
MODELING AND SIMULATION

MODELS AND MODEL THEORY

A model is an entity that is used to represent some other
entity for some well-defined purpose. In this most general
sense, examples of models include:

� Mental models, such as the internalized conception of
a person’s relationships with the environment, used
to guide everyday behavior

� Iconic models, such as (a) a circuit diagram used to
represent the functional interconnection of electronic
components or (b) a map used to record geographical,
geological, or meteorological data

� Linguistic models, such as (a) a verbal protocol for
a biological experiment, or (b) a written specification
defining the purpose, requirements, and operation of
a software program

� Physical models, such as (a) a scale mock-up of an
airfoil used in wind-tunnel testing for a new aircraft
design or (b) an analog circuit developed to replicate
the neural activity of the brain

� Mathematical and computational models, such as (a)
the set of mass- and energy-balance equations that
predict the end products of a chemical reaction or (b)
the mathematical and logical relations embodied in a
computer program that simulates the behavior of an
electromechanical device

Models are a mainstay of every scientific and engineering
discipline. Social and management scientists also make ex-
tensive use of models. The specific models adopted in dif-
ferent disciplines differ in subject, form, and intended use,
and every discipline tends to develop its own approach and
techniques for studying models. However, basic concepts
such as model description, simplification, solution, and val-
idation are universal across disciplines.

Model theory (1) seeks a logical and axiomatic under-
standing of these common underlying concepts, indepen-
dently of their particular expression and any modeling
endeavor. At its core, the theory of models and model-
ing cannot be divorced from broader philosophical issues
that concern the origins, nature, methods, and limits of
human knowledge (epistemology) and the means of ratio-
nal inquiry (logic and the scientific method). Philosophical
notions of correlation and causality are central to model
theory.

For example, a department store may have data that
show that more umbrellas are sold on days when it rains
and fewer umbrellas are sold on days when the sun shines.
A positive correlation between the average number of um-
brellas sold each month and the average amount of rain
that falls in that month seems entirely plausible. A model
which captures this relationship might be used to predict
umbrella sales from a record of the amount of precipita-
tion received. Moreover, since it is easy to imagine that in-
creased precipitation causes customers to buy umbrellas,

this model also might be used to show how many more um-
brellas the store might sell if somehow customers could be
induced to believe that it would rain. The correlation also
holds in the opposite direction—we might well use the in-
verse model to predict the amount of precipitation received
based on a record of umbrella sales. However, it would be
difficult to support the idea that umbrella sales cause it to
rain. A model that shows how much more it would rain if
we could somehow increase umbrella sales clearly would
not be credible.

Models are pervasive in fields of inquiry simply because
a good model is more accessible to study than the actual en-
tity the model represents. Models typically are less costly
and less time-consuming to build and analyze. Variants
in the parameters and structure of a model are easier to
implement, and the resulting changes in model behavior
are easier to isolate, understand, and communicate to oth-
ers. A model can be used to achieve insight when direct
experimentation with the actual system is too demanding,
disruptive, or dangerous to undertake. Indeed, a model can
be developed to answer questions about a system that has
not yet been observed or constructed, or even one that can-
not be measured with current instrumentation or realized
with current technologies.

MATHEMATICAL SYSTEMS MODELS

Mathematical and computational models are particularly
useful because of the rich body of theory and wide range of
quantitative and computational techniques that exist for
the study of logical expressions and the solution of equa-
tions. The availability and power of digital computers have
increased the use and importance of mathematical mod-
els and computer simulation in all modern disciplines. A
great variety of programming languages and applications
software is now available for modeling, data reduction and
model calibration, computational analysis, system simula-
tion, and model visualization. Icon-based, drag-and-drop
programming environments have virtually eliminated the
need for writing code and have automated many of the
other routine tasks formerly associated with developing
and analyzing models and simulations. Given these pow-
erful tools, many applications that formerly relied on other
types of models now also use mathematical models and
computer implementations extensively.

Much of the current thinking about models and mod-
eling is intimately tied to mathematical system theory.
Broadly, a system is a collection of elements that interact to
achieve some purpose. The boundary of a system separates
the elements internal to the system from the environment
external to the system.

The key attributes of a system are represented by a set
of parameters, with essentially fixed values, and three sets
of system variables, which may assume different values at
different times and/or at different locations in space. The
action of the environment on the system is defined by a set
of input or predictor variables. Inputs typically are repre-
sented by the input vector u ∈ U, where the set U of all
values that can be assumed by the input is called the in-
put space. The internal condition of the system is defined

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright © 2007 John Wiley & Sons, Inc.

2 Modeling and Simulation

Figure 1. Mathematical systems model showing state and output
equations and the relationships among input, state, and output
variables. Arrows indicate direction of causal relationships.

by a set of state variables represented by the state vector
x ∈ X, where X is the state space. The action of the sys-
tem on the environment is defined by a set of output or
predicted variables represented by the output vector y ∈ Y,
where Y is the output space. Variations in the system vari-
ables over time and/or space are ordered by a set of index
variables represented by the vector k ∈ K, defined on the
index set K.

The relationship between system inputs and outputs is
determined by the parameters and structure of the sys-
tem, as mediated by the independent variables and sys-
tem state. In other words, the input alters the internal
state of the system and the altered state is observed in
turn through changes in the output for various values of
the independent variables. These relationships are shown
in Fig. 1. The state equation

f : (x, u, k) → x

describes how the new state is determined from the inputs
and current state. The output equation

g : (x, u, k) → y

describes how the current output is determined from the
current input and state.

The pattern of changes exhibited by the system output
in response to any particular series of inputs is called an
output trajectory, (ui , yi). The collection of all possible tra-
jectories {(ui , yi),∀i} represents the behavior of the system.
Clearly, this behavior is generated by the functions f and
g and is the fundamental interest in model-based studies.

In this formalism, a system is completely determined
by the algebraic structure {U, Y, X, f, g, K}. If a system
So has the structure {Uo , Yo , Xo , fo , go , Ko}, then a model
of So is just some other system Sm with structure {Um ,
Ym , Xm , fm , gm , Km}. The model system Sm is used as a
proxy for object system So for some well-defined purpose.
Clearly, there can be many alternative models Sm(i) for So ,
i = 1, 2, Model theory deals in a fundamental way with
the nature and adequacy of the correspondence of these
alternative systems, depending on the intended purpose of
the modeling exercise.

CLASSIFICATION OF SYSTEM MODELS

Mathematical models are distinguished by criteria that de-
scribe the fundamental properties of model variables and
equations. These criteria in turn prescribe the appropri-

ate theory and mathematical techniques that can be used
to study and or solve alternative models. These criteria
and the classification of models based on these criteria are
given in the following subsections.

Number of System Variables

Models that include a single input, state, and output are
called scalar models, because the system-dependent vari-
ables assume scalar values. Models that include multiple
system variables are called multivariate models or MIMO
(multiple-input, multiple-output) models.

Continuity of the System Variables

Continuous-state models are those in which the system
variables are continuously variable over a (finite or in-
finite) range of permissible values; that is, U, Y, and
X are continuous vector spaces for real-valued vectors.
Continuous-state models are typical of physical systems
at macroscopic resolution, where key dependent variables
might include flows (currents, forces, fluid flows, and heat
fluxes) and potentials (voltages, velocities, pressures, and
temperatures). Discrete-state models are those in which the
system variables assume only a countable number of dif-
ferent values; that is, U, Y, and X are countably finite or
countably infinite vector spaces. Discrete-state models are
typical of sample-data systems, including computer control
and communication systems, as well as systems in which
variables are measured naturally in terms of item counts
(e.g., jobs, packets, parts, or people).

