
PETRI NETS AND THEIR APPLICATIONS

Petri nets (PN) were named after Carl A. Petri, who cre-
ated a netlike mathematical tool for the study of com-
munication with automata in 1962. Their further devel-
opment stemmed from the need to specify process syn-
chronization, asynchronous events, concurrent operations,
and conflicts or resource sharing for a variety of indus-
trial automated systems at the discrete-event level (1–3).
Computer scientists performed most of the early studies.
Starting in the late 1970s, researchers with engineering
backgrounds, particularly in manufacturing automation,
investigated Petri nets’ possible usage in human-made sys-
tems. These systems have become so complicated that the
continuous/discrete-time systems theory has become insuf-
ficient to handle them.

In any physical net, we can find two basic elements:
nodes and links. Both nodes and links play their own roles.
For example, forces could be transferred from one end to
another through nodes and links; and different nodes/links
may bear different forces. A PN divides nodes into two
kinds: places and transitions. The places are used to repre-
sent the condition and/or status of a component in a system
and are pictured by circles. The transitions represent the
events and/or operations and are pictured by empty rect-
angles or solid bars. Two common events are “start” and
“end.” Instead of bidirectional links in some physical nets,
a PN utilizes directed arcs to connect from places (called
input places with respect to a transition) to transitions or
from transitions to places (called output places). In other
words, the information transfer from a place to a transition
or from a transition to a place is one way. Two-way transfer
between a place and transition is achieved by designing an
arc from a transition to a place and another arc from the
transition back to the place.

The places, transitions, and directed arcs make a PN a
directed graph, called a Petri net structure. It is used to
model a system’s structure. A system state is defined by
the location of “state markers” in the places of a PN. These
state markers are called “tokens” for short. The dynamics
are introduced by allowing a place to hold either none or
a positive number of tokens pictured by small solid dots.
These tokens could represent the number of resources or
indicate whether a condition is true or not in a place. When
all the input places hold enough tokens, an event embedded
in a transition can happen, called transition firing. This fir-
ing changes the token distribution in the places, signifying
the change of system states.

The introduction of tokens and their flow regulated
through transitions allow one to visualize the material,
control, and/or information flow clearly. Furthermore, one
can perform a formal check of the properties related to the
underlying system’s behavior (e.g., precedence relations
among events, concurrent operations, appropriate synchro-
nization, freedom from deadlock, repetitive activities, and
mutual exclusion of shared resources).

PNs belong to state-transition models. The simplest
state-transition model is a state machine. Its graphical rep-
resentation is a state diagram. In a state diagram, a node
pictured as a circle represents a state that characterizes

the conditions of all the components in a system at a time
instant. An arc represents an event that changes one state
to another. Note that in a PN, a transition represents an
event and an arc represents information, control or mate-
rial flow. For example, in a robotic assembly system, the
initial state is that a robot is ready to pick up a component
and a component is ready for pick-up. Then the event “start
a pick-up operation” brings the system into the state “the
robot holds a component” or “the robot fails to pick it up.”
At the new state, the next event can occur. State-machine
models are suitable when a system has few active com-
ponents, such as a robot or machine, or needs only a few
states to describe. A single robot may need two states, “idle”
and “busy,” and a dual-robot system requires four states.
However, a 20-robot system requires over a million states.
Clearly the number of states grows exponentially with the
system size. It is difficult to represent systems with an infi-
nite number of states. The states, events, precedence rela-
tions, and conflicting situations are explicitly represented,
but synchronization concepts, concurrent operations, and
mutually exclusive relations are not explicitly represented.

A formalism that can overcome some of the limita-
tions of state-machine modeling is desired to handle com-
plex systems. It should use local states rather than global
states, thereby avoiding the state enumeration problems in
the modeling/design stage. It can explicitly represent con-
ditions and events together, precedence relations, conflict-
ing situations, synchronization concepts, concurrent and
repetitive operations, and mutually exclusive relations.
PNs are such formalism.

