix is given by, LOADED WAVEGUIDES.

P = ∣∣V1 V2 V3

∣∣
∣∣∣∣∣∣∣

α β γ

−β∗ α β

−γ ∗ −β∗ α

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
V1

V2

V3

∣∣∣∣∣∣∣
= α(V 2

1 + V 2
2 + V 2

3 ) + (β − β∗ )(V1V2 + V2V3) + (γ − γ ∗)V1V3

(24)

As suggested this power can be made purely reactive if all of
the coefficients multiplying the voltage products are purely
imaginary. This condition is always met if � is imaginary,
since the real parts of � and � cancel in the final result.
Hence, the circulator described by this equation is a lossless
three-port given purely imaginary values for �. The circulator
is interesting in that the transfer characteristics from port
to port when driven by sources—for example, VS1, VS2, and
VS3—is similar to the isolator previously described. Specifi-
cally, VS1 does not affect the port 2 voltage, VS2 does not affect
the port 3 voltage, and VS3 does not affect the port 1 voltage.
More details of the design and use of circulators is given in
Ref. 13.
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