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CYBERNETICS

The modern definition of cybernetics arose in the study of ma-
chines containing feedback and computing subsystems. The
second world war and available technology combined to give
a generation of more ‘‘intelligent’’ machines than previously
utilized. One of the more important persons in this endeavor
was Norbert Wiener, mathematician, electrical engineer, and
professor at Massachusetts Institute of Technology. He had
been at MIT since 1920 and was involved in deriving several
feedback and communications filtering theories, some of
which were classified in the second world war but all subse-
quently published. Wiener’s important theories on nonlinear
systems were developed shortly after the second world war.
As a result of Professor Wiener’s broad and incisive knowl-
edge in many areas of science and engineering beyond mathe-
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matics, he proposed a new word, cybernetics, in 1947, to de- are from a scientific or engineering standpoint, and thus cy-
bernetics is a continuously growing field.scribe a scientific frontier: a parallel and interacting study of

intelligent machines and living organisms (1,2). The objec- Historically the field of cybernetics grew at MIT, where
since 1935 seminars of physiologists, biophysicists, neurolo-tives of such parallel study are to increase understanding of

living organisms by mathematically modeling their many sys- gists, electrical engineers, physicists, mathematicians, and
psychologists took place continually. This intellectual efforttems and subsystems, with an important engineering goal, in

many cases, of improved design of machines. An obvious ex- spread to other institutions, such as the California Institute
of Technology, the University of California Los Angeles, theample is the pilot-aircraft feedback control problem. In more

recent studies both parallel and interacting, one may build Max Planck Institute for Biological Cybernetics in Tubingen,
Germany, the University of Southern California, the Univer-electromechanical models of aspects of motor physiology,

which can then be incorporated in robots, and further apply sity of California San Diego, Cambridge University, North-
western University, the Australian National University, Bos-known sensory response characteristics found in perception

and physiology studies to make the robot more adaptive and ton University, the University of Adelaide, the University of
Pennsylvania, and Drexel University. The field of cyberneticsthus more intelligent. Computational models of the central

nervous system can then be used to further this design para- and its biological aspects are represented in at least 20 mod-
ern archival journals and many conferences sponsored by thedigm in robotics, another branch of cybernetics.

The original definition of cybernetics is still that found in Institute of Electrical and Electronic Engineers (IEEE), Inter-
national Neural Network Society, Biophysical Society, Opticalmany languages today and it also applies to organized groups

of living organisms, such as societies with their political, so- Society of America, Biomedical Simulations Resource of the
University of Southern California, and Society for Neurosci-cial, and economic subsystems and their interactions. Compu-

tational modeling is also applied to these problems to find ence and the Biomedical Engineering Society, among others.
dynamic properties that might be utilized in predictions, and
in several fields this endeavor is nominally cybernetics. It is
possibly this aspect of cybernetics that is related in its ety- BIOLOGICAL NEURONS, OR NERVE CELLS
mology most closely to the Greek root Kuber, which is also
the root word for government. In a sense, cybernetics was in- By 1947, a fairly precise but simple picture of how nerve cells
tended also to put government on a scientific and rational ba- computed and signaled their outputs had been assembled. It
sis, and an extensive series of meetings of the ‘‘Cybernetics was already clear that nerve cells did not operate as ‘‘all-or-
Group’’ from 1946 to 1953 brought forth consideration of these none’’ except in their long-distance impulse transmission
diverse aspects of cybernetics, including especially the social along axons. The impulse is essentially a solitary wave, prop-
aspects (3). agated without loss by means of active ionic processes involv-

However, the cybernetics of greatest interest to electrical ing sodium, potassium, and calcium. The passive resistance-
and electronic engineers is the parallel study of nonlinear capacitance electrical properties of the membrane enclosing
feedback and nonlinear signal processing circuits and systems the nerve cell were known, and it was clear that nerve cells
to model the peripheral and central nervous systems of living could, and did, compute continuous sums and differences and
organisms. Thus, cybernetics can be ‘‘modeling the brain’’ in products. Among others, the work of Rushton, Hodgkin, Ec-
a very imprecise definition, but still related etymologically to cles, and Hartline showed this. These computations by nerve
the other, closer Greek root word, Kubernetes, a steersman or cells were quantitatively described by continuous mathemat-
navigator. The earliest meeting of the minds on this subject ics of differential equations, so the ‘‘brain as a digital com-
extended to 1935, and one of the well-known later results was puter’’ could be seen then as an oversimplification. The brain
the ‘‘Pitts-McCulloch Neuron,’’ the ancestor of much of mod- is modular, so in some aspects, such as general flow of infor-
ern work in the field of neural networks, another descendent mation or at gating synapses, parallels could be drawn be-
field of cybernetics. tween the brain and the digital computer, but such theory

In some areas of physiology and biophysics the quantita- lacks the necessary thorough grounding in neurophysiology.
tive analysis and modeling of living processes was indeed al-
ready on the level that Wiener and colleagues envisioned. The

Passive Nerve Cell Input Computations
cybernetics meetings included some of these pioneering physi-
ologists, biophysicists, and psychologists. No aspect of cyber- Because the treelike structure of the nerve cell, the dendritic

tree, is often electrically passive, the number of synaptic con-netics arose in a vacuum, but the emergent viewpoint was
different. It was and is the parallel study of machines and tacts on the dendrites and their electrically continuous nature

implies a number of states of the biological neuron far in ex-living organisms, a liberal view that includes but is not re-
stricted to precise modeling, data analysis, and design. Fur- cess of two. But how the immense combinatoric sums are used

in actual computation is still not clear. It does not seem possi-ther, the assumptions of modeling living organisms must be
grounded in some known aspects of the physiology or biophys- ble at this point to utilize these facts to demonstrate clearly

how to mediate or represent functions of memory or con-ics. Thus there are overlapping areas of cybernetics with
many fields: physiology, biophysics, computer science, ro- sciousness. But, on the other hand, a model involving growth

and decay, by darwinian algorithms, of hexagonal regions ofbotics, artificial neural networks, and vision science to name
a few. Cybernetics simply follows the scientific method, where cortical activity is a strong beginning to representation of

thought or cognition (4). Studies on more peripheral and sen-the theorists and the experimentalists are not necessarily the
same people. Cybernetic models are actually hypotheses, and sory neurophysiology have led to somewhat deeper levels of

understanding, in knowing exactly how the environmental in-they flow into experimental science as well as to engineering
design. It is never immediately clear how good these models formation is encoded and transmitted. This has often been
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accomplished by neurophysiological studies on lower species ample, the visual systems of many living organisms are capa-
ble of good velocity estimation, and to know how this is ac-such as insects.
complished requires knowledge of the polarities and points of
connection of synapses. Only a limited analysis of this prob-