Number of Index Variables

A fundamental distinction can be made between mathe-
matical models based on the number of index variables
incorporated within the model. Static models relate the
values of the input to the corresponding values of the
output, without explicit reference to the index set K. In
many cases, static models are used to organize and sum-
marize experimental data, derived from empirical tests or
generated by computer simulations. In contrast to static
models, dynamic models seek to explain the behavior of
a system in response to changes over time and/or space.
Lumped-parameter dynamic models involve a single in-
dex variable, most often time. Lumped-parameter mod-
els are common in circuit design and control engineering.
Distributed-parameter dynamic models involve multiple
index variables, most often time and one or more spatial
coordinates. Distributed-parameter models are common in
the study of structures and of mass and heat transport.

Continuity of the Index Variable

In continuous-time dynamic models, the system variables
are defined over a continuous range of the index variables,
even though the dependence is not necessarily described by
a mathematically continuous function. Continuous-state,
continuous-time models (sometimes called analog models)
are the staple of classical engineering science. In discrete-
time dynamic models, the system variables are defined only
at distinct instants of time. Discrete-time models are typi-
cal of digital and computer-based systems. In discrete-event

Modeling and Simulation 3

dynamic models, the index variable is a discrete index
which references a set of events. The events are instan-
taneous (they take no time to occur), strictly sequential
(no two events occur at exactly the same instant of time),
and asynchronous (the time between events can vary). The
occurrence of events typically is determined by the inter-
nal logic of the system and the system state changes only
in response to these occurrences. Discrete-event models are
typical of a wide range of man-made systems, where queu-
ing for shared resources is a key determinant in the behav-
ior and performance of the system. These include models
typically developed for the operation of manufacturing, dis-
tribution, transportation, computer and communications
networks, and service systems.

Linearity and Superposition

Consider a system with arbitrary trajectories (ui , yi) and
(uj , yj). If the output to a linear combination of the inputs
is simply a linear combination of the independent outputs
[i.e., if for some constant vectors ai , aj , bi , and bj the pair
(aiui + ajuj , biyi + bjyj) also is a valid trajectory], then the
principle of superposition applies for these inputs. Systems
for which superposition applies over the range of inputs of
interest are represented by linear models over this range.
Nonlinear models, for which superposition does not apply,
typically are significantly more difficult or even impossible
to solve analytically. For this reason, nonlinear models of-
ten are approximated by linear models for analytical ease.

Treatment of Uncertainty

Models in which the parameters and variables can be
known with a high degree of certainty are called deter-
ministic models. While the values of system attributes are
never known with infinite precision, deterministic models
are a common and useful approximation when actual un-
certainties are small over the range of values of interest for
the purpose of the modeling exercise. Probabilistic models
are used when significant uncertainty exists in the values
of some parameters and/or variables. Model parameters
and variables are expressed as random numbers or pro-
cesses and are characterized by the parameters of proba-
bility distributions. Stochastic models are those which are
both probabilistic and dynamic.

Mixed Classifications

Models that include combinations of continuous-time,
discrete-time, and/or discrete-event subsystems are called
hybrid models. Hybrid models are most common in com-
puter control and communication systems, where phys-
ical devices represented by continuous-time, continuous-
state models and computer control device are represented
by discrete-time models. Continuous variables are sam-
pled and quantized using A/D (analog-to-digital) conver-
sion, control action is determined digitally, and control
signals are reconstructed using D/A (digital-to-analog)
conversion. Hybrid models sometimes are approximated
as entirely continuous or entirely discrete.

SOME COMMON MODEL FORMS

Response Surfaces

Static models do not make explicit reference to index vari-
ables. If explicit reference to the state variables also is sup-
pressed, then the resulting static model reduces to a set of
coupled, input–output equations of the form

y = f (u)

Experimenters frequently employ models of this form to or-
ganize field or simulation data, to explore the correspond-
ing correlation between system inputs and outputs, to hy-
pothesize causal relationships for the underlying system,
or to summarize data for efficient storage, search, or opti-
mization. When used for this purpose, models of this form
are called response surfaces (2). A response surface can be
determined by regression over a sample of n observations of
input–output pairs (uj , yj), j = 1, n. The input and observed
output values can be scaled using alternative transforma-
tions α(uj) and β(yj) and alternative functional forms f for
the surface

β(yj) = f (α(uj))

can tested. The objective is to find a surface that provides
a good fit between the data the input–output values pre-
dicted by the model. Response surface methodology (RSM)
has been developed in recent years to build empirical mod-
els and to apply these models in model-based optimization
studies.

For example, Fig. 2 shows the discrete-time trajectories
of umbrella sales and precipitation each month for one cal-
endar year. The scatter plot in Fig. 3 illustrates the corre-
lation between sales and precipitation. The straight line
in Fig. 3 is the response surface y = 70.1u, where monthly
precipitation (in inches) is the input u and umbrella sales
(in units) is the output y.

Analog State-Variable Models

Continuous-state, continuous-time, lumped-parameter
models are sometimes called analog models. Analog mod-
els are natural representations for a great many physical
systems, including systems with electrical, mechanical,
fluid, and/or thermal subsystems. As such, analog models
are a staple of classical engineering science. The solution
of an analog model relates the current value of the system
output (at some arbitrary time t) to the current value of
the system state through the output equation

y(t) = g(x(t))

The current value of the state is determined from the
known initial value of the state (at some earlier time t0)
based on the history of inputs and states over the interval
from t0 to t:

x(t) = x(t0) +
∫ t

t0

f (x(τ), u(τ), τ)dτ

4 Modeling and Simulation

Figure 2. Discrete-time trajectories of umbrella sales and precipitation each month for one calendar year.

Figure 3. Scatter plot illustrating the correlation between monthly sales and precipitation. The straight line is the response surface
y = 70.1u, where monthly precipitation (in inches) is the input u and umbrella sales (in units) is the output y.

This equation is the solution to the state-variable model,
represented by the vector differential equation

dx

dt
= f (x(t), u(t), t) (1)

For linear, time-invariant systems, the state-variable
model has the form

dx

dt
= Ax(t) + Bu(t)

that is readily solved by standard techniques. State-
variable methods of this form are the basis for modern
control theory.

Finite-Element Models

Continuous-time, continuous-state, distributed-parameter
models commonly arise in the study of electrical transmis-
sion, mass and heat transport, and the mechanics of com-
plex structures and structural components. These models
are described by partial differential equations, containing
partial derivatives with respect to each of the index vari-
ables. These equations typically are so complex that direct
solutions are difficult or impossible to obtain. To circum-
vent this difficulty, distributed-parameter models can be
approximated by a finite number of spatial “lumps,” each
characterized by some average value of the state within the
lump. By eliminating the independent spatial coordinates,

Modeling and Simulation 5

Figure 4. Heat transfer through a wall: (a) Distributed param-
eter model and, (b) approximating lumped-parameter model for
three state variables.

the result is an analog model of the form previously de-
scribed. If a sufficiently fine-grained representation of the
lumped microstructure can be achieved, an analog model
can be derived that will approximate the distributed model
to any desired degree of accuracy. Increasing the granu-
larity of the approximation requires increasing in the di-
mensions of the analog model, however, with a resulting
compromise between model accuracy and precision and
the difficulty of solving higher-order differential equations.
Figure 4 illustrates the approximation of a distributed pa-
rameter model for temperature in a one-dimensional wall,
where θ(x, t) is the temperature depth x and time t, with a
lumped-parameter model for three state variables, where
θi (t) is the temperature at depth xi , i = 1, 2, 3, also at
time t.

