
COMPUTATIONAL INTELLIGENCE

INTRODUCTION

There are a number of interpretations of the notion of Com-
putational Intelligence (CI) (1–9). Computationally intelli-
gent systems have been characterized by Bezdek (1, 2) rel-
ative to adaptivity, fault-tolerance, speed, and error rates.
In its original conception, a number of technologies were
identified to constitute the backbone of Computational In-
telligence, namely, neural networks (75, 76), genetic algo-
rithms (75, 76), fuzzy sets and fuzzy systems (75, 76), evo-
lutionary programming (75, 76) and artificial life (10, 11).
More recently, rough set theory and its extensions to ap-
proximate reasoning and real-time decision systems have
been considered in the context of computationally intelli-
gent systems (3,6–9,12,13,46,75,76), which naturally led to
the generalization along the line of Granular Computing.
Overall, CI can be regarded as a field of intelligent system
design and analysis which dwells upon a well-defined and
clearly manifested synergy of genetic, granular and neural
computing. A detailed introduction to the different facets
of such a synergy along with a discussion of various real-
izations of such synergistic links between CI technologies
is given in (3,4,44,46,65,66,75,76).

GENETIC ALGORITHMS

Genetic algorithms were proposed by Holland as a search
mechanism in artificially adaptive populations (14). A ge-
netic algorithm (GA) is a problem-solving method that sim-
ulates Darwinian evolutionary processes and naturally oc-
curring genetic operations on chromosomes (15). In nature,
a chromosome is a threadlike linear strand of DNA and as-
sociated proteins in the nucleus of animal and plant cells. A
chromosome carries genes and serves as a vehicle in trans-
mitting hereditary information. A gene is a hereditary unit
which occupies a specific location on a chromosome and
which determines a particular trait in an organism. Genes
can undergo mutation (alteration or structural change). A
consequence of the mutation of genes is the creation of a
new trait in an organism. In genetic algorithms, the traits
of artificial life forms are stored in bit strings which mimic
chromosome strings found in nature. The traits of individ-
uals in a population are represented by a set of evolving
chromosomes. A GA transforms a set of chromosomes to
obtain the next generation of an evolving population. Such
transformations are the result of applying operations such
as reproduction based on survival of the fittest and ge-
netic operations such as sexual recombination (also called
crossover) and mutation.

Each artificial chromosome has an associated fitness,
which is measured with a fitness function. The simplest
form of fitness function is known as raw fitness, which is
some form of performance score (e.g., number of pieces of
food found, amount of energy consumed, number of other
life forms found). Each chromosome is assigned a proba-
bility of reproduction which is proportional to its fitness.
In a Darwinian system, natural selection controls evolu-

tion (16). Consider, for example, a collection of artificial life
forms with behaviors resembling ants. Fitness will be mea-
sured relative to the total number of pieces of food found
and eaten (partially eaten food is counted). Reproduction
consists in selecting the fittest individual x and weakest in-
dividual y in a population, and replacing y with a copy of x.
After reproduction, a population will then have two copies
of the fittest individual. A crossover operation consists in
exchanging genetic coding (bit values of one or more genes)
in two different chromosomes. The steps in a crossover op-
eration are (1) randomly select a location (also called inter-
stitial location) between two bits in a chromosome string to
form two fragments, (2) select two parents (chromosomes
to be crossed), and (3) interchange the chromosome frag-
ments. Because of the complexity of traits represented by
a gene, substrings of bits in a chromosome are used to rep-
resent a trait (17). The evolution of a population resulting
from the application of genetic operations results in chang-
ing fitness of individual population members. A principal
goal of GAs is to derive a population with optimal fitness.

The pioneering works of Holland (15) and L. J. Fogel and
others (18) gave birth to the new paradigm of population-
driven computing (evolutionary computation) resulting in
structural and parametric optimization. Evolutionary pro-
gramming was introduced by L. J. Fogel in the 1960s (19).
The evolution of competing algorithms defines evolution-
ary programming. Each algorithm operates on a sequence
of symbols to produce an output symbol that is likely to
maximize an algorithm’s performance relative to a well-
defined payoff function. Evolutionary programming is the
precursor of genetic programming (15). In genetic program-
ming, large populations of computer programs are geneti-
cally bred.