FORMAL DEFINITION

A marked Petri net (PN) Z = (P, T, I, O, m) is a five tuple
where

1. P = {p1, p2, . . . , pn}, n > 0, is a finite set of places
pictured by circles;

2. T = {t1, t2, . . . , ts}, s > 0, is a finite set of transitions
pictured by bars, with P ∪ T �= ∅ and P ∩ T �= ∅;

3. I: P × T → N is an input function that defines the set
of directed arcs from P to T, where N = {0, 1, 2, . . . };

4. O: P × T → N is an output function that defines the
set of directed arcs from T to P;

5. m: P → N is a marking whose ith component repre-
sents the number of tokens in the ith place. An ini-
tial marking is denoted by m0. Tokens are pictured
by dots.

The four tuple (P, T, I, O) is called a PN structure that
defines a directed graph structure. Introduction of tokens
into places and their flow through transitions enable one
to describe and study the discrete-event dynamic behavior
of the PN, and thereby the modeled system. I and O repre-
sent two n × s nonnegative integer matrices. An incidence
matrix C = O − I. A PN can alternatively be defined as
(P, T, F, W, m), where F is a subset of {P × T} ∪ {T × P},
representing a set of all arcs, and W: F → N defines the
multiplicity of arcs.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright © 2007 John Wiley & Sons, Inc.



2 Petri Nets and Their Applications

Figure 1. A Petri net example modeling a robot that picks a com-
ponent and place.

A marked PN shown in Fig. 1 and its formal description
are given as follows:

Input and output functions can be represented as matrices;
that is,

The incidence matrix

The execution rules of a PN include enabling and firing
rules:

1. A transition t ∈ T is enabled if and only if m(p) > I(p,
t), ∀ p ∈ P.

2. Enabled in a marking m, t fires and results in a new
marking m′ following the rule

Marking m′ is said to be (immediately) reachable from m.
The enabling rule states that if all the input places of tran-
sition t have enough tokens, then t is enabled. This means
that if the conditions associated with the occurrence of an
event are all satisfied, then the event can occur. The firing
rule says that an enabled transition t fires and its firing re-
moves I(p, t) tokens from p, and then deposits O(p, t) tokens
into p.

In Fig. 2(a), transition t1 is enabled since m(p1) = 1 =
I(p1, t1) and m(p2) = 1 = I(p2, t1); t2 is not since m(p3) = 0
< 1 = I(p3, t2). Firing t1 removes one token from p1 and
p2, respectively, and deposits one token to t1’s only output
place p3. The result is shown in Fig. 2(b). The new marking
is m′ = (0 0 1)τ . At m′, t2 is enabled since m′(p3) = 1 = I(p3,
t2). Firing t2 results in m′′ = (0 1 0)τ . At this marking no
transition is enabled. Note that t1 is not since m′′(p1) = 0 <

1 = I(p1, t1) although m′′(p2) = 1 = I(p2, t1).

Figure 2. Evolution of markings of a PN: (a) m = (1 1 0)τ , (b) m′
= (0 0 1)τ , and (c) m′′ = (0 1 1)τ . This illustrates the state change
of the modeled system.

PROPERTIES OF PETRI NETS AND THEIR IMPLICATIONS

PNs as a mathematical tool have a number of properties.
These properties, when interpreted in the context of the
modeled manufacturing system, allow one to identify the
presence or absence of the functional properties of the sys-
tem. Two types of properties can be distinguished: behav-
ioral and structural. The behavioral properties are those
that depend on the initial state or marking of a PN. The
structural properties, on the other hand, do not depend on
the initial marking of a PN. They depend on the Petri net
topology or structure.

Reachability

Given a PN Z = (P, T, I, O, m0), marking m is reachable
from marking m0 if there exists a sequence of transitions
firings that transforms m0 to m. Marking m′ is said to be
immediately reachable from m if firing an enabled transi-
tion in m leads to m′. R is used to represent the set of all
reachable markings. Reachability checks whether the sys-
tem can reach a specific state or exhibit particular func-
tional behavior.