Discrete-Time State-Variable Models

Discrete-time models are natural representations for
computer-based systems, in which operations are synchro-
nized by an internal digital clock, as well as for many so-
cial, economic, and management systems, in which data
are sampled and recorded at intervals according to a sur-
vey schedule. The solution of a discrete-time model relates
the current value of the system output (at some arbitrary

instant tk) to the current value of the system state

y(k) = g(x(k))

The current value of the state is determined from the
known initial value of the state (at some earlier instant t0)
based on the history of inputs and states over the k steps
from t0 to tk

x(k) = f (k)(x(0), u(0), t0)

The k-step transition function f (k) is the solution to the
state-variable model represented by the first-order vector
difference equation

x(k + 1) = f (x(k), u(k), k)

For linear time-invariant systems, the discrete-time state-
variable model has the form

x(k + 1) = Ax(k) + Bu(k)

which is readily solved by standard techniques, very sim-
ilar to those for differential equations. Perhaps more im-
portantly, nonlinear discrete-time state variables can be
solved iteratively. Beginning with the known initial state,
successive values of the state can be computed from the
preceding (computed) value of the state and the corre-
sponding, known value of the input as

x(1) = f (x(0), u(0), 0)
x(2) = f (x(1), u(1), 1)

...
x(k) = f (x(k − 1), u(k − 1), k − 1)

x(k + 1) = f (x(k), u(k), k)

Implementation of this iterative or numerical solution
strategy on a digital computer is straightforward, allowing
extraordinarily complicated and otherwise difficult differ-
ence equations to be solved quickly and easily for specific
inputs, initial conditions, and parameter values. Moreover,
differential equations that are difficult or impossible to
solve analytically can be approximated by difference equa-
tions, that in turn can be solved numerically. This compu-
tational approach to solving state-variable models is the
basis for continuous system simulation, described in the
following.

SIMULATION

Simulation is a model-based approach to the design,
analysis, and control of systems which is fundamentally
experimental. In principle, computer simulation is much
like running laboratory or field tests, except that the phys-
ical system is replaced by a computational model. Broadly
speaking, simulation involves creating a model which im-
itates the behavior of interest; running the model to gen-
erate observations of this behavior; analyzing the observa-
tions to understand and summarize this behavior; testing
and comparing alternative designs and controls to improve
system performance; and validating, explaining, and sup-
porting the simulation outcomes and recommendations.

A simulation run or replication is a controlled experi-
ment in which a specific realization of the model is manip-

6 Modeling and Simulation

ulated in order to determine the response associated with
that realization. A simulation study always comprises mul-
tiple runs. For deterministic models, one run must be com-
pleted for each different combination of model parameters
and/or initial conditions under consideration. The gener-
alized solution of the model then must be inferred from a
finite number of such runs.

For stochastic models, in which inputs and outputs are
realizations of random variables, the situation is even more
complicated. Multiple runs, each using different input ran-
dom number streams, must be completed for each combi-
nation of model parameters and/or initial conditions. The
response for this combination must be inferred statistically
from the set of runs or sample paths. The generalized so-
lution in turn must be inferred, again statistically, from
multiple sets of multiple runs.

Simulation stands in contrast to analytical approaches
to the solution of models. In an analytical approach, the
model is expressed as a set of equations that describe how
the state changes over time. We solve these equations us-
ing standard mathematical methods—algebra, calculus, or
numerical analysis—to determine the distribution of the
state at any particular time. The result is a general, closed-
form solution, which gives the state at any time as a func-
tion of the initial state, the input, and the model param-
eters. Because of the generality of closed-form solutions,
when models readily can be solved analytically, this is al-
ways the preferred approach.

Simulation is used widely instead of analytical ap-
proaches because closed-form solutions for nonlinear, time-
varying, and discrete-event systems are rarely available.
In addition, while explicit closed-form solutions for time-
invariant linear systems can always be found, this is some-
times impractical if the systems are very large. Moreover,
simulation models can incorporate necessary procedural
information that describes the process through which the
state changes over time—information that often cannot be
expressed in terms of equations alone. While simulation
suffers all of the disadvantages of experimentalism, it is
highly versatile and frequently the only practical means of
analyzing complex models.

CONTINUOUS SYSTEM SIMULATION

Digital continuous-system simulation involves the approx-
imate solution of an analog state-variable model over suc-
cessive time steps. Consider the general state-variable
equation [Eq. (1)] to be simulated over the time interval
t0 ≤ t ≤ tK . The solution to this problem is based on the re-
peated solution of the single-variable, single-step subprob-
lem. The subproblem may be stated formally as follows:

Given:
1. �t(k) = tk − tk−1, the length of the kth time step
2. dxi /dt = fi [x(t), u(t), t] for t0 ≤ t ≤ tk , the ith equation

of state defined for the state variable xi (t) over the kth
time step.

3. u(t) for t0 ≤ t ≤ tk , the input vector defined for the kth
time step.

4. x̃(k − 1) ∼= x(tk−1), an initial approximation for the state
vector at the beginning of the time step.

Find:
5. x̃i (k) ∼= xi (tk), a final approximation for the state variable

xi (t) at the end of the kth time step.

Solving this single-variable, single-step subproblem for
each of the state variables xi (tk), i = 1, 2, . . . , n, yields a final
approximation for the state vector x̃(k) ∼= x(tk) at the end
of the kth time step. Solving the complete single-step prob-
lem K times over K time steps, beginning with the initial
condition x̃(0) ∼= x(t0) and using the final value of x̃(k) from
the kth time step as the initial value of the state for the
(k + 1)st time step, yields a discrete succession of approxi-
mations x̃(1) ∼= x(t1), x̃(2) ∼= x(t2), . . . , x̃(K) ∼= x(tK) spanning
the solution time interval.

The basic procedure for completing the single-variable,
single-step problem is the same regardless of the particular
integration method chosen. The procedure consists of two
parts:

1. Calculation of the average value of the ith derivative
over the time step as

dxi

dt
= fi[x(t∗), u(t∗), t∗] = �xi(k)

�t(k)
∼= f̃i(k)

2. Calculation of the final value of the simulated variable
at the end of the time step as

x̃i(k) = x̃i(k − 1) + �xi(k) ∼= x̃i(k − 1) + �f̃i(k)

If the function fi is continuous, then t* is guaranteed to be
on the time step; that is, t0 ≤ t* ≤ tk . Since the value of t*
is otherwise unknown, however, the value of the derivative
can only be approximated as f̃ i (k).

Different numerical integration methods are distin-
guished by the means used to calculate the approxima-
tion f̃ i (k). A wide variety of such methods is available for
digital simulation of dynamic systems. The choice of a par-
ticular method depends on the nature of the model being
simulated, the accuracy required in the simulated data,
and the computing effort available for the simulation study.
Several popular classes of integration methods are out-
lined in the following subsections.

