DECISION ANALYSIS

INTRODUCTION

Decision analysis is engineering applied to decision mak-
ing. The term decision analysis is typically used to refer
to a set of analytical tools applied by decision analysts to
arrive at recommendations for action. While these tools
are important, identifying them with decision analysis is
like identifying carpentry with hammers and saws. More
important than the tools is the structured process of de-
composition, analysis and synthesis that decision analysts
apply to decision problems. Fundamentally, decision anal-
ysis is a way of thinking. Like all engineering disciplines,
decision analysis is based on application of the scientific
method and rational analysis. But decision analysis makes
explicit what other engineering disciplines often leave im-
plicit, that rationality and the scientific process are tools
for helping to devise policies and construct solutions that
serve our values. Decision analysis forms a bridge between
the rational world of structured, analytic thinking and the
esthetic world of values and feelings. Properly applied, the
decision analysis process improves individual, organiza-
tional and societal decision making by helping to construct
decision policies that serve our core values.

The decision analysis process decomposes a decision
problem into components, analyzes the components, syn-
thesizes them into a decision model, and uses the model to
evaluate options and recommend actions. Decomposition
focuses on three basic questions:

1. What do I value? The decision maker considers the
fundamental objectives served by the decision, de-
velops ways to measure how well these objectives are
achieved, and organizes the information into a pref-
erence model for evaluating policy options.

2. What can I do? The decision maker identifies a set of
policy options under consideration.

3. What might happen? The decision maker considers
the consequences of the options under consideration
and evaluates how well the consequences meet the
fundamental objectives. When consequences are un-
certain and the uncertainty has an impact on which
option is preferred, an uncertainty model is con-
structed. Options for gathering information to reduce
uncertainty are identified and considered.

Decision analysis follows the standard phases of the en-
gineering process: problem definition, analysis, design of
a solution, criticism and refinement of the proposed solu-
tion, and implementation. Problem definition involves set-
ting the decision context: who are the actors, what are their
roles, whose objectives (individual or organizational) are to
be served by the decision, how broad or narrow is the scope
of options to be considered, what constraints must be taken
into account, what is the time frame for decision making
and policy implementation, what sources of information
are available. The analysis phase constructs a preference
model and/or an uncertainty model. In the solution design

phase the model is applied to evaluate candidate policy op-
tions and select a preferred option. Solution criticism and
refinement involves examining the results of the model,
performing sensitivity analysis on key inputs, evaluating
how well the model captures the essentials of the problem
for the purpose at hand, and making a final policy selec-
tion. The final step of a decision analysis is implementation
of the chosen option. Although often omitted from texts on
decision analysis, strategies for implementation and exe-
cution monitoring are often as important to achieving the
decision maker’s objectives as identifying the best policy.

PREFERENCE MODELING

In decision analysis, preferences are modeled by a utility
function that measures the decision maker’s relative de-
grees of preference for different consequences. Preference
modeling is the process of constructing a utility function
that captures the decision maker’s values.

The first step in preference modeling is identifying the
fundamental objectives for the decision context. It is im-
portant to distinguish fundamental objectives, which are
intrinsically important to the decision maker, from means
objectives, which are important only to the degree to which
they support fundamental objectives. Fundamental objec-
tives are decomposed hierarchically. A good final set of
objectives is complete, concise, non-redundant, separable,
measurable, operational, and controllable.

Next, attributes of value are defined to measure how
well outcomes satisfy each of the fundamental objectives.
The set of attributes should cover the fundamental objec-
tives completely but without redundancy. Once attributes
have been defined, a single attribute utility function is con-
structed for each attribute, and these are aggregated into
a multiattribute utility function. The model is constructed
according to by following a structured elicitation process.
The preference elicitation process is based on constraints
imposed by the mathematics of utility theory, insights and
methods from experimental psychology and psychometrics,
and the distilled wisdom of years of decision analysis prac-
tice. The decision maker provides judgments that enable
the modeler to select an appropriate functional form for
the utility function and determine parameters of the func-
tion (most notably, the shape of the single-attribute utility
curves and the relative weight to be given to different at-
tributes). The most commonly applied functional form for
the multiattribute utility function is a linear weighted av-
erage of single-attribute utility functions:

M(X) = Z U),'Ml‘(.xl‘) (1)

In this expression, u;(x;) is the single-attribute utility func-
tion for the ith attribute of value. It is commonly specified
to range on a scale between 0 (the utility of a “reasonable
worst” option) and 1 (the utility for a “reasonable best” op-
tion). The weights are positive numbers that sum to 1. The
weights measure of the relative value to the decision maker
of “swings” from reasonable worst to reasonable best on the
respective attributes. When the problem involves uncer-
tainty, the utility function reflects not just ordinal prefer-
ences but also attitude toward risk. A concave utility func-
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tion on a numerical attribute reflects aversion to risk, i.e.,
the decision maker prefers a certain option to a gamble
with the same expected value. A linear utility function is
risk neutral; a convex utility function is risk-seeking.

OPTION GENERATION

Some decision problems involve selecting from among a
discrete, denumerable set of options. For such problems,
option generation means developing the list from which
an option is to be selected. In a portfolio problem, the op-
tions under consideration are subsets of a set of elementary
options. In other problems, the option space is defined im-
plicitly by constraints defining a feasible region of solutions
in some solution space, or by operators applied to options
to generate other options.

Option generation and preference modeling support
each other. An explicit focus on values and fundamental
objectives helps to spur creative generation of new options
for meeting fundamental objectives, avoiding a narrow fo-
cus on a few salient options. Attention to fundamental ob-
jectives helps to mitigate the tendency to underweight or
ignore options that meet fundamental objectives but score
poorly on salient means objectives. Comparing options to
see how they differ can help to identify missed objectives.
Examining objectives on which an otherwise good option
scores poorly can help to generate ideas for modifying the
option to address its shortcomings.

UNCERTAINTY MODELING

Uncertainty over consequences is measured by a probabil-
ity distribution that quantifies the decision maker’s degree
of belief in different consequences. Decision analysis em-
braces the subjectivist view of probability, in which prob-
ability measures degrees of belief in propositions about
which the decision maker is uncertain. Uncertainty model-
ing is useful because it provides a structured and theoret-
ically sound approach to sort through the implications of
different contingencies, organize information about their
impact on the decision, and summarize them to arrive at
an overall evaluation of an option.

To build an uncertainty model, the decision maker first
identifies the key uncertain contingencies that affect the
decision. A qualitative assessment is made about how
much the uncertainties affect the choice of which option
is preferred. Uncertainties that matter are selected for
further modeling. Uncertain contingencies are modeled as
random variables. A joint probability distribution is de-
fined to express the decision maker’s beliefs about the
uncertain contingencies. As with preference modeling, a
structured elicitation process is used to specify the un-
certainty model. Subjectivist Bayesian theory provides a
sound methodology for integrating empirical data with in-
formed expert judgment to form a model that accurately
reflects available knowledge about the uncertain contin-
gencies.

The uncertainty model may include contingencies
whose outcome is not known at the time the model is con-
structed but will be known at the time the choice is made.

The model is specified so that the recommended decision
policy may be contingent on these outcomes. Suppose X
is an uncertain contingency affecting value to the decision
maker and Y'is a related observable contingency whose out-
come depends probabilistically on X. If Y becomes known
before the decision is made, then the optimal decision is
based on the conditional distribution of X given Y, which is
computed from the prior distribution using Bayes rule:

P(Y|X)P(X)
P(Y)

The optimal policy may depend on which outcome occurs
forY.