Petri Nets and Their Applications 3

Boundedness and Safeness

Given a PN Z and its reachability set R, a place p ∈ P is B-
bounded if m(p) ≤ B, ∀ m ∈ R, where B is a positive integer.
Z is B-bounded if each phase in P bounded. Safeness is 1-
boundedness. Z is structurally bounded if Z is B-bounded
for some B, for any finite initial marking m0.

Places are frequently used to represent storage areas
for parts, tools, pallets, and automated guided vehicles in
manufacturing systems. Boundedness is used to identify
the absence of overflows in the modeled system. When a
place models an operation, its safeness guarantees that the
controller does not attempt to initiate an ongoing process.
The concept of boundedness is often interpreted as stability
of a discrete manufacturing system, particularly when it is
modeled as a queuing system.

Liveness

A transition t is live if at any marking m ∈ R there is a se-
quence of transitions whose firing reaches a marking that
enables t. A PN is live if every transition in it is live.

A transition t is dead if there is m ∈ R such that there is
no sequence of transition firings to enable t starting from
m. A PN contains a deadlock if there is m ∈ R at which
no transition is enabled. Such a marking is called a dead
marking.

Deadlock situations are a result of inappropriate re-
source allocation policies or exhaustive use of some or all
resources. For example, a deadlock may occur when a sys-
tem is jammed or two or more processes are in a circular
chain, each of which waits for resources held by the pro-
cess next in the chain. Liveness of a PN means that for
any marking m reachable from the initial marking m0, it
is ultimately possible to fire any transition in the net by
progressing through some firing sequence. Therefore, if a
PN is live, there is no deadlock. For discussion of other
properties, refer to Refs. .2–4

The net shown in Fig. 1 is safe since each place holds at
most one token. It is not live since the net contains a dead-
lock; that is, at marking (0 1 0)τ , no transition is enabled.
Note that this deadlock results from the exhaustion of the
tokens in place p1. Only markings (0 0 1)τ and (0 1 0)τ are
reachable from the initial marking (1 1 0)τ . Others are not.

Starting from the initial system condition or state, it is
desired to enumerate all the possible states the system can
reach, as well as their relationship. The resulting represen-
tation is called a reachability tree or graph. The resulting
method is called the reachability analysis method. All the
behavioral properties can be discovered if the number of
states is finite.

TYPES OF PETRI NETS

Marked Graphs

A marked graph is a PN such that each place has exactly
one input and one output arc. It is also called an event
graph and is used to model decision-free concurrent and
repetitive systems exhibiting no choice. These systems in-
clude robotic manufacturing cells, transportation systems,
job shops, and machine centers where the sequences of jobs

or car movements are fixed.

Extended PNs

To increase the modeling power of PNs, they can be ex-
tended by including inhibitor arcs to test whether a place
has no token. An inhibitor arc connects an input place to
a transition and is pictorially represented by an arc termi-
nated with a small circle. In the presence of an inhibitor
arc, a transition is enabled if m(p) > I(p, t) for each input
place connected to t by a normal directed arc and no to-
kens are present on each input place connected to t by an
inhibitor arc. The transition firing rules are the same for
normally connected places. The firing, however, does not
change the marking in the inhibitor arc–connected places.
Another way to enhance the PN’s modeling power is to as-
sign priority over the transitions. The resulting nets are
called extended PNs. They greatly facilitate the PN model-
ing of complex systems. They can model whatever systems
a Turing machine can.

Timed PNs

A deterministic timed Petri net (DTPN) is defined as a
marked graph, and either zero or positive time delays are
associated with places, transitions, and/or arcs. The cycle
time of a strongly connected deterministic timed PN is de-
termined as follows:

π = max
i

{Di/Ni}

where Di is the total time delay of loop i, and Ni is the token
count of loop i. The ratio Di/Ni is called the cycle time of
loop i. DTPN can be used to analyze a system cycle time
and determine a bottleneck machine of a concurrent and
repetitive system such as a robotic cell and a job shop.