Euler Method

The simplest procedure for numerical integration is the
Euler or rectangular method. As illustrated in Fig. 5, the
standard Euler method approximates the average value of
the ith derivative over the kth time step using the deriva-
tive evaluated at the beginning of the time step; that is,

f̃i(k) = fi[x̃(k − 1), ũ(k − 1), k − 1]

A modification of this method uses the newly calculated
state variables in the derivative calculation as these new

Modeling and Simulation 7

Figure 5. Geometric interpretation of the Euler method for nu-
merical integration.

values become available. Assuming that the state vari-
ables are computed in numerical order according to the
subscripts, this implies

f̃i(k) = fi[{x1(k), . . . , xi−1(k), xi(k − 1), . . . , xn(k − 1)}T
,

ũ(k − 1), k − 1]

The modified Euler method is modestly more efficient than
the standard procedure and, frequently, is more accurate.
In addition, since the input vector u(t) is usually known for
the entire time step, using an average value of the input
such as

u(k) = 1
�t(k)

∫ tk

tk−1

u(τ)dτ

frequently leads to a superior approximation of f̃i(k).
The Euler method requires the least amount of compu-

tational effort per time step of any numerical integration
scheme. Local truncation error is proportional to �t2, how-
ever, which means that the error within each time step
is highly sensitive to step size. Because the accuracy of
the method demands very small time steps, the number of
time steps required to implement the method successfully
can be large relative to other methods. This can imply a
large computational overhead and can lead to inaccuracies
through the accumulation of roundoff error at each step.

Runge–Kutta Methods

Runge–Kutta methods precompute two or more values of
the derivative in the time step t0 ≤ t ≤ tk and use some
weighted average of these values to calculate f̃ i (k). The
order of a Runge–Kutta method refers to the number of
derivative terms (or derivative calls) used in the scalar
single-step calculation. A Runge–Kutta routine of order N
therefore uses the approximation

f̃i(k) =
N∑

j=1

wifij(k)

where the N approximations to the derivative are

fi1(k) = fi[x̃(k − 1), ũ(k − 1), k − 1]

(the Euler approximation) and

fij = fi

[
x̃(k − 1) + �t

j−1∑
t=1

Ibjtfit, u

(
tk−1 + �t)

j−1∑
t=1

bjt

)]

where I is the identity matrix.The weighting coefficients wi

and bjt are not unique, but are selected such that the error
in the approximation is zero when xi (t) is some specified
Nth-degree polynomial in t.

Because Runge–Kutta formulas are designed to be ex-
act for a polynomial of order N, local truncation error is
of the order �tN+1. This considerable improvement over
the Euler method means that comparable accuracy can be
achieved for larger step sizes. The penalty is that N deriva-
tive calls are required for each scalar evaluation within
each time step.

Euler and Runge–Kutta methods are examples of
single-step methods for numerical integration, so-called be-
cause the approximate state x̃(k) is calculated from knowl-
edge of the approximate state x̃(k − 1) without requiring
knowledge of the state at any time prior to the beginning
of the current time step. These methods are also referred
to as self-starting methods, since calculations may proceed
from any known state.

Multistep Methods

Multistep methods differ from the single-step methods in
that multistep methods use the stored values of two or
more previously computed states and/or derivatives in or-
der to compute the derivative approximation f̃ i (k) for the
current time step. The advantage of multistep methods
over Runge–Kutta methods is that these require only one
derivative call for each state variable at each time step
for comparable accuracy. The disadvantage is that multi-
step methods are not self-starting, since calculations can-
not proceed from the initial state alone. Multistep meth-
ods must be started, or restarted in the case of discontin-
uous derivatives, using a single-step method to calculate
the first several steps.

The most popular of the multistep methods are the
Adams–Bashforth predictor methods and the Adams–
Moulton corrector methods. These methods use the deriva-
tive approximation

f̃i(k) =
N∑

j=0

bifi[x̃(k − j), u(k − j), k − j]

where the bi are weighting coefficients. These coefficients
are selected such that the error in the approximation is zero
when xi (t) is a specified polynomial. Note that the predictor
methods employ an open or explicit rule, since for these
methods b0 = 0 and a prior estimate of x̃i (k) is not required.
The corrector methods used a closed or implicit rule, since
for these methods b0 �= 0 and a prior estimate of x̃i (k) is
required.

8 Modeling and Simulation

Predictor–Corrector Methods

Predictor–corrector methods use one of the multistep pre-
dictor equations to provide an initial estimate (or “predic-
tion”) of xi (t). This initial estimate is then used with one
of the multistep corrector equations to provide a second
and improved (or “corrected”) estimate of xi (t) before pro-
ceeding to the next step. A popular choice is the four-point
Adams–Bashforth predictor together with the four-point
Adams–Moulton corrector, resulting in a prediction of

x̃i(k) = x̃i(k − 1) + �t

24
[55f̃ i(k − 1) − 59f̃ i(k − 2)

+ 37f̃ i(k − 3) − 9f̃ i(k − 4)]

(for i = 1, 2, . . . , n) and a correction of

x̃i(k) = x̃i(k − 1) + �t

24
[9f̃ i[x̃(k), u(k), k]

+ 19f̃ i(k − 2) − 5f̃ i(k − 3) + f̃ i(k − 4)]

Predictor–corrector methods generally incorporate a strat-
egy for increasing or decreasing the size of the time step
depending on the difference between the predicted and cor-
rected x(k) values. Such variable time-step methods are
particularly useful if the simulated system possesses local
time constants that differ by several orders of magnitude,
or if there is little a priori knowledge about the system
response.

Numerical Integration Errors

An inherent characteristic of digital simulation is that the
discrete data points generated by the simulation x̃i (k) are
only approximations to the exact solution xi (t) at the cor-
responding point in time. This results from two types of
errors that are unavoidable in the numerical solutions.

Round-off errors occur because numbers stored in a dig-
ital computer have finite word length (i.e., a finite num-
ber of bits per word) and therefore limited precision. Be-
cause the results of calculations cannot be stored exactly,
round-off error tends to increase with the number of cal-
culations performed. Therefore, for a given total solution
interval, round-off error tends to increase (i) with increas-
ing integration-rule order (since more calculations must be
performed at each time step) and (ii) with decreasing step
size �t (since more time steps are required).

Truncation errors or numerical approximation errors oc-
cur because of the inherent limitations in the numerical
integration methods themselves. Such errors would arise
even if the digital computer had infinite precision. Local or
per-step truncation error is defined as

e(k) = x(k) − x(tk)

given that x(k − 1) − x(tk−1) and that the calculation at the
kth time step is infinitely precise. For many integration
methods, local truncation errors can be approximated at
each step. Global or total truncation error is defined as

e(K) = x(K) − x(tK)

given that x(0) − x(t0) and the calculations for all K time
steps are infinitely precise. Global truncation error usually
cannot be estimated, nor can efforts to reduce local trunca-
tion errors be guaranteed to yield acceptable global errors.
In general, however, truncation errors can be decreased by

using more sophisticated integration methods and by de-
creasing the step size �t.