FUNDAMENTAL MATHEMATICAL IDEAS FOR CYBERNETICS
lem is possible using neuroanatomical methods. However,
given a sufficiently complex nonlinear theory, such as the

Modern control system theory and communication theory in
Volterra series, capable of being reduced to multipliers and

electrical engineering forms a good basis for mathematical de-
linear blocks, a parallel, cybernetic array of computational

scriptions in cybernetics. An overwhelming need in this work
and physiological experiments may give some aid to under-

is the ability to include the effects of nonlinearities, of both
standing how the nervous system accomplishes the computa-

the no-memory and the memory type. Professor Wiener’s out-
tions it is making. First one constructs such a model, subjects

standing contribution to this mathematics was first reported
it to computation, and then alters the model to improve the

in 1949, as means to analyze and synthesize nonlinear sys-
fit to the data. In the course of this synthesis by iterated anal-

tems. From the viewpoint of perturbation theory, a linear ap-
ysis, further experimental tests may be suggested.

proximation will usually be a satisfactory beginning for analy-
sis around the equilibrium state. But biological systems will

Volterra and Wiener Seriesalways possess significant nonlinearities, so nonlinear theory
is essential. One of the most important cybernetic developments by Wie-

The forms of mathematical descriptions are typically dif- ner was to bring mathematics of systems analysis to a more
ferential equations, or integral operators on a known input, usable form to both identify and characterize the nonlinear
or a mixture of both. Under a very general set of assumptions, system. Applications of this work have been extensive in elec-
the Volterra integral operator, or functional operator, series trical and electronic engineering (6–10). First, the Volterra
can be derived as a solution to a given nonlinear differential series is a generalization of linear convolution to multiple con-
equation (5). This can be considered a polynomial inversion volution integrals, over instants of time and space that en-
of the differential operators. The uniform convergence of this compass the integral-functional nature of system nonlinearit-
solution under a wide category of conditions has been proven. ies. The conditions for convergence are not severe, consisting
In general, however, useful system identification methods alone of systems without infinite memory or output step dis-
apply to only the kernels of the integral operators, in the or- continuities. Wiener took the Volterra series and orthogo-
thogonalized form derived by Wiener (6,7). The nonlinear dif- nalized it and further derived a set of functions to express the
ferential equation does not admit a general, direct, and useful kernels. The time-dependent behavior of the kernels of the
method of identification of its parameters and functions. integrals is expressed by Laguerre function impulse re-

sponses, with Hermite polynomials and multipliers to com-
bine the Laguerre functions into the kernels themselves.NONLINEAR NERVOUS SYSTEM COMPUTATION
Gaussian distributed white-noise input to the system is
needed to define, or find, the parameters by expectation oper-Nonlinear functions are common in the transduction of infor-
ations. The most important further development was by Y. W.mation in the nervous system. Threshold, saturation, com-
Lee and M. Schetzen, who showed that a nonparametrizedpression, adaptation of gain, light and dark adaptation, auto-
Wiener kernel could be derived from crosscorrelating the in-matic gain and bandwidth control, and directional sequence
put with the output of the system. This method, called thedependence are most evident among the many discovered.
Lee-Schetzen algorithm, and its many variations and im-The synapse in the nervous system is substantially more com-
provements are the bases by which most modern applicationsplex than the simple sum or difference operator. The synapse
of the Volterra-Wiener theory are made (7). The sum-of-sinu-has temporal dynamics and significant nonlinear properties
soids and M-sequence methods have found considerable re-and can compute products and quotients. For example, the
cent usage (8,9) in improving the signal-to-noise ratio of thetwo variables at a point of connection of a synapse to a post-
kernel estimates. Because the orthogonalization of Volterrasynaptic nerve membrane, the postsynaptic conductance and
series by the Gram-Schmidt procedure yields the Wiener se-the postsynaptic voltage, are multiplied by the Ohm’s law
ries, the Volterra kernels can be calculated from the Wienerproperty of nerve membranes to produce a product of presyn-
kernels, and vice versa. Usually the Volterra kernels wouldaptic activity and existing postsynaptic activity. In many
be derived from a given known or assumed system structure,cases this becomes dominated by the linear sum, which is a
and the Wiener kernels from the input-output data by thefunction of the ionic species of the conductance. In others,
Lee-Schetzen algorithm with other improvements. The M-se-where the equilibrium potential of the ion is close to the ex-
quence, for example, tends to improve the signal-to-noise ra-isting membrane potential, the multiplication dominates. The
tio of the kernel estimates and shorten the required recordlatter is often called ‘‘shunting inhibition.’’ In principle, any
lengths (8,9).change of conductance may include a shunting component.

The Volterra-Wiener theory and method is the most gen-The possibility of a distribution of multipliers in the ner-
eral for characterizing and identifying smooth, nonoscillatingvous system fits well with the theorem, proven by M. Schet-
nonlinear systems with finite memory. The Volterra-Wienerzen (7), that any Volterra operator can be synthesized to a
theory also generates a procedure for finding the inverse of aspecific accuracy by a finite number of multipliers and linear
nonlinear system to any given degree. This is essentially howsystems. This provides a close mathematical link to the ner-
the differential equation is solved by assuming a Volterra se-vous system. In many physiological studies there is a need to
ries solution and applying perturbation theory (5,7,10). Fur-know whether nerve cell connections are positive (excitatory)

or negative (inhibitory), or feedback or feedforward. For ex- ther, the inverse of the nonlinear part aids the analysis and
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design of nonlinear feedback systems. In general, an iterative of the lamina and medulla is coarsened by the columnar
structure of the lobula: There is only one lobular column forprocedure for analysis of nonlinear systems can be set up in