Stochastic PNs

Associating random time delays with exponential distri-
bution yields stochastic PNs (SPN). The SPN models that
allow for immediate transitions (i.e., with zero time de-
lay) are called generalized SPN (GSPN) (5). Both mod-
els may include extensions, such as priority transitions
and inhibitor arcs, and can be converted into their equiv-
alent Markov processes for analysis. They can be used to
model and evaluate flexible manufacturing systems, ran-
dom polling systems, concurrent programs, and concurrent
computer architectures. Their use avoids the initial enu-
meration of all states, which is needed if Markov processes
are used at the beginning. The latter is impossible for a
large system.

High-Level PNs

Allowing different tokens, enabling, and executing rules in
a PN leads to colored PNs.They can offer compact represen-
tation of a system with many similar subsystems. Allowing
predicates in transitions leads to predicate-transition nets.

Embedding attributes, procedures, or objects into to-
kens, places, and/or transitions in a PN leads to object-
oriented PNs. All these high-level nets gain their applica-
tions in design and development of information systems



4 Petri Nets and Their Applications

Figure 3. A Petri net model of a produc-
tion system: two jobs are to be processed
by M1 and M2. Job 1 needs Robot for its
loading and unloading.

and complicated software systems.
Other special nets include state-machine PN, free-

choice PN, asymmetric-choice PN, production-process nets
and augmented marked graphs, (dis)assembly PN, aug-
mented timed PNs, and real-time PNs (6, 8).

MODELING, SCHEDULING, AND CONTROL

Modeling is a fundamental step for all the applications of
PNs. We illustrate a general modeling method through a
production system. The system consists of two machines,
M1 and M2, and one robot R. It processes two types of jobs,
J1 and J2. Both have to go through M1 and M2 sequentially
but require different processing times. J1 also needs Robot
for its part holding. There is one buffer slot assigned to
J1 and J2 between their two processes, respectively. The
number following the resources requirement in Table 1 is
the processing time.

First, we identify the operations/status as follows:

J1: M1 processing J1, J1’s part in its buffer, and M2 pro-
cessing J1; and

J2: M1 processing J2, J2’s part in its buffer, and M2 pro-
cessing J2.

The resources include M1, M2, R, J1, and J2’s raw parts,
buffer slots, and final products.

Next, we identify the relationships among the preceding
operations/status. Each job’s routing is fixed, and its oper-
ations form a precedence relation. Two jobs do not need to
follow each other, however.

Third, we design and label the places that represent op-
erations and resources (i.e., p1–p15, as shown in Fig. 3).
Each operation and resource corresponds to a unique place.
We arrange the operations in a series for each job since they
form a precedence relationship. We designate a transition
that starts at Jk and one that ends at Jk, k = 1 and 2. We in-
sert transitions between two operation places if they have
a precedence relationship. Thus we have t1–t8 in Fig. 3. For
each transition, we draw an input arc to it from a place if
enabling it requires the resource(s) or the completion of the
operation(s) represented in the place; we draw an output
arc from it to a place if firing it releases resource(s) or sig-
nals the initiation of the operation in the place. We take t1

as an example. We link p1, p11, and p13 to it since availabil-
ity of J1’s raw part, M1, and Robot is required to start the
operation in p3. We link it to p3 since its firing leads to the
operation in p3.

Finally, we determine the initial number of tokens over
all places according to the system’s initial state. If initially
either of J1 and J2 has only one raw part, then the initial
marking is the one shown in Fig. 3. We associate time de-
lays with places. Hence, p3, p4, p7, and p8 are associated



Petri Nets and Their Applications 5

Figure 4. Schedules represented by transition firing sequences
(a) t1t3t2t5t4t7t6t8 and (b) t2t4t1t6t3t8t5t7. The numbers in paren-
theses are time units.

with 1, 4, 4, and 1 time unit, respectively, and others with
zero.