Time Constants and Time Steps

As a general rule, the step size �t for simulation must be
less than the smallest local time constant of the model sim-
ulated. This can be illustrated by considering the simple
first-order system

dx

dt
= λx(t)

and the difference equation defining the corresponding
Euler integration:

x(k + 1) = x(k) + �tλx(k)
= (1 + �tλ)x(k)

The continuous system is stable for λ < 0, while the discrete
approximation is stable for |1 + λ �t| < 1. Therefore, if the
original system is stable, the simulated response will be
stable only for

�t ≤ |λ−1|
where the equality defines the critical step size. For larger
step sizes, the simulation will exhibit numerical instabil-
ity. In general, while higher-order integration methods will
provide greater per-step accuracy, the critical step size it-
self will not be greatly reduced.

A major problem arises when the simulated model has
one or more time constants |λ−1| that are small when
compared to the total solution time interval t0 ≤ t ≤
tk . Numerical stability will then require very small �t,
even though the transient response associated with these
higher-frequency subsystems may contribute little to the
particular solution. Such problems can be addressed ei-
ther by neglecting the higher-frequency components where
appropriate or by adopting special numerical integration
methods for stiff systems.

Selecting an Integration Method

The best numerical integration method for a specific sim-
ulation is the method that yields an acceptable global ap-
proximation error with the minimum amount of round-off
error and computing effort. No single method is best for
all applications. The selection of an integration method de-
pends on the model simulated, the purpose of the simula-
tion study, and the availability of computing hardware and
software.

In general, for well-behaved problems with continuous
derivatives and no stiffness, a lower-order Adams predictor
is often a good choice. Multistep methods also facilitate es-
timating local truncation error. Multistep methods should
be avoided for systems with discontinuities, however, be-
cause of the need for frequent restarts. Runge–Kutta
methods have the advantage that these are self-starting
and provide fair stability. For stiff systems where high-
frequency modes have little influence on the global re-
sponse, special stiff-system methods enable the use of eco-
nomically large step sizes. Variable-step rules are useful
when little is known a priori about solutions. Variable-step

Modeling and Simulation 9

rules often make a good choice as general-purpose integra-
tion methods.

Round-off error usually is not a major concern in
the selection of an integration method, since the goal of
minimizing computing effort typically obviates attendant
problems. Double-precision simulation can be used where
round-off is a potential concern. An upper bound on step
size often exists because of discontinuities in derivative
functions, or because of the need for response output at
closely spaced time intervals.

Digital simulation can be implemented for a specific
model in any high-level language such as FORTRAN or C.
In addition, many special-purpose continuous system sim-
ulation languages are commonly widely available across a
wide range of platforms. Such languages greatly simplify
programming tasks and typically provide friendly user in-
terfaces and good graphical output.

DISCRETE-EVENT SIMULATION

In discrete-event dynamic models, the independent variable
is a discrete index which references a set of events. The
events are instantaneous, strictly sequential, and asyn-
chronous, as previously defined. The occurrence of events
is determined by inputs and by the internal logic of the
system. The system state changes in response to the occur-
rence of events.

For example, consider a simple queuing system compris-
ing a server (called a permanent entity) and a set of jobs
(called temporary entities) to be processed by the server.
If the server is idle when a new job arrives for processing,
then the job typically begins processing immediately. How-
ever, if the server is busy when a new job arrives, then the
arriving job typically must wait for some or all of the prior
jobs to complete processing before the new job can access
the server and begin processing.

The state of the queuing system is the total number
of jobs in the system x(t) at any time t, including any job
in process and all jobs waiting. Outputs are performance
measures derived by knowing the trajectory of the state
over time, including such measures as average cycle time
for jobs, the average queue length and waiting time, and
the average throughput for the system. Clearly, the state of
the system changes in response to two types of events. An
arrival event increases the number in system by one job. A
departure event (or service completion event) decreases the
number in system by one job.

Random Number Generation

The discrete-event systems of greatest interest are stochas-
tic, with events occurring randomly over time as con-
strained by the process logic. Inputs to a simulation are
random numbers, and the theory of discrete-event simu-
lation is intimately bound to the rich and evolving theory
of generating pseudorandom numbers and variates on a
computer. (Pseudorandom numbers are real values gen-
erated deterministically by a computer algorithm. While
completely deterministic, these numbers satisfy standard
tests for statistical independence and randomness). In the

queuing example, arrival events typically are determined
by generating random variates that define the time be-
tween the arrivals of successive jobs. Departure events are
determined in part by generating random numbers which
define the time required to complete each job, once the job
begins processing.

Time Advance Mechanism

In contrast to continuous systems simulations, which use
some form of fixed-increment time advance to determine
the next value of the independent variable after each it-
eration, almost all discrete-event simulations employ a
next-event time-advance approach. With the next-event ap-
proach, at each time step the state of the system is updated
to account for the fact that an event has occurred. Then the
times of occurrence of future events are determined. The
value of simulated time is then advanced to the time of
occurrence of the first or most imminent of these future
events. This process advances the simulation time from
one event time to the next and is continued until some
prescribed stopping event occurs. The next-event approach
clearly is more efficient than the fixed increment approach,
since computation time is not wasted during periods of in-
activity between events when by definition the state cannot
change.

Logical Components

The next-event time-advance approach relies on searching
and manipulating data structures that are lists or chains
of current and future events. At each time step, the cur-
rent event list or calendar is scanned to determine the next
event to be processed. The processing of an event typically
involves linking and unlinking existing and/or newly cre-
ated events to the lists. The logical components shared by
most discrete-event simulations using the next-event time-
advance approach implement these list processing, event
processing, accounting, and reporting requirements. These
components include the following (3):

System Image or State. The collection of state variables
necessary to describe the system at a particular time.

Simulation Clock. A variable giving the current value
of simulated time.

Event List or Calendar. A list containing the next time
when each type of event will occur.

Statistical Counters. Variables used for storing statisti-
cal information about system performance.

Initialization Routine. A subprogram to initialize the
simulation model at time zero.

Timing Routine. A subprogram that determines the
next event from the event list and then advances the
simulation clock to the time when that event is to
occur.

Event Routines. Subprograms that update the system
state when a particular type of event occurs (there is
one event routine for each event type).

Library Routines. A set of subprograms used to gener-
ate random observations from probability distribu-

10 Modeling and Simulation

tions that were determined as part of the simulation
model.

Report Generator. A subprogram that computes esti-
mates (from the statistical counters) of the desired
measures of performance and produces a report when
the simulation ends.

Main Program. A subprogram that invokes the timing
routine to determine the next event and then trans-
fers control to the corresponding event routine to up-
date the system state appropriately. The main pro-
gram may also check for termination and invoke the
report generator when the simulation is over.

MODELING AND SIMULATION ISSUES

Ziegler (4) proposed a formal theory of modeling and sim-
ulation that builds on the ideas of mathematical systems
models. Ziegler’s theory encompasses five basic elements:

1. Real Model. The system modeled. It is simply a source
of observable data, in the form of input–output pairs
(uj , yj). Typically, there are no other clues available to
determine its structure.

2. Base Model. The investigator’s image or mental model of
the real system. It is a system that is capable (at least
hypothetically) of accounting for the complete behav-
ior of the real system. If the real system is highly com-
plex, the base model also is highly complex. The cost,
time, and difficulty of realizing the base model explicitly
most often are prohibitive, unwarranted, or impossible.
Therefore,as a practical matter, the structure of the base
model is, at best, partially known to the investigator.