FUZZY SETS AND SYSTEMS

A fuzzy systems (models) are immediate constructs that re-
sults from a description of real-world systems (say, social,
economic, ecological, engineering, or biological) in terms
of information granules- fuzzy sets and relationships be-
tween them (20). The concept of fuzzy set introduced by
Zadeh in 1965 (21, 22) becomes of paramount relevance
when formalizing a notion of partial membership of ele-
ment. Fuzzy sets are distinguished from the fundamental
notion of a set (also called a crisp set) by the fact that their
boundaries are formed by elements with whose degree of
belongingness are allowed to assume numeric values in the
interval [0, 1]. Let us recall that the characteristic func-
tion for a set X returns a Boolean value {0, 1} indicating
whether an element x is in X or is excluded from it. A fuzzy
set is non-crisp inasmuch as the characteristic function for
a fuzzy set returns a value in [0, 1]. Let U, X, Ã, x be a
universe of objects, subset of U, fuzzy set in U, and an in-
dividual object x in X, respectively. For a set X, µÃ : X → [0,
1] is a function which determines the degree of member-
ship of an object x in X. A fuzzy set Ã is then defined to be
a set of ordered pairs where Ã = {(x, µÃ (x)) | x ε X}. The
counterparts of intersection and union (crisp sets) are the
t-norm and s-norm operators in fuzzy set theory. For the
intersection of fuzzy sets, the min operator was suggested
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by Zadeh (29), and belongs to a class of intersection opera-
tors (min, product, bold intersection) known as triangular
or t-norms. A t-norm is a mapping t : [0, 1]2 → [0, 1]. The
s-norm (t-conorm) is a mapping s : [0, 1]2 → [0, 1] (also tri-
angular co-norm) is commonly used for the union of fuzzy
sets. The properties of triangular norms are presented in
(82).

Fuzzy sets exploit imprecision in conventional systems
in an attempt to make system complexity manageable. It
has been observed that fuzzy set theory offers a new model
of vagueness (13). Many examples of fuzzy systems are
given in Pedrycz (23), and in Kruse, Gebhardt, and Kla-
wonn (24).

NEURAL COMPUTING

Neural networks offer a powerful and distributed comput-
ing architecture equipped with significant learning abili-
ties (predominantly as far as parametric learning is con-
cerned). They help represent highly nonlinear and multi-
variable relationships between system variables. Starting
from pioneering research of McCulloch and Pitts (25), and
others (26, 27), neural networks have undergone a signifi-
cant metamorphosis and have become an important reser-
voir of various learning methods (28) as well as an exten-
sion of conventional techniques in statistical pattern recog-
nition (29). Artificial Neural Networks (ANNs) were intro-
duced to model features of the human nervous system (25).
An artificial neural network is collection of highly inter-
connected processing elements called neurons. In ANNs, a
neuron is a threshold device, which aggregates (“sums”) its
weighted inputs, and applies an activation function to each
aggregation to produce a response. The summing part of a
neuron in an ANN is called an Adaptive Linear Combiner
(ALC) in (30, 31). A McCulloch-Pitts neuron ni is a binary
threshold unit with an ALC that computes a weighted sum
net where net =

∑n

j=0 wjxj. A weight wi associated with
xi represents the strength of connection of the input to a
neuron. Input x0 represents a bias, which can thought of
as an input with weight 1. The response of a neuron can
be computed in a number of ways. For example, the re-
sponse of neuron ni can be computed using sgn(net), where
sgn(net) = 1 for net > 0, sgn(net) = 0 for net = 0, and sgn(net)
= −1, if net < 0. A neuron comes with adaptive capabili-
ties that could be fully exploited assuming that there is an
effective procedure is introduced to modify the strengths
of connections so that a correct response is obtained for a
given input. A good discussion of learning algorithms for
various forms of neural networks can be found in Freeman
and Skapura (32) and Bishop (29). Various forms of neural
networks have been successfully used in system modeling,
pattern recognition, robotics, and process control applica-
tions (46,50,51,54,75,76).

ROUGH SETS

Rough sets introduced by Pawlak in 1981 (77, 78) and elab-
orated in (13,33,34,67,68,74,79–81) offer another approach
to CI by drawing attention to the importance of set approx-
imation in knowledge discovery and information granula-

tion. Rough set theory also offers a model for approxima-
tion of vague concepts (69, 83).

In particular, rough set methods provide a means of ap-
proximating a set by other sets (33, 34). For computational
reasons, a syntactic representation of knowledge is pro-
vided by rough sets in the form of data tables. In general,
an information system IS is represented by a pair (U, F),
where U is a non-empty set of objects and F is a non-empty,
countable set of probe functions that are a source of mea-
surements associated with object features. For example, a
feature of an image may be color with probe functions that
measure tristimulus values received from three primary
color sensors, brightness (luminous flux), hue (dominant
wavelength in a mixture of light waves), and saturation
(amount of white light mixed with a hue). Each f ε F maps
an object to some value. In effect, we have f : U → Vf for
every f ε F.