Once we have its PN model, we can perform analysis,
scheduling,and control of the system.The purpose of analy-
sis is to check the properties discussed previously. Schedul-
ing aims to derive a schedule optimizing a certain perfor-
mance index. Control deals with the coordination and ex-
ecution of part flow and processing. The controller keeps
track of system states, such as the location of all parts and
the status of each resource. Based on the current state and
production plan, the controller supervises all the individ-
ual system components. Sensors and actuators have to be
connected to the controller, which is often implemented as
a computer or a microprocessor chip.

Consider that both jobs 1 and 2 are in the shop and
ready for processing at time 0, with each job having lot size
of 1. We seek a production schedule to minimize the time
required to complete both jobs. The initial marking is (1 1 0
0 0 0 0 0 0 0 1 1 1 1 1)T, and the final one (0 0 0 0 0 0 0 0 1 1 1
1 1 1 1)T. Both transition firing sequences of t1t3t2t5t4t7t6t8

and t2t4t1t6t3t8t5t7 give a path from the initial to final one.
The production activities and markings corresponding to
the first one are shown in Table 2.

The Gantt charts in Fig. 4 show the two schedules with
the makespan of the first one being 6 and the second being
9. Oi,j ,k represents the jth operation of the ith job being
performed at the kth machine. Clearly, the first one should
be selected as our schedule.

In automated manufacturing, a deadlock situation may
occur due to inappropriate allocation of resources and con-

trol, in which any part flow is inhibited. For example, sup-
pose that the lot size of Job 1 in the preceding system is 2.
Then the firing of transitions t1t3t1 leads the system from
initial state (2 1 0 0 0 0 0 0 0 0 1 1 1 1 1)T to deadlock
(0 1 1 0 1 0 0 0 0 0 0 1 0 0 1)T, at which any further part
flow is inhibited. The algorithms (8) are available to derive
optimal or or near-optimal deadlock-free schedules based
on a system’s PN model. PN applications to complex man-
ufacturing systems are referred to (2–8, 9).

MULTIDISCIPLINARY ENGINEERING APPLICATIONS

Typically, discrete event systems have characteristics
that exhibit synchronization, concurrency, resource shar-
ing/conflicts, time dependency, and repetition. Since such
systems are omnipresent in the real world, PNs are mod-
ified and extended in several ways and applied as a di-
versified modeling technique crossing several important
disciplines of engineering, such as electrical and computer
engineering, manufacturing engineering, industrial engi-
neering, software engineering, biomedical engineering, and
systems engineering.

Electrical and Computer Engineering:

PNs are applied for modeling and analyzing communica-
tion protocols, validating microprocessors and hardware,
and performing process control. Computer-aided software
tools are developed using PNs as a formal specification
technique for the specification and analysis of computer
communication protocols. These tools are used for inter-
active simulation and exhaustive reachability analysis to
determine the liveness (absence of deadlocks) of PN models
of communication protocols. By studying the transition se-
quences in the PN model, events that lead to the undesired
behavior of a protocol can be traced. By associating time
delays with certain transitions in the PN model, the time
required to perform certain operations of a communication
protocol can be modeled. Then the performance issues of
a protocol, such as total time taken by the protocol to do
a job, buffer holding times, and buffer requirements in the
communication subsystem, can be investigated.

Generalized stochastic PNs are applied for performance
evaluation of interprocessor interrupt mechanisms in a
shared but multi-microprocessor system (5). Performance
issues, such as each processor’s interrupt request origina-
tion rate and capacity of message box versus the mean
overhead time per interrupt request of each source pro-



6 Petri Nets and Their Applications

cessor, can be analyzed. PN models are also used to design
distributed communication structures in interprocess com-
munications to recognize and avoid deadlocks.

Programmable logic controllers (PLC) are used for the
sequential control or process control of manufacturing sys-
tems, chemical processing systems, and power plants. Tra-
ditionally the PLC programs are developed by ladder logic
diagrams. However, to overcome their limitations in deal-
ing with complex systems, PNs have recently been used
to develop PLC programs; thus understandable and main-
tainable control systems can be developed for large au-
tomation projects (6, 7).