3. Experiment Frame. The set of limited circumstances un-
der which the real system is to be observed and under-
stood for the purpose of the modeling exercise. It is a
restricted subset of the observed output behaviors.

4. Lumped Model. The concept most often associated with
the term model. It is a system which is capable of ac-
counting for the output behavior of the real system, un-
der the experiment frame of interest. It is an explicit
simplification and partial realization of the base model,
with its structure completely known to the investigator.

5. Computer. The means by which the behavior of the
lumped model is generated. The computer, in the sense
intended by Ziegler, is not necessarily a digital com-
puter. For simple models, it may represent the explicit
analytical solution to the model equations, worked out
by hand. For more complex models, however, the com-
puter may need to generate individual trajectories step
by step, based on instructions provided by the model.
This step-by-step process is what is most often associ-
ated with the concept of simulation and is usually con-
ducted by using a digital computer.

Model theory illuminates the fundamental relationships
among these modeling elements. Three of the most impor-
tant modeling relationships are briefly described below.

Validation concerns the relationship between models
and the real system. The objective of validation is to en-

sure that a model matches the system modeled, so that the
conclusions drawn about the model are reasonable conclu-
sions about the real system as well. A base model is valid to
the extent that it faithfully reproduces the behavior of the
real system in all experiment frames. On the other hand,
a lumped model is valid to the extent that it faithfully
matches the real system under the experimental frame for
which it is defined. There can be many different lumped
models that are valid, and a lumped model can be valid in
one experiment frame and not another. Model validation
is a deep and difficult issue, and there are many different
levels and interpretations of validity.

Simplification concerns the relationships between a
base model and its associated lumped models. The objec-
tive of simplification is to achieve the most efficient and
effective lumped model that is valid within the experiment
frame for which it is defined. Simplification can be achieved
in many ways. These include dropping relatively insignifi-
cant system variables and associated structures, replacing
deterministic variables and structures with random vari-
ables and associated generating functions, coarsening the
range set of system variables, and aggregating system vari-
ables and structures into larger blocks. Many of the formal
ideas associated with simplification, such as isomorphism
and homomorphism, concern the preservation of structural
similarities between mathematical systems.

Simulation, in the sense intended by Ziegler, concerns
the relationship between models and the computer. The ob-
jective of simulation is to ensure that the computer faith-
fully reproduces the behavior implied by the model. The
behavior of a lumped model must be distinguished from
the correctness of its computer implementations or solu-
tions, in the same way that the behavior of a real system
must be distinguished from the validity of its models. While
a valid model may have been developed, it is also necessary
to have a correct simulation. Otherwise, the model solution
cannot be used to draw conclusions about the real system.
Formal ideas associated with simulation include the com-
pleteness, consistency, and ambiguity of the computer im-
plementation. The process of matching a simulation to its
lumped model sometimes is known as verification. Many of
the same techniques used to validate models are also used
to verify simulations.

MODEL VALIDATION

One of the most important and most difficult issues in mod-
eling is that of establishing the level of credibility that
should be given to a model and, as a consequence, the level
of confidence a decision maker should have in conclusions
derived from model results. As introduced above, valida-
tion is the process of determining whether or not a model
is adequate for the specific tasks to which it will be applied.
Validation tests the agreement between the behavior of the
model and the behavior of the real-world system which is
being modeled (5). Validation is the process of bringing to
an acceptable level the user’s confidence that any infer-
ence about the real-world system derived from the model
is correct (6). Validation is not a general seal of approval,
but is instead an indication of a level of confidence in the

Modeling and Simulation 11

model’s behavior under limited conditions and for specific
purposes—that is, a check on its operational agreement
with the real-world system (7).

Verification, Validation, Problem Analysis, and Model
Assessment

A number of concepts have evolved in the literature on
model validation which provide useful distinctions be-
tween the various related activities involved in evalu-
ating a model for use in support of decision-making.
Fishman and Kiviat (5) introduced the now standard di-
vision of evaluation activities into three categories: veri-
fication, the process of ensuring that a model behaves as
the modeler intends it should behave; validation, the pro-
cess of demonstrating agreement between the behavior of
a model and the behavior of the system the model is in-
tended to represent; and problem analysis, the process of
interpreting the data and results generated by applica-
tion of a model. More recently, a number of investigators
(7–10) have extended the domain of evaluation activities
to include the more general and dynamic notion of model
assessment. Model assessment includes not only the activ-
ities of verification, validation, and problem analysis, but
also model maintenance and quality control, to ensure the
continued usability of the model and its readiness for use,
and model understanding, to determine the assumptions
and limitations of the model, the appropriate and inappro-
priate uses of the model, and the reasons a model generates
the results that it does.

Verification is concerned with the internal consistency
of a model and the degree to which the model embodies the
intent of the modeler. A model that is fully verified is not
necessarily an accurate representation of the system mod-
eled, but is instead a precise interpretation of the modeler’s
description of the system as he or she intends to represent
it. Verification involves tests to ensure that model equa-
tions and logic are accurately stated, that the logic and or-
der of model computations are accurately carried out, and
that the data and input to the model are correctly inter-
preted and applied during computations.

For computer-based models, verification is closely as-
sociated with computer programming and with the tech-
niques of software engineering used to develop readable,
reliable computer programs. The techniques of structured
programming, in general, are invaluable in the verification
of large and complex models. In addition, Law (3) describes
several techniques for verification that are perhaps unique
to computer simulation modeling.

Validation is concerned with the accuracy of a model
as a representation of the system modeled. How to mea-
sure the validity of a model is problematic, however, and
certainly depends upon the intended use of the model. In-
deed, no model can ever be entirely valid in the sense of
being supported by objective truth, since models are, by
nature and design, simplifications of the systems they are
intended to represent. As Greenberger et al. (7) suggest,
“useful,” “illuminating,” “convincing,” and “inspiring confi-
dence” are more reasonable descriptors of models than is
“valid.”Validation issues, tests, and philosophy are the cen-
tral concerns of this article and are considered in greater
detail in the sections which follow.

Problem analysis, or output analysis, is concerned with
determining the true parameters of a model and with cor-
rectly interpreting data generated by solving the model.
As with model verification, problem analysis is largely a
model-based activity that says nothing directly about the
true parameters or characteristic behavior of the system
modeled. Inferences about the behavior of the real system
apply only to the extent that the model is valid for the sys-
tem under study and for the particular analysis applied.
Output analysis is a specialized technical subject.

Assessment is concerned with determining whether or
not a model can be used with confidence for a particular
decision problem within a particular decision-making en-
vironment.The basic idea behind model assessment,as dis-
tinct from the more limited idea of model validation per se,
is the accumulation of evidence by independent and dispas-
sionate investigators regarding the credibility and applica-
bility of a model. Model assessment serves many purposes:
education, model, development and improvement, theoret-
ical analysis, understanding the model and the process
being studied, obtaining insights to aid decision-making,
ensuring the reproducibility of results, improving model
documentation, making the model more accessible, and de-
termining the utility of the model for a particular decision-
making situation. Model assessment is typically discussed
in the context of models developed (and intended to be
institutionalized) for policy analysis, but the evaluation
procedure applies equally well to models which are to be
used regularly within any decision-making environment.
Assessment is important because the decision maker typi-
cally has had little or no involvement in the modeling pro-
cess and therefore requires an independent basis for decid-
ing when to accept and when to reject model results. This
basis is difficult to develop without independent evalua-
tion of the impact on model structure and behavior of the
assumptions of the model, the availability of data used to
calibrate the model, and the other elements of the process
implicit in model development.