The notions of equivalence and equivalence class are
fundamental in rough sets theory. A binary relation R � X
× X is an equivalence relation if it is reflexive, symmetric
and transitive. A relation R is reflexive if every object x ε X
has relation R to itself.That is,we can assert x R x.The sym-
metric property holds for relation R if xRy implies yRx for
every x, y ε X. The relation R is transitive for every x, y, z ε

X, then xRy and yRz imply xRz. The equivalence class of an
object x ε X consists of all objects y ε X so that xRy. For each
B � A, there is associated an equivalence relation IndA(B)
= {(x, x’) | ∀α ε B. α(x) = α(x’)} (indiscernibility relation). If (x,
x’) ε IndA(B), we say that objects x and x’ are indiscernible
from each other relative to attributes from B. This is a fun-
damental concept in rough sets. The notation [x]B is a com-
monly used shorthand that denotes the equivalence class
defined by x relative to a feature set B. In effect, [x]B = {y ε

U | x IndA(B) y}. Further, partition U/IndA(B) denotes the
family of all equivalence classes of relation IndA(B) on U.
Equivalence classes of the indiscernibility relation (called
B-granules generated by the set of features B (13)) repre-
sent granules of an elementary portion of knowledge we
are able to perceive relative to available data. Such a view
of knowledge has led to the study of concept approxima-
tion (40) and pattern extraction (41). For X ε U, the set X
can be approximated only from information contained in B
by constructing a B-lower and B-upper approximation de-
noted by B∗X = {x ε U | [x]B � X} and B*X = {x ε U | [x]B ∩ X
�= Ø}, respectively. In other words, a lower approximation
B∗X of a set X is a collection of objects that can be classified
with full certainty as members of X using the knowledge
represented by features in B. By contrast, an upper approx-
imation B∗X of a set X is a collection of objects representing
both certain and possible uncertain knowledge. In the case
where B∗X is a proper subset of B∗X, then the objects in X
cannot be classified with certainty, and the set X is rough.
It has recently been observed by Pawlak (13) that this is
exactly the idea of vagueness proposed by Frege (41). That
is, the vagueness of a set stems from its borderline region.

The size of the difference between lower and upper ap-
proximations of a set (i.e., boundary region) provides a ba-
sis for the “roughness” of an approximation. This is im-
portant because vagueness is allocated to some regions of
what is known as the universe of discourse (space) rather
than to the whole space as encountered in fuzzy sets. The
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study of what it means to be a part of provides a basis for
what is known as mereology introduced by Lesniewski in
1927 (36). More recently, the study of what it means to be
a part of to a degree has led to a calculus of granules (8,37–
39,71,73). In effect, granular computing allows us to quan-
tify uncertainty and take advantage of uncertainty rather
than blindly discarding it.

Approximation spaces introduced by Pawlak (77), elab-
orated by (33,34,66,69,70–73), applied in (6–8,40,46,59,64)
serve as a formal counterpart of our perception ability or
observation (69), and provide a framework for approximate
reasoning about vague concepts. In its simplest form, an
approximation space is any pair (U, R), where U is a non-
empty set of objects (called a universe of discourse) and R
is an equivalence relation on U (called an indiscernibililty
relation). Equivalence classes of an indiscernibility rela-
tion are called elementary sets (or information granules)
determined by R. Given an approximation space S = (U,
R), a subset X of U is definable if it can be represented as
the union of some of the elementary sets determined by
R. It was originally observed that not all subsets of U are
definable in S (69). Given a non-definable subset X of U,
our observation restricted by R causes X to be perceived as
a vague object. An upper approximation B*X is the least
definable subset of U containing X, and the lower approxi-
mation B∗X is the greatest definable subset of U contained
in X.

Fuzzy set theory and rough set theory taken singly and
in combination pave the way for a variety of approximate
reasoning systems and applications representing a syn-
ergy of technologies from computational intelligence. This
synergy can be found, for example, in recent work on the re-
lation between fuzzy sets and rough sets (13,35,46,60,65),
rough mereology (37–39,65,66), rough control (42, 43),
fuzzy-rough-evolutionary control (44), machine learning
(34,45,59), fuzzy neurocomputing (3), rough neurocomput-
ing (46) diagnostic systems (34, 47), multi-agent systems
(8,9,48), real-time decision-making (12, 49), robotics and
unmanned vehicles (50–53), signal analysis (55), and soft-
ware engineering (4,55–58).
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