the following way. An unknown nonlinear system can be sub- every six medullary ones. Each column in the lamina, known
as an optic cartridge, receives inputs from a group of six pho-jected to appropriate noise inputs and the Wiener kernels

identified by the crosscorrelation or other algorithm. From toreceptors (R1–R6) that share the same visual axis as the
overlaying ommatidium, and projects outputs to the medullasome minimal knowledge of the structure of the system, dia-

grams of linear operators and multipliers can be developed column lying directly beneath it. Each lamina cartridge
houses six relay cells, the most prominent of which are thethat then give the Volterra kernels, from which the corre-

sponding Wiener kernels can be calculated. These can be com- large monopolar cells (LMCs) L1 and L2. These two cells form
the central elements in every optic cartridge. They receive thepared, and modifications can be made to the assumed struc-

tures to give a better fit, in some sense. Therefore, this majority of the photoreceptor synapses and project retinotopi-
cally to the medulla. They are considered a major channel forrepresents a nonlinear input–output systems analysis with

identification experiments and iterative computational exper- relaying information about the intensity received by a single
sampling station from the retina to the medulla. (For moreiments to synthesize a system structural model.
comprehensive reviews of the anatomical structure and func-
tion of the lamina pathways, see, e.g., pp. 186–212 and 317–

CYBERNETICS OF A VISUAL SYSTEM
359 in Ref. 13 and pp. 457–522 in Ref. 14.)

The medulla has the most complex anatomical structure of
A wide-ranging study of biology, neuroanatomy, neurophysi-

any neuropil in the optic lobe and is characterized by an ex-
ology, and mathematics of systems is required to make a

tensive network of lateral connections (see pp. 317–359 in
meaningful cybernetic model of only a part of an organism.

Ref. 13 and pp. 428–429 in Ref.10 for a review). It contains
Since the number of nerve cells is smaller in insects than in

a variety of functionally different units ranging from simple
vertebrates, and insect behavior is perhaps more stereotyped,

contrast detectors to directional and nondirectional motion
insect vision has received considerable study in a cybernetic

sensitive neurons (pp. 377–390 in Ref. 10). Although little is
manner. The Max-Planck Institute for Biological Cybernetics

known about the synaptic interconnections within the me-
in Tubingen, Germany was founded on this kind of work,

dulla, two major retinotopic projection modes, directly involv-
which always views the animal in a feedback loop with its

ing laminar units, have been recognized: one involved in color
predominating visual sensing of position, velocity, and accel-

coding, the other in motion information processing. In the
eration paramount in the nervous system. Indeed, the major-

first, wide-field transmedullary neurons get inputs from a
ity of nerve cells in the brains of insects respond to visual

laminar cell L3 and the receptor pair R7/R8, which make no
stimuli. Of these, perhaps velocity is the most important.

contacts in the lamina, and output to a large variety of retino-
Some relative velocity between organism and environment is

topic columnar neurons in the lobula. In contrast, the second
necessary for evolution, development, and learning (12). Ve-

projection mode involves small-field medullary relays: they
locity can be considered a most basic biological variable. Thus

derive their inputs from R1–R6 via the LMCs and synapse
the more detailed cybernetics in the following subsection has

onto two bushy cells, T4 and T5, which provide inputs to
concentrated on the insect’s visual system and its transduc-

wide-field color blind motion-sensitive neurons in the lobula
tion of the relative velocity or motion of the organism and en-

plate. This suggests that at the level of the lamina there is
vironment.

already segregation of retinotopic projections to the lobula
and lobula plate.

Motion Detection System in Insects
The medulla is the most peripheral structure in which

movement detection takes place. However, the motion compu-The primary visual system of insects has a highly regular
structure, dominated by a retinotopic organization. It consists tation center in flies appears to be the lobula plate, the poste-

rior part of the third visual ganglion. The lobula plate housesof a pair of multifaceted eyes known as the compound eyes,
two optic lobes, one on each side of the head, and the tracts about 50 identifiable neurons, all of which are directionally

selective movement detecting (DSMD) neurons and appear toand projection centers of the visual interneurons in the pro-
tocerebrum [see Strausfeld (12) for more details]. In flies, form part of the optomotor control system of the insect. Most

of these cells are wide-field DSMD neurons that seem to shareeach compound eye is composed of approximately 3000 to
4000 ommatidia (tiny eyes). Each ommatidium is a functional a common network of presynaptic elements derived from the

medulla. This group of DSMD neurons comprises severalunit comprising a lenslet and a retinula, containing eight re-
ceptor or retinular cells labeled R1–R8. The optic lobes con- classes of tangential cells that respond to whole-field hori-

zontal or vertical motion (pp. 317–359 and 391–424 in Ref.vey information from the compound eyes to the brain. They
each comprise three retinotopically connected visual ganglia, 13 and pp. 483–559 in Ref. 14). They receive both excitatory

and inhibitory inputs from large retinotopic arrays of small-commonly known (from the periphery inward) as the lamina,
the medulla, and the lobula, or lobula complex in some insect field elementary movement detectors (EMDs), which possess

opposite preferred directions. Figure 1 illustrates the basicorders. In Diptera (true flies) the lobula complex is divided
into two parts: an anterior part, the lobula, and a posterior functional structure of a wide-field DSMD neuron. It is not

yet known whether these small-field EMDs reside in the me-part, the lobula plate.
The synaptic neuropils in the visual ganglia are strictly dulla, lobula, or lobula plate. Nonetheless, it is widely be-

lieved that they operate on the principle of a nonlinear asym-organized into columns and strata. Both the lamina and me-
dulla are composed of structurally identical parallel synaptic metric interaction of signals derived from adjacent cartridges

of the ommatidial lattice [see, e.g., Kirschfeld (15), pp. 360–compartments, or columns, that exactly match in number the
ommatidia in the retina. However, the retinotopic periodicity 390 in Ref. 13, and pp. 523–559 in Ref. 14].
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Figure 1. Schematic representation of a DSMD neu-
ron. The DSMD neuron receives excitatory and inhibi-
tory signals from an array of functionally identical
EMDs, which differ only with respect to the orientation
of their sampling bases. Each EMD receives two inputs
from adjacent lamina cartridges (box L), which are fed
by the receptor cells (R).