Direct and Indirect Approaches to Model Validation

Validation represents a collection of activities aimed at de-
ducing just how well a model captures those behavioral
characteristics of the system modeled which are essential
for understanding a given decision-making situation. If a
good deal is known about the past behavior of the system
modeled, or if the system modeled is accessible to study or
at least some limited experimentation, then comparison of
the behavior of the model with the behavior of the modeled
system provides a direct means for model validation.

A model is said to be replicatively valid if the data gener-
ated by the model correlate (within tolerances established
by the investigator) with data collected from the real sys-
tem, where the data from the real system have been col-
lected prior to development and calibration of the model.
A model is said to be predictively valid if data generated
by the model correlate with data collected from the real
system, where the data from the real system have been
collected after the model has been developed and run. Of
the two validity tests, predictive validity is the stronger.
Replicative validity is typically an objective of the mod-
eling exercise, rather than a test of model validity per se

12 Modeling and Simulation

since every modeler almost certainly endeavors to modify
and refine a model until its conformity with known behav-
ioral data is achieved.

A model is said to be structurally valid if it not only repli-
cates the data generated by the real system, but does so for
the same reasons and according to the same causal mech-
anisms as the real system. A model which can be shown
to be both predictively and structurally valid obviously is
highly desirable.

In a great many situations, direct approaches to model
validation are not available. These are common in future-
oriented decision situations in volatile environments,
where the potential risks and rewards are greatest. In
these situations the real-world system modeled is not well
understood,or does not yet actually exist, or is otherwise in-
accessible to study or experimentation. The past behavior
of the real-world system is either unknown, or provides a
poor guide to the likely future behavior of that system. The
future behavior of the real-world system cannot be known a
priori with certainty. In these cases, the modeler or decision
maker must rely upon indirect tests of a model’s credibility.

Face validity is the primary objective of the first phase of
model development. A model with face validity is one which
appears to be reasonable (or does not appear to be unrea-
sonable) to people who are knowledgeable about the system
under study. In general, even the most complex models are
constructed from simpler primitives. Complexity results
from the large number of hypotheses used in constructing
the model and from the myriad interactions that can occur
between individual model components, rather than from
any inherent complexity in the hypotheses as such. Face
validity ensures that the individual relationships and hy-
potheses built into a model are consistent with what is un-
derstood or assumed to be true about the real-world system
by experts. Face validity also ensures that any relationship
that can be rejected based upon prior knowledge and expe-
rience will not be incorporated within the model.

Face validity is achieved by using all existing informa-
tion about the system modeled during model development
and initial testing. Information sources include observa-
tion of the system elements or subsystems, existing theory,
conversations with experts, general knowledge, and even
the intuition of the modeler. Early involvement of the ul-
timate user or decision maker in the initial formulation
of a model, if possible, along with continued close involve-
ment of the user as the model develops, tends to promote
“ownership” of the model on the part of the user. This is
the most highly desired form of face validity, since decision
makers are far more likely to accept as valid and to use
models which they intimately understand and which they
have actively helped to develop.

Sensitivity analysis, or variable-parameter validity, is a
set of quantitative procedures for testing the validity or
credibility of assumptions that were made during the ini-
tial stages of model development and that have survived
the test of face validity. Sensitivity analysis seeks to as-
sess the amount of change in the model state, output, or
other critical variables that result from changes in selected
model parameters or inputs. One use of sensitivity analy-
sis is to test the sense and magnitude of the impact of one
variable upon another, in order to ensure that the changes

induced are intuitive (or, if counterintuitive, to determine
the reasons for such changes from the underlying causal
structure of the model).

A second use of sensitivity analysis is to isolate pairs
of inputs and outputs where small changes in the input
result in large changes in the corresponding output. Since
the model is particularly sensitive to the relationships that
couple these pairs, sensitivity analysis can be used in this
way to determine those assumptions and hypotheses upon
which the model most critically depends. Relationships to
which the model is highly sensitive can be singled out for
further critical evaluation. In a similar fashion, sensitivity
analysis can be used to determine relationships to which
the model is insensitive. This introduces the possibility of
simplifying the model by reducing the level of detail with
which insensitive subsystems are represented.

Sensitivity analysis is one way to compensate for uncer-
tainty in a model, but it typically is a difficult, technically
demanding,and potentially expensive and time-consuming
activity. Monte Carlo techniques can be used to explore for-
mally the distribution of model outcomes resulting from
the distributions of uncertainty in model parameters and
inputs. Other advanced techniques of statistical sensitiv-
ity analysis, such as response surface methods, can also
be used to great advantage, when time and budget per-
mit and when the importance of the decision consequences
demands.

A Framework for Validation Activities

Schellenberger (11) developed a general validation frame-
work which is particularly useful in organizing related val-
idation tasks and objectives. This three-part framework in-
cludes the ideas of technical validity, operational validity,
and dynamic validity.

Technical validity concerns the assumptions and data
used to formulate a model and is the aggregate of model va-
lidity, data validity, logical/mathematical validity, and pre-
dictive validity. Model validity conforms to the standard
definition of validity and seeks to determine the degree
to which the model is an accurate representation of the
system modeled. The activities of model validation include
identifying and criticizing all the assumptions of a model
(stated and implied), such as content assumptions concern-
ing the scope and definition of variables, causal assump-
tions concerning the nature and extent of cross impacts
among variables, and mathematical assumptions concern-
ing the exact form and continuity of model relationships.
Data validity addresses the adequacy of raw and processed
data. The activities of data validation include determining
the accuracy, impartiality, and representativeness of raw
data, as well as the effects and potential biases introduced
in reducing raw data to the structured form actually used
in the model. Logical/mathematical validity conforms to
the standard definition of model verification and seeks to
determine errors in translating the model into an accu-
rate computer code. The activities of logical/mathematical
validation include determining whether computations are
accurate and precise, whether the flows of data and
intermediate calculations are correct, and whether all
of the necessary variables and relationships have been

Modeling and Simulation 13

included within the computer program. Predictive validity
addresses the correlation between behavioral data gener-
ated by the model and the corresponding data from the sys-
tem modeled. The activities of predictive validation include
statistical tests, analyses of time series data, and even in-
tuitive comparisons of behavioral trends.

Operational validity assesses the meaning and impor-
tance of technical errors in a model and focuses on dif-
ferences between the model and the system modeled as
determined through technical validation. The fundamen-
tal question here is one of degree. Are the differences be-
tween the model and the real world sufficient to draw into
question the results of the model? Are the insights gained
from the model sufficient to overcome concerns about in-
accuracies in the specific numerical data generated by the
model? Is the model sufficiently robust to yield consistent
conclusions for reasonable ranges of parameter variations?
Clearly, sensitivity analysis is one means of exploring these
questions and, for this reason, is a key element in determin-
ing operational validity. Also included under the heading
of operational validity activities is the notion of implemen-
tation validity. The idea here is to determine the extent to
which recommended actions, derived from a model-based
study, will have the intended effect, when implemented in
the real-world system.