Manufacturing and Industrial Engineering

PNs serve as a graphical modeling tool for specification
of the operations in a computer integrated manufacturing
system (CIMS). When developed, they are used for anal-
ysis, design, scheduling, and simulation of CIMS to study
such performance criteria as production rate, resource uti-
lization, work-in-process inventory, number of resources
needed, and cost of production. Alternatives can be inves-
tigated by changing the parameters, such as operational
policies, operation times, number of resources, and mean
time between failures of a resource. PNs are also used
for supervisory control, sequence control, sequence control,
fault detection, fault recovery, and monitoring of CIMS.
Some studies integrate such techniques as expert systems
and neural networks with PNs for controlling and moni-
toring of CIMS. PNs are used for rapid prototyping of con-
trol software using different programming languages (10).
They are also integrated with object-oriented methodolo-
gies for the development of control software (6).

Software Engineering

PNs have been used for addressing several issues related
to database systems, operating systems, distributed soft-
ware systems, programming languages, etc. Concurrency
control is one of the problems when distributed database
systems are implemented. This problem involves modeling
synchronization and concurrency among database transac-
tions and how these transactions access data in a database.
PNs are successfully used to model concurrency control
of distributed databases. Concurrency control algorithms,
such as centralized locking algorithm and distributed lock-
ing algorithm, are studied for their performance via their
PN models. One of the main tasks in developing complex
software systems is to design the system to be fault toler-
ant such that it can detect and eliminate the faults that
may arise due to erroneous data, undetected hardware
failures, and design flaws in hardware/software. Predi-
cate/transition nets are used as a formal specification tool
to describe and model complex software systems. These
resulting PN models are then used systematically to in-
tegrate fault tolerance properties in the design of these
software systems. PNs are combined with concurrent com-
puter programming languages such as Ada and Flat Con-
current Prolog to study certain aspects of computer pro-
grams that have concurrency. The complete PN model of
a computer program clearly models all the parallel tasks

and their sequence dependence in the program. It is then
used to detect deadlocks and hence debug the program.

BIBLIOGRAPHY

1. R. David H. Alla Petri Nets and Grafcet, Englewood Cliffs, NJ:
Prentice Hall, 1992.

2. A. A. Desrochers R. Y. Al-Jaar Applications of Petri Nets in
Manufacturing Systems, Piscataway, NJ: IEEE Press, 1995.

3. M. C. Zhou F. DiCesare Petri Net Synthesis for Discrete Event
Control of Manufacturing Systems, Boston: Kluwer Academic,
1993.

4. T. Murata Petri nets: Properties, applications and analysis,
Proc. IEEE, 77: 541–580, 1989.

5. M. Ajmone Marsan et al. Modeling with Generalized Stochas-
tic Petri Nets, Chichester, England: Wiley, 1995.

6. M. C. Zhou K. Venkatesh Modeling, Simulation and Control of
Flexible Manufacturing Systems: A Petri Net Approach, River
Edge, NJ: World Scientific, 1998.

7. M. C. Zhou (ed.) Petri Nets in Flexible and Agile Automation,
Boston: Kluwer Academic, 1995.

8. J.-M. Proth X. Xie Petri Nets: A Tool for Design and Manage-
ment of Manufacturing Systems, New York: Wiley, 1996.

9. M. C. Zhou andM. P. Fanti (Ed.), Deadlock Resolution in
Computer-Integrated Systems, Marcel Dekker: New York, Jan-
uary 2005.

10. Hruz, B. and M. C. Zhou Modeling and Control of Discrete
Event Dynamic Systems, Springer, London, UK, 2007.

MENGCHU ZHOU

VENKATESH KURAPATI

HUANXIN HENRY XIONG

New Jersey Institute of
Technology, Newark, NJ

American International Group,
Inc., New York, NY

Lucent Technologies, Inc., 10
Industrial Way East,
Eatontown, NJ