R R R R

L L L L

τ τ τ τ τ τ τ τ

EMD EMD EMD EMD EMD EMD EMD EMD

Excitatory
synapse

...

... ...

...

Inhibitory
synapse DSMD neuron

One wide-field DSMD neuron that has been extensively
studied for more than two decades is the giant heterolateral
H1 neuron of the fly. It responds to horizontal motion pre-
sented to the ipsilateral eye in the forward (regressive) direc-
tion, and it is inhibited by motion presented in the backward
(progressive) direction. There is only one H1 neuron in each
lobula plate. The main role of the H1 neuron appears to be
the control of the optomotor torque response. The two bilater-
ally symmetric H1 cells exert mutual inhibition; thereby each
cell is particularly sensitive to either clockwise or anticlock-
wise rotatory (yaw) motion of the visual field. The EMDs feed-
ing the H1 neuron derive their inputs from the photoreceptors
R1–R6. Franceschini and co-workers (pp. 360–390 in Ref. 13)
recorded a sequence dependent response from the H1 neuron
by successively stimulating the photoreceptor pair (R1, R6)
within a single ommatidium. In particular, they found that

Null direction Preferred direction 

R2 R1 R2 R1

C V

ττ

(a) (b)

the sequence R1 � R6 evoked an excitatory response whereas Figure 2. The elementary movement detector. (a) Conjunctive
the sequence R6 � R1 induced an inhibitory or no response, scheme: If the signals from the two adjacent channels arrive simulta-
which was in accordance with the preferred and nonpreferred neously at C (preferred direction), then a conjunction of excitation is
directions of the H1 neuron, respectively. detected signaling motion; whereas if the two signals arrive sepa-

rately, the unit C remains quiescent. (b) Veto scheme: If the two sig-
nals reach V concurrently (null direction), they cancel each other andElementary Movement Detection
no motion is signaled. However, if the two signals arrive to V sepa-

The EMD is the minimum prerequisite for directionally selec- rately (preferred direction), the veto signal is unable to suppress the
other signal, which indicates motion.tive detection of motion in the visual field. It is based on the

principle of asymmetrical interaction between two adjacent
channels (Fig. 2). The visual field is sampled at two receptor
regions, R1 and R2. The signal from one receptor is passed specific conjunction of excitation in the preferred direction

(Fig. 2a), the other by rejecting the null stimulus by a vetothrough an ‘‘appropriate’’ time delay, such as a low-pass filter
of time constant �, before interacting with the signal from the operation (Fig. 2b). The best-known conjunctive scheme is the

correlation model proposed by Hassenstein and Reichardt inadjacent channel. The asymmetry between the two input
channels is necessary for the detector to acquire direction se- 1956 to account for the characteristics of insect optomotor re-

sponse (14). In this model, the interaction between adjacentlectivity. For if the system were symmetric, the two input
channels could be interchanged without altering its response. channels is implemented by a multiplication followed by an

infinite time-averaging operation (i.e., a correlation).This would be equivalent to reversing the direction of motion
but still obtaining the same response. Therefore, without an The first veto scheme was proposed by Barlow and Levick

in 1965 (16), who discovered that inhibition is the mechanismasymmetrical interaction, the movement detector loses its
ability to respond differentially to motion in opposite direc- underlying directional selectivity of ganglion cells in the rab-

bit retina. They suggested that inhibition is triggered selec-tions.
There exist mainly two general schemes for the realization tively in such a way that at each subunit of the receptive field

a delayed inhibitory mechanism vetoes the excitatory re-of the asymmetrical interaction. One works by detecting a
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sponse in the null direction, but appears too late to cancel where e(t) is the EMD output, L1 and L2 are the external in-
puts of the EMD, v is the delayed inhibitory input, and � isthe response in the preferred direction. Barlow and Levick

demonstrated that directional selectivity of retinal ganglion the time constant of the delay filter. Next, we will discuss the
functional characteristics of this detector and compare themcells is based on sequence discrimination within small-field

synaptic subunits, or EMD. More specifically, they showed to those of fly DSMD neurons.
that over the whole receptive field, successive stimulation of

Characteristic Responses of SIMDtwo subunits close to each other caused a response that de-
pends on whether the order corresponds to motion in the pre- In this section we investigate both the transient and steady-
ferred or null direction, but the effect decreased at greater state response characteristics of the SIMD and compare them
separations. to those of the fly H1 neuron. To conduct an analysis of the

The initial stages of movement detection in insects also ap- SIMD functional properties, an approximation of its response
pear to be based on sequence discrimination by EMDs. Both is in order. In general, the system of Eq. (2) is not amenable
behavioral and electrophysiological experiments on flies indi- to an elementary treatment to yield an explicit solution. How-
cate that movement detection takes place between neigh- ever, approximate solutions can be obtained if the input sig-
boring points of the sampling lattice of the eye. For example, nals satisfy certain conditions. Perturbation methods are
sequential stimulation confined to pairs of identified photore- used to obtain approximate solutions of nonlinear differential
ceptors in single ommatidia induced optomotor turning reac- equations. For inputs of the form
tions in the fly (15) and evoked directional responses in the
H1 neuron of the fly (pp. 360–390 in Ref. 13). However, the Li(t) = L0 + cli(t), i = 1,2
nature of the mechanism mediating direction selectivity in in-
sects remains unresolved, despite numerous investigations where the contrast �c� � 1, the system of differential equations
attempting to unlock the mystery. Some scientists believe of Eq. (2) admits a unique solution that is continuous in both
that it is excitatory, others suggested that it is inhibitory, yet t and c. Therefore, e(t) and v(t) can be expressed as
there are others who believe that it is both (see Ref. 17 for a
further discussion). It is not the aim here to resolve the con-
flict; however, in the next section we present a neural net-
work architecture based on the mechanism of shunting inhibi-

v(t) = x0 + cx(t)

e(t) = y0 + cy1 + c2y2 + · · · =
∑
n=0

cnyn
(3)

tion that can account for the response of the H1 neuron.
Differentiating Eq. (3) and substituting for f (v) � f (x0 � cx)
its Taylor series expansion into Eq. (2) yields the following