Dynamic validity concerns maintaining a model over
time in order to extend the usefulness of the model for
decision-making. Dynamic validation requires both updat-
ing and review. Updating refers to the process through
which the need for incremental changes in the model
database or model structure is identified and through
which the necessary changes are implemented. On a
broader scale, review refers to the process through which
the success or failure of the model is regularly gauged and
through which major changes in, or revalidation of, the
model is triggered.

Philosophical Perspectives

The subject of model validation cannot be divorced from
the broader philosophical issue of how, in general, we may
know the truth. Epistemology is the branch of philosophy
which is concerned with the origins, nature, methods, and
limits of knowledge; it is also concerned with what we can
know, how we can know it, and how much faith we can
have in the validity of our knowledge. One epistemologi-
cal theory (and most likely the predominant theory among
scientists, engineers, and those others who build and use
mathematical models) is that all human knowledge that is
strictly of a rational nature is fundamentally, inescapably
model-based. Our knowledge of any aspect of the real world
in this view constitutes an internalized “mental model” of
that world, namely, Ziegler’s base model.

Because our organized knowledge of the real world is
internalized in mental models, such knowledge must be
based upon perceptual information passed through our
senses. We develop and refine our mental models according
to primary sensory information (data), secondary informa-
tion given us by others (data, theory, and opinion), and rea-
son and logic (a form of verification for mental models that

itself is based upon internalized models). We know that
our senses are selective and can be deceived, and therefore
we can never have guarantees that our mental models are
based upon information that is either complete or entirely
correct. We know that information from secondary sources
is not immutable, and therefore we cannot rely upon au-
thority for absolute substantiation of our mental models.
We know that any logical construct must begin with some
fundamental predicate assumption that cannot be tested,
and therefore an appeal to pure reason is insufficient to
validate our mental models.

In summary, it is unlikely that we can know anything
with absolute certainty. All knowledge is to a greater or
lesser degree personal and subjective, and it is tentative
and subject to future revision or rejection (12). This is not
to say that necessarily there are no truths to be known,
but simply to recognize that our means of knowing these
(if these exist) are inherently imperfect. It is within this
context that the issue of model validation must be viewed.
We can and should test and refine models in an effort to
develop a high degree of confidence in their usefulness,
but validation in an absolute sense is most likely a quest
which belies the fundamental limits of human understand-
ing. Validation in an absolute sense is neither possible nor
necessary.

Validation Checklist

By far the most important test for the validity of a model
rests with the question, “Does it make sense?” If the results
of a modeling exercise defy the intuition of those most inti-
mately familiar with the real-world system, then it is un-
likely that any amount of explanation will ever persuade.
By the same token, if the results are reasonable—if these
conform to prior experiences and, best of all, offer insight
to match our intuitions—then the issue of validation will
undoubtedly be resolved favorably. In summary, validation
is a continuous process by which confidence and credibil-
ity are developed for a model. Shannon (6) leaves us with
the following checklist of actions that will ensure that the
greatest possible validity is achieved:

� Use common sense and logic.
� Take maximum advantage of the knowledge and in-

sight of those most familiar with the system under
study.

� Test empirically all of the assumptions of the model,
whenever possible, using the appropriate statistical
techniques.

� Pay close attention to details, and check and recheck
each step of the model building process.

� Use test data and all available means during debug-
ging to ensure that the model behaves as intended.

� Compare the input–output transformation of the
model with that of the real system, whenever possible,
using the appropriate statistical tests.

� Run field tests and conduct peripheral research where
possible.

14 Modeling and Simulation

� Undertake sensitivity analyses of model inputs and
parameters.

� Check carefully the predictions of the model and the
actual results achieved in the real-world system.

BIBLIOGRAPHY

1. K. P. White, Jr. Model theory, in Encyclopedia of Science and
Technology, New York: McGraw-Hill, 2002.

2. G. E. P. Box and N. R. Draper, Response Surfaces, Mixtures,
and Ridge Analyses, 2nd ed., New York: Wiley, 2007.

3. A. M. Law, Simulation Modeling and Analysis, 4th ed., New
York: McGraw-Hill, 2007.

4. B. P. Ziegler Theory of Modelling and Simulation, New York:
Wiley, 1976.

5. G. S. Fishman P. J. Kiviat The statistics of discrete-event sim-
ulation, Simulation, 10: 185–195, 1968.

6. R. E. Shannon Systems Simulation: The Art and Science, En-
glewood Cliffs, NJ: Prentice-Hall, 1975.

7. M. Greenberger M. A. Crenson B. L. Crissey Models in the
Policy Process: Public Decision Making in the Computer Era,
New York: Russell Sage Foundation, 1976.

8. S. I. Gass Evaluation of complex models, Comput. Oper. Res.,
4: 27–35, 1977.

9. S I. Gass Decision-aiding models: Validation, assessment, and
related issues for policy analysis, Oper. Res., 31, 603–631,
1983.

10. US Government Accounting Office,1979 Guidelines for Model
Evaluation, Report No. PAD-79-17, Washington, DC: US Gov-
ernment Accounting Office, 1979.

11. R. E. Schellenberger Criteria for assessing model validity for
managerial purposes, Decis. Sci., 5: 644–653, 1974.

12. M. Polanyi Personal Knowledge: Toward a Post-Critical Phi-
losophy, New York: Harper and Row, 1958.

Reading List

J. Banks, B. L. Nelson, J. S. Carson, D. M. Nicol, Discrete-Event
System Simulation, Englewood Cliffs, NJ: Prentice Hall, 2004.

J. Banks R. R. Gibson Selecting simulation software, IIE Solutions,
29 (5): 30–32, 1997.

B. S. Bennett Simulation Fundamentals, Upper Saddle River, NJ:
Prentice-Hall, 1996.

G. Gordon System Simulation, 2nd ed. Englewood Cliffs, NJ:
Prentice-Hall, 1978.

C. Harrell K. Tumay Simulation Made Easy: A Manager’s Guide,
Norcross, GA: IIE Press, 1995.

W. D. Kelton, R. P. Sadowski, D. T. Sturrock, Simulation with
Arena, 4th ed., New York: McGraw-Hill, 2007.

N. A. Kheir (ed.) Systems Modeling and Computer Simulation, 2nd
ed., New York: Marcel Dekker, 1996.

D. G. Luenberger Introduction to Dynamic Systems: Theory, Mod-
els, and Applications, New York: Wiley, 1978.

R. H. Myers and D. C. Montgomery, Response Surface Methodol-
ogy: Process and Product Optimization Using Designed Exper-
iments, 2nd ed., New York: Wiley, 2002.

A. P. Sage C. C. White Optimum Systems Control, 2nd ed., Engle-
wood Cliffs, NJ: Prentice-Hall, 1977.

T. J. Schribner D. T. Brunner Inside simulation software: How it
works and why it matters, Proc. 2006 Winter Simulation Conf.,
2006.

W. Thissen Investigations into the World 3 model: Lessons for un-
derstanding complicated models, IEEE Trans. Syst., Man Cy-
bern., 8: 183–193, 1978.

K. P. White, Jr. Modeling and simulation, inM. Kutz (ed.), Hand-
book of Mechanical Engineering, 3rd ed.,NewYork:Wiley,2005.

K. PRESTON WHITE Jr.
Professor of Systems and

Information Engineering,
University of Virginia,
Charlottesville, VA