PX|Y) = (2

MAXIMIZATION OF SUBJECTIVE EXPECTED UTILITY

Once preference and uncertainty models have been spec-
ified, the model is solved for the optimal policy, which is
the policy that maximizes the expected value of the util-
ity function, where the expectation is taken over the un-
certain contingencies. The principle of maximizing subjec-
tive expected utility can be derived mathematically from
various systems of axioms reflecting principles of rational
choice under uncertainty. Axiomatic justifications of ex-
pected utility maximization are compelling because of the
guarantee that a decision theoretically sound model is in-
ternally consistent and the chosen policy is optimal given
the modeling assumptions. From an engineering perspec-
tive, theoretical soundness is attractive but not sufficient.
More important is the judgment of experienced practition-
ers that the structured decomposition, analysis, and syn-
thesis process improves decision making by providing a
framework for organizing, analyzing, and integrating the
many factors involved in complex decisions.

DECISION TREES AND INFLUENCE DIAGRAMS

Two commonly applied visual and analytic tools for con-
structing a decision model are the decision tree and the
influence diagram. Figures 1 and 2 show an influence dia-
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Figure 1. Influence Diagram for Build or Buy Decision.
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Figure 2. Decision Tree for Build or Buy Decision.

gram and a decision tree for a decision of whether to satisfy
a client’s requirement with an off-the-shelf solution or to
design and build a custom solution. The two tools show
complementary views of the same problem. The influence
diagram displays independence relationships between un-
certain contingencies and the decomposition of utility into
attributes of value. For example, Figure 1 shows a decom-
position of value into cost and performance. Labor costs are
modeled as independent of technical risk. The decision tree
shows how the contingencies affect the decision options.
For example, Figure 2 shows that labor cost and techni-
cal risk affect the decision maker’s value for the build op-
tion but not for the buy option. Decision trees serve both
as graphical aids for specifying a model and as computa-
tional architectures for solving the model. The decision tree
of Figure 2 is shown in schematic form. A full decision tree
would have ten branches: a branch for each combination of
values of cost and performance under the build option, and
another branch for the buy option. A number of commercial
software packages exist for specifying and solving decision
models using decision trees and influence diagrams.

VALUE OF INFORMATION

Decision analysis provides a sound basis for evaluating
options for collecting information to resolve uncertainty.
When the optimal decision differs for different outcomes of
an uncertain contingency, resolving the uncertainty before
the decision is made may increase expected value to the
decision maker. The expected value of perfect information
(EVPI) is the increase in expected utility if costless infor-
mation is provided prior to the decision that completely re-
solves the uncertainty in question. The EVPI determines
an upper bound on the price the decision maker would be
willing to pay for information. The expected value of sam-
ple information (EVSI) is the difference in utility if a real-
istically achievable information collection option is imple-
mented.

SENSITIVITY ANALYSIS AND MODEL CRITICISM

It is a key tenet of decision analysis that the value of mod-
eling derives as much from the insight the decision maker
gains into the problem than from the answer provided by
the model. The modeling exercise helps the decision maker

to ensure that all relevant factors have been considered,
to integrate all available information in a consistent and
sound way, to reflect on how to trade off different compo-
nents of value, and to justify the decision to him/herself and
others. An important support to this process is sensitivity
analysis, in which inputs to the model are systematically
varied to observe the impact on the model’s recommen-
dations. Sensitivity analysis and the structured modeling
process help the decision maker to understand the reasons
for the model’s recommendations and to adjust the model
to make sure it incorporates all important concerns. While
the model and the modeling process provide inputs to the
decision, the ultimate responsibility for the decision lies
with the decision maker.

ADDITIONAL ISSUES IN DECISION ANALYSIS

The prototypical application of decision analysis is a sit-
uation in which a trained decision analyst works with a
single decision maker to build a model for a major, one-
time decision problem. As training in decision analysis be-
comes more widespread and as software tools become more
accessible, decision analysis can be practiced without the
intervention of the analyst, and becomes cost-effective for
more routine decision problems. An active area of research
is the development of technology for specifying reusable
template models and model components for commonly re-
curring problem types. While subjective expected utility
theory is a single-actor theory of optimal decision-making,
decision analysis is often applied in situations involving
more than one actor. Structured elicitation methods have
been developed for eliciting a consensus decision model
from a group of stakeholders. Ideas and methods from de-
cision analysis have been applied in the field of artificial
intelligence to develop inference, prediction, diagnosis, and
planning systems.
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