SHUNTING INHIBITORY MOTION DETECTION equations:

Shunting lateral inhibition is a biophysical process in which
the synaptic conductance of inhibitory channels is controlled
in a nonlinear manner by voltages of nearby cells or cell sub-
units. It can be described by a nonlinear ordinary differential
equation of the form

de(t)
dt

= L(t) − ae(t)

[
1 +

∑
j

k j f j (vj )

]
(1)

x0 = τL0

ẋ = l1(t) − 1
τ

x = l1(t) − bx,

y0 = L0

α
, where α = a[1 + k f (x0)]

ẏ1 = l2(t) − ak f ′(x0)y0x − αy1,

ẏn = −ak
n∑

j=1

f j (x0)

j!
xjyn− j − αyn, for n ≥ 2

(4)

where e represents the activity of a cell or cell subunit, inter-
The pth order approximation of the EMD response is givenpretable as the deviation of the membrane voltage from the
byresting potential; L(t) � 0 is the external input to the cell;

a � 0 is the passive decay constant; kj � 0 represents the
connection strength of the jth inhibitory synapse; vj is the po-
tential controlling the conductance of the jth synapse; and f j

ep(t) =
p∑

j=0

c jy j (t) (5)

is the activation function: it is continuous, positive, monotonic
Note that the smaller is c, the more accurate is the approxi-increasing for positive arguments and represents the output
mation. Thus, for low-contrast stimuli one could always get atransfer function that converts the membrane voltage vj to a
fairly good approximation to the response by solving the setfiring rate f (vj).
of linear differential equations in Eq. (4).The shunting inhibitory motion detector (SIMD) is a move-

ment detector where the nonlinear interaction at the EMD
Response to Drifting Gratingslevel is mediated by shunting lateral inhibition. The response

of each EMD is described by a pair of coupled ordinary differ- Sine-wave gratings are commonly used in vision to evoke the
ential equations: spatial and temporal frequency responses of visual systems.

Drifting gratings have been extensively used to study the re-
sponse of the motion detection system in insects. Let L(s, t)
be a drifting sine-wave grating,

L(s, t) = L0 + cL0 cos(2π ftt + 2πµ fss + ϕ) (6)

dv(t)
dt

= L1(t) − 1
τ

v(t),

de(t)
dt

= L2(t) − ae(t)[1 + k f (v)]
(2)
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where s is the spatial dimension, f s is the spatial frequency in sine-wave grating in Eq. (6) is given by
cycles/deg, f t is the contrast frequency in hertz, t is time, � is
the direction of motion (� � 
1 for leftward motion and �1
for rightward motion), and � is the initial phase. The steady- Mr = akc2L2

0 f ′(x0)(α − b)ω

α(b2 + ω2)(α2 + ω2)
sin(2πµ fs�s) (8)

state response of a SIMD to such drifting sine-wave grating
usually oscillates around an average response that depends where � � 2�f t is the angular frequency and �s is the interre-
strongly on the direction, contrast, and spatial and temporal ceptor angle. From Eq. (8), we see that the SIMD mean
frequency contents of the moving pattern. steady-state response depends on contrast frequency f t � �/

If only nonlinearities up to second order are considered, 2�, spatial frequency f s, mean luminance L0, and contrast c of
then the response of a SIMD consisting of two mirror symmet- the moving grating. Note that Mr is insensitive to contrast
ric EMDs, sharing the same inputs but having different polar- reversal (it depends on c2) and is fully directional (i.e., its sign
ities (one contributing an excitatory response, the other an depends on the direction of grating motion �).
inhibitory one), is approximated by

Dependence on Contrast Frequency
m2(t) = 2c(yE,1 − yI,1) + c2(yE,2 − yI,2) (7)

The SIMD is a contrast frequency detector, not a velocity de-
tector. The dependence of the mean-steady state response

where yE,j(j � 1, 2) is the jth response component of the excit- Mr on the contrast frequency, f t, and angular velocity, f t/f s, is
atory EMD, and yI,j is the jth response component of the inhib- depicted in Figs. 3(a) and 3(b), respectively. The curves were
itory EMD. obtained from Eq. (8) with parameters a � b � 15 and k � 5

Let Mr � m2(t) denote the time-averaged, or mean steady- and a linear activation function f (v) � v. The mean steady-
state, response of a SIMD caused by second-order nonlinearit- state response increases with contrast frequency, or speed,

until it reaches a maximum, and then falls off at higher fre-ies. Then it can easily be shown that Mr due to the moving
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Figure 3. Mean steady-state response computed from Eq. (8) as a function of contrast frequency
(a), velocity (b), spatial frequency (c), and mean luminance (d). The curves in (b) are obtained
(after being normalized) for three different spatial frequencies: f s � 0.2 (solid), f s � 0.05 (dashed),
and f s � 0.01 (dotted). The curve in (c) was obtained by including the effect of contrast attenua-
tion at the receptor level, Eq. (10).



CYBERNETICS 485

quencies. The peak contrast frequency, the frequency of maxi- presented to the photoreceptors, its contrast, c, is attenuated
by a factormum steady-state response, is given by

cr

c
= e− π 2

4 ln 2 (�ρ/λ)2 = e−3.56(�ρ fs )2
(10)ft =

[
−(b2 + α2) +

√
(b2 + α2)2 + 12b2α2

24π2

]1/2

(9)

where cr is the effective contrast in the receptors (see p. 89 in
which may be approximated by f t � b/2� at high mean lumi- Ref. 20). Since low-pass filtering severely limits the transfer
nance levels. From Eq. (8), it is evident that the peak contrast of high frequencies, we can expect the response to lose its
frequency does not change with spatial wavelength. However, periodicity with respect to spatial frequency. The effect of con-
the optimum velocity to which the system is tuned does trast attenuation on the SIMD mean steady-state response is
change with the spatial frequency (Fig. 3b). The curves in presented in Fig. 3(c). The curve in this figure has been plot-
Figs. 3(a) and 3(b) demonstrate the SIMD ability to respond ted using a contrast transfer parameter �� � 1. This response
to a broad range of pattern velocities. The response character- resembles behavioral responses obtained from flies by Buch-
istics in these curves are in full agreement with those of tan- ner (see Ref. 20 or pp. 561–621 in Ref. 14).
gential cells in the lobula plate. All DSMD neurons of the
lobula plate tested so far exhibit similar response characteris- Dependence on Mean Luminance
tics: The response does not depend on pattern velocity, but

In addition to the dependence on spatial and temporal fre-rather on contrast frequency; the response range covers about
quencies, the SIMD mean steady-state response Mr depends3 log units of contrast frequency (0.01–0.05 Hz to 20–50 Hz);
strongly on the mean luminance of the moving pattern. Fig-the response amplitudes increase from lower threshold to
ure 3(d) depicts Mr as a function of mean luminance L0. Thepeak and fall off sharply above the peak; the response peaks
variations of the curve in this figure agree well with those ofare consistently found at 1 Hz to 5 Hz [see, e.g., Eckert (18)
the H1 neuron response. They are characterized by slow in-and Zaagman et al. (19)].
crease at low levels, saturation at high levels, and a rapid
increase spanning about 2 log units of mean luminance atDependence on Spatial Frequency
intermediate levels. The range of the response of H1 does also

Equation (8) predicts a sinusoidal mean steady-state response cover about 2 log units of mean luminance from threshold to
with respect to the spatial frequency of a moving grating. saturation [see Eckert (18) and pp. 523–559 in Ref. 14]. This
Since the period of this sinusoid, with respect to spatial fre- is different from the saturation at the photoreceptor level,
quency f s, is equal to 1/�s (cycles/degree), responses in the which spans a range of 5 log units of mean luminance. How-
range (1/2 �s) � f s � (1/�s) are equal and opposite in sign to ever, since the saturation phenomenon may occur at all levels
responses in the range f s � (1/2 �s). This is due to the limita- of the complex architecture of the fly visual system, we cannot
tions on spatial resolution set by the sampling theorem. That know for sure if the saturation of the DSMD neurons with
is, the SIMD can best resolve a grating whose spatial wave- respect to mean luminance is caused by saturation of EMDs
length � is at least twice as long as �s the distance separating feeding them, as suggested here.
the two sampling channels (i.e., 2 �s � �). For a spatial wave-
length � such that, �s � � � 2 �s, the sign of sin(2��f s�s)

Adaptation of Contrast Sensitivity Function
becomes opposite that of �. Direction selectivity then reverses
sign and the detector signals the wrong direction of motion. In spatial vision, sine-wave gratings are frequently used to

describe the perceptual spatiotemporal frequency response,This phenomenon, known as spatial aliasing, is well known
for insect visual systems. Eckert (18) found, by extracellular which is commonly known as the contrast sensitivity function

(CSF). The CSFs of visual systems are obtained by determin-recordings from the H1 neuron, that when the spatial wave-
length of the moving pattern is smaller than twice the inter- ing the inverse of the threshold contrast (i.e., the contrast

sensitivity) at a set of points in the spatial frequency domain.ommatidial angle, the response properties with regard to the
direction of pattern movement are reversed: Regressive mo- Dvorak et al. (21) have measured at different mean lumi-

nance levels the spatial CSF for the H1 DSMD neuron in thetion causes inhibition and progressive motion causes excita-
tion. However, when Buchner (20) measured behavioral re- fly lobula plate. They found that the form of the CSF varies

markedly with mean luminance; in particular, the CSF in-sponses of flies, they were not completely periodic; the
negative responses measured for �� � � � 2��, where �� creases as the mean luminance level of the stimulus is raised.

At high mean luminance levels, the CSF peaks at a certainrepresents the effective interommatidial angle, were smaller
in magnitude than the positive responses measured for � � spatial frequency and falls off at higher and lower frequen-

cies. Moreover, the high frequency roll-off becomes less steep2��.
So far we have always assumed that the receptors have a and the peak frequency shifts toward lower frequencies as

mean luminance decreases.needle-shaped spatial sensitivity distribution (i.e., each recep-
tor samples the visual field at a single point). However, real The adaptation, or change, of CSF upon change of mean

luminance level can be accounted for by considering the re-photoreceptors have instead an approximately Gaussian (bell-
shaped) spatial or angular sensitivity distribution. They get sponse of a SIMD to a moving sinusoidal grating and the light

adaptation phenomena that occur at the photoreceptor level.their input by spatially integrating the luminance distribu-
tion located within their range and hence act as a spatial low- Equation (8), with a � b � 15 and k � 10, was used to com-

pute normalized CSFs at different values of L0. The CSFpass filter. The cutoff frequency of the low-pass filter is deter-
mined by the width of the spatial distribution at half maxi- curves in Fig. 4 were obtained by including the effect of spa-

tial filtering that takes place at the receptor level—that is, bymum or the acceptance angle, ��. If a sine-wave grating is
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Figure 4. CSF of a SIMD as computed from Eq. (8) for different mean
luminance levels: L0 � 5, 2, 1, 0.5, and 0.25 (from top to bottom).
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2
. Figure 4 mean luminance results in pushing the peak frequency of the

CSF to a lower value. It is well known that in insect com-clearly demonstrates that the CSF of the SIMD adapts to
mean luminance changes in the same way the CSF of DSMD pound eyes the effective contrast transfer parameter, ��, in-

creases upon lowering the mean luminance level L0. This in-(the H1 unit) neuron does. Using an effective contrast trans-
fer parameter (the acceptance angle) �� that depends on crease of �� is due to a mechanism of adaptation to low light
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Figure 5. Response of the neural network model (Fig. 1) to stimula- Figure 6. Response of the neural network model (Fig. 1) to stimula-
tion of a pair of adjacent receptors with a sequence of flashes mimick- tion of a pair of adjacent receptors with a sequence of flashes mimick-
ing motion in the preferred direction. (a) ON-OFF response: The first ing motion in the null direction. (a) ON-OFF response: The first flash
flash is turned on at t � 100 ms and turned off at t � 200 ms followed is turned on at t � 100 ms and turned off at t � 200 ms followed by
by the second flash, which is turned on at t � 200 ms and turned off the second flash, which is turned on at t � 200 ms and turned off at
at t � 300 ms. (b) ON response: The onset of the first flash (t � 100 t � 300 ms. (b) ON response: The onset of the first flash (t � 100 ms)
ms) is followed by the onset of the second flash (t � 200 ms), and both is followed by the onset of the second flash (t � 200 ms); both flashes
flashes are turned off at t � 300 ms. (c) OFF response: Both flashes are turned off at t � 300 ms. (c) OFF response: Both flashes are
are turned on at t � 0 ms, but the first flash is turned off at t � 100 turned on at t � 0 ms, but the first flash is turned off at t � 100 ms
ms and the second is turned off at t � 200 ms. and the second is turned off at t � 200 ms.
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Figure 7. Response of the neural network to a jumping edge. At t � 0 the edge, whose orienta-
tion (black-white or white-black) is indicated above the plot, appears over the pair of adjacent
receptors. After 200 ms, it jumps by one receptor to the right, (a) and (b), or to the left, (c) and (d).

levels that results in widening the angle subtended by the columns. Here, the interaction used at the EMD level is a
SIMD, Eq. (2), with parameter values a � 50, � � 40 m, andphotoreceptive waveguides, hence increasing absolute sensi-

tivity by sacrificing spatial acuity (for more details on adapta- k � 20.
The spatial integration of local movement signals at thetional mechanisms in compound eyes, see, e.g., pp. 30–73 in

Ref. 13 and pp. 391–421 in Ref. 10). level of the wide-field DSMD neurons is, in principle, almost
linear if the activation of single input channels produce only
minute voltage changes at the output sites of the dendrites.Response to Sequential Flashes and Jumps
If we assume it to be linear, then the effects of the excitatory

In this subsection simulation results are presented that show
and inhibitory synaptic contacts of the individual EMDs with

that a DSMD architecture (Fig. 1) based on the SIMD can
the DSMD neurons are, respectively, additive and sub-account for the recorded responses of the H1 neuron to a vari-
tractive. Thus, if we denote by mEj(t) the signal mediated byety of moving stimuli. In the simulations, the input signal is
the jth excitatory synapse and by mIj(t) the signal mediatedpassed through a log transformation, representing the trans-
by the jth inhibitory synapse, then, to first order, the responseformation at the photoreceptor level. A laminar unit (L-Unit,
of the DSMD neuron is given byFig. 1) is simulated as a highpass filter (see, e.g., pp. 213–234

in Ref. 13). After the signal is magnified, it is rectified to pro-
duce transient responses of ON and OFF nature; there is R(t) =

∑
j

mE j (t) − mI j (t) (11)
strong evidence that, in the insect visual system, the motion
signals are carried through separate ON and OFF channels

where the summation operation is carried over all j indices[see pp. 360–390 in Ref. 13 and also Horridge and Marcelja
for both ON and OFF channels, and the rates of change of(22)]. The outputs of the ON and OFF channels are then low-
mEj(t) and mIj(t) are given by Eq. (2). Here the response R(t)pass filtered and passed laterally to interact, respectively,

with the outputs of the ON and OFF channels in the adjacent represents the actual membrane voltage, or deviation of the
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Figure 8. Response of the neural network to a jumping thin bar. At t � 150 ms, a bright or
dark bar appears over one receptor and disappears at t � 175 ms. Then at t � 200 ms, the same
bar reappears over a neighboring receptor to the right (a) and (b), or to the left (c) and (d). The
responses are directional regardless of bar contrast.

membrane voltage from the resting potential, rather than the Fig. 6. These responses are equal but of opposite polarity to
those shown in Fig. 5; they are inhibitory responses. The re-firing rate of the neuron. To obtain the response as firing rate,

the output of the DSMD neuron should be passed through a sponses in Figs. 5 and 6 are similar to those recorded by Fran-
ceschini and his colleagues from the H1 neuron (pp. 360–390rectifying nonlinearity.
in Ref. 13).

Response to Sequential Flashing. Simulations of the neural
network responses to light flashes showed that stimulating a Response to Jumps. The responses of the neural network to

an object (an edge or a bar) jumping over a distance equal topair of receptors singly or synchronously does not evoke any
response in the DSMD neuron (results not shown). However, the distance between neighboring receptors are presented in

Figs. 7 and 8. Figure 7 shows that, regardless of its orienta-stimulating the two receptors with a sequence mimicking mo-
tion in the preferred direction induces an excitatory response tion, an edge jumping in the preferred direction induces exci-

tation [Figs. 7(a) and 7(b)], while an edge jumping in the null(Fig. 5). Note that the response of the network is always time
locked to the onset or offset of the second flash. Note also that direction causes inhibition of the DSMD-neuron [Figs. 7(c)

and 7(d)]. The dependence of directionality upon contrast wasthe response to a sequence of nonoverlapping light flashes,
with a short time lag between their onsets, consists of two tested by jumping a thin light or dark bar in the preferred

and null directions. The results are presented in Fig. 8, whichprominent peaks [Fig. 5(a)]; the first peak is caused by the
onset sequence [Fig. 5(b)] and the second one by the offset shows that the preferred direction of the neural network

model does not depend on the sign of contrast. In other words,sequence [Fig. 5(c)]. The responses of the network to se-
quences mimicking motion in the null direction are shown in both a bright and a dark bar evoke an excitatory response
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when jumping in the preferred direction [Figs. 8(a) and 8(b)], the light bar constitutes a preferred OFF sequence in Fig.
10(b), the response is inhibitory. The reason for reversal ofand an inhibitory response when jumping in the null direction
directionality in Figs. 10(b) and 10(d) is that the sequence[Figs. 8(c) and 8(d)]. Notice, though, that the dark bar elicits
caused by the onset and offset of the black and white bars,a stronger response than the bright bar does. This phenome-
respectively, evokes only a weak excitatory [Fig. 10(b)] or in-non has also been observed in the recorded responses of the
hibitory [Fig. 10(d)] response in the DSMD neuron, for theH1 neuron of Calliphora stygia by Horridge and Marcelja (22),
time lag of the sequence is too long (150 ms). This weak re-who also found that the directionality of the H1 neuron does
sponse is dominated by an opposite ON response induced bynot change with edge orientation or bar contrast (Figs. 2 and
the simultaneous appearance and disappearance of the white5 in Ref. 22). However, they found that the H1 neuron may
and black bars, respectively. Since the ON response causedlose its directionality by reversing the contrast of the jumping
by the offset of the black bar is not exactly the same as thebar. More specifically, when there is a time lag during the
ON response caused by the onset of the white bar, there is anjump the H1 neuron preserves its directionality (Fig. 5 in Ref.
imbalance between the excitatory and inhibitory signals fed22, but when there is no time lag (i.e., the second bar ap-
to the DSMD neuron—two adjacent EMDs are inhibited si-pears—contrast reversed—simultaneously with the disap-
multaneously, but their two immediate neighbours are not—pearance of the first one), the H1 neuron seems to lose its
which gives rise to an excitatory or inhibitory ON response.directionality (Fig. 6 in Ref. 22).
The opposite happens when reversing the contrast of the barsThe responses of our neural network model to bars that
[Fig. 10(c)].reverse contrast at the jump are depicted in Figs. 9 and 10.

Despite contrast reversal, the network preserves its direction-
ality when there is a time lag between the disappearance and ELECTRONIC ANALOGS OF CYBERNETIC MODELS
reappearance of the bar (Fig. 9). Yet the network may lose its
directionality if there is no time lag during the jump (Fig. 10). Since cybernetics is the parallel study of living organisms and

machines, these parallels can both inspire and guide develop-Although the onset of the dark bar followed by the offset of
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Figure 9. Response of the neural network model to contrast reversal. The stimulus conditions
are the same as those of (Fig. 8), except for reversal of contrast at the jump (i.e., a black bar
becomes white and vice versa). The responses are directional in spite of contrast reversal.
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Figure 10. Response of the neural network to contrast reversal. At t � 50 ms, a bar appears
over one receptor. Then, at t � 200 ms, the bar reappears, with its contrast reversed, over a
neighboring receptor. Here, a jump in the preferred direction can cause a negative response (b),
and a jump in the null direction can cause a positive response (d).

ment of the latter based on the former. Nerve cells’ conduc- work devices, a network of feedforward (literally as written
in Eq. 1) interconnection is synthesized. If the other networktance variation leads to simple analog electronic circuits that

possess rich signal processing capabilities. Similar to the de- devices, in turn, receive their gate voltages from the outputs
of the first set, a feedback interconnection occurs. In general,velopments of the previous section, simple components are

combined to demonstrate increasingly more complicated pro- the design is more direct using the feedforward strategy, but
of course the feedback strategy carries with it certain ro-cessing, such as motion detection. Parallelism, fault toler-

ance, simplicity of each processing unit, and repeatability of bustness, insensitivity to parameter change, and fault toler-
ance. It is further a point that biological nerve networks maythe circuits make hardware implementation of the nerve cell

models feasible. One important aim of such implementations also be feedback or feedforward. In many experimental stud-
ies the determination of which alternative is actually ‘‘wired’’is to integrate sensing and processing units on the same sub-

strate, thus increasing the speed of operation and reducing is a goal, but there is no clear dominance of one strategy, nor
evidence for optimization based on cost functions in the shortbandwidth necessary to transmit the sensed information to

higher levels of processing, much as the retina performs this term. Perhaps more important than these considerations are
the nonlinearities of the networks. These are primarily thefunction for higher processing in the cerebral cortex. The com-

munications bottleneck is avoided by performing much of the multiplicative terms such as those in Eq. (1). These accom-
plish fractional power automatic gain control, an approxima-signal processing in the sensor itself. Networks of the kind

described by Eq. (1) contain multiplicative terms, which arise tion to the Weber–Fechner law originally established in psy-
chophysics of human observers and shown to be in the visualfrom the control of conductance in nerve membrane (23). It is

natural to utilize control of shunting paths of current in elec- system primarily due to automatic gain control by the photo-
receptors (23). The multiplicative terms in electronic imple-tronic implementations, such as the field-effect transistor

(FET) and complementary metal-oxide semiconductor mentations clearly optimize the use of the limited dynamic
range of devices in comparison with linear implementations(CMOS) devices, in their ‘‘triode’’ or sub-pinch-off regions. If

the gate voltages are received from the outputs of other net- (Fig. 6, p. 469 in Ref. 10). But further important adaptation



CYBERNETICS 491

15. K. Kirschfeld, The Visual System of Musca: Studies on Optics,mediated by these multiplicative terms is found in the tempo-
Structure and Fusion, in R. Wehner (ed.), Information Processingral and spatial contrast enhancement and ‘‘tuning,’’ which
in the Visual Systems of Arthropods, New York: Springer-Verlag,changes with mean light level in a systematic and near-opti-
1972, pp. 61–74.mal manner (23). This is related to the relatively higher am-

16. H. B. Barlow and W. R. Levick, The mechanism of directionallyplification of higher temporal and spatial frequencies by the
selective units in the rabbit’s retina, J. Physiol., 178: 477–504,visual systems at higher light levels (as seen in the adapta-
1965.tion of the CSF in Fig. 4), where more photons are available

17. A. Bouzerdoum, The elementary movement detection mechanismto be processed and not simply counted (23). In the early work
in insect vision, Proc. R. Soc. Lond., B339: 375–384, 1993.

of David Marr on early vision, an underlying center-inhibitory
18. H. Eckert, Functional properties of the H1-neurone in the thirdsurround spatial impulse response was invoked (24). How-

optic ganglion of the blowfly, Phaenicia, J. Comp. Physiol., A-135:
ever, these biological, mathematical, and electronic analyses 29–39, 1980.
show that such spatial and temporal impulse responses must 19. W. H. Zaagman, H. A. K. Mastebroek, and J. W. Kuiper, On the
adapt and change their configuration to become more differ- correlation model: performance of a movement detecting neural
entiating in brighter light (25,26). This is simply a strategy element in the fly visual system, Biol. Cybern., 31: 163–168,
to make use of the available optical information in order to 1978.
see better (27,28). 20. E. Buchner, Elementary movement detectors in an insect visual

system, Biol. Cybern., 24: 85–101, 1976.
21. D. Dvorak, M. V. Srinivasan, and A. S. French, The contrast sen-
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