Online Encyclopedia

Search over 40,000 articles from the original, classic Encyclopedia Britannica, 11th Edition.

PHOSPHORESCENCE

Online Encyclopedia
Originally appearing in Volume V21, Page 478 of the 1911 Encyclopedia Britannica.
Spread the word: del.icio.us del.icio.us it!

PHOSPHORESCENCE , a name given to a variety of See also:

physical phenomena due to different causes, but all consisting in the emission of a See also:pale, more or less See also:ill-defined See also:light, not obviously due to See also:combustion. The word was first used by physicists to describe the See also:property possessed by many substances of them-selves becoming luminous after exposure to light. This property has been noticed from See also:early times. See also:Pliny speaks of various gems which shine with a light of their own, and Albertus See also:Magnus knew that the See also:diamond becomes phosphorescent when moderately heated. But the first See also:discovery of this property which apparently attracted scientific See also:attention seems to have been that of the See also:Bologna See also:stone (See also:barium sulphide), which was discovered by Vincenzo Cascariolo, a cobbler of Bologna, in about 1602. This was followed by the discovery of a number of other sub-stances which become luminous either after exposure to light or on See also:heating, or by See also:attrition, and to which the See also:general name of " phosphori " (from iivr and 4'6 See also:por, bringing light) was given. Among these may be mentioned Homberg's See also:phosphorus (See also:calcium chloride), See also:John See also:Canton's phosphorus (calcium sulphide) and Balduin's phosphorus (calcium nitrate). Of See also:late years it has been found convenient to limit the strict meaning of the word " phosphorescence " to the See also:case of bodies which, after exposure to light, become self-luminous (even if only for a fraction of a second). The general See also:term "luminescence" has been proposed by E. See also:Wiedemann to include all cases in which bodies give off light not due to ignition. This general term embraces several subdivisions. Thus, See also:fluorescence (q.v.) and phosphorescence are included under the same heading, "photoluminescence," being distinguished from each other only by the fact that fluorescent bodies emit their characteristic light only while under the See also:influence of the exciting See also:illumination, while phosphorescent bodies are luminous for an appreciable See also:time after the exciting light is cut off.

Phosphorescence, in its restricted meaning as above explained, is most strikingly exhibited by the artificial sulphides of calcium, See also:

strontium and barium. If any of these substances is exposed for some time to daylight, or, better, to See also:direct sunlight, or to the light of the electric arc, it will shine for See also:hours in the dark with a soft coloured light. The See also:colour depends not only on the nature of the substance, but also on its physical See also:condition, and'on its temperature during insolation, that is, exposure to the See also:sun's rays. Thus the phosphorescent light emitted by calcium sulphide may be See also:orange-yellow, yellow, See also:green or See also:violet, according to the method of preparation and the materials used. See also:Balmain's luminous paint, a preparation of calcium sulphide, shines with a See also:white light. The colour also depends on the temperature during exposure to light. Thus A. E. See also:Becquerel found that the light given by a specimen of strontium sulphide changed from violet to See also:blue, green, yellow and orange, as the temperature during the corresponding previous insolation was 20°, 40°, 70°, 100° or 200° C. The duration of phosphorescence varies greatly with different substances. It may last for days or for only a fraction of a second. As in the case of fluorescent bodies, the light produced by phosphorescent substances consists commonly of rays less refrangible than those of the exciting light.

Thus the ultra-violet portion of the spectrum is usually the most efficient in exciting rays belonging to the visible See also:

part of the spectrum. V. Klatt and Ph. Lenard (Wied. See also:Ann., 1889, xxxviii. 90), have shown that the phosphorescence of calcium sulphide and other phosphori depends on the presence of See also:minute quantities of other substances, such as See also:copper, See also:bismuth and See also:manganese. The maximum intensity of phosphorescent light is obtained when a certain definite proportion of the impurity is See also:present, and the intensity is diminished if this proportion is increased. It appears likely that when a phosphorescent See also:body is exposed to light, the See also:energy of the light is stored up in some See also:kind of See also:strain energy, and that the phosphorescent light is given out during a more or less slow recovery from this See also:state of strain. Klatt and Lenard have shown that the sulphides of the alkaline earths lose the property of phosphorescing when subjected to heavy pressure. Many fluorescent solutions become briefly phosphorescent when rendered solid by See also:gelatin. When the duration of phosphorescence is brief, some See also:mechanical See also:device becomes necessary to detect it. The earliest and best-known See also:instrument for this purpose is Becquerel's phosphoroscope.

It consists essentially of a shallow See also:

drum, in whose ends two See also:eccentric holes, exactly opposite one another, are cut. Inside it are fixed two equal See also:metal disks, attached perpendicularly to an See also:axis, and divided into the same number of sectors, the alternate sectors of each being cut out. One of these disks is See also:close to one end of the drum, the other to the opposite end, and the sectors are so arranged that, when the disks are made to rotate, the hole in one end is open while that in the other is closed, and See also:vice versa. If the See also:eye be placed near one hole, and a See also:ray of sunlight be admitted by the other, it is obvious that while the sun shines on an See also:object inside the drum the See also:aperture next the eye is closed, and vice versa. If the disks be made to revolve with See also:great velocity by means of a See also:train of toothed wheels the object will be presented to the eye almost instantly after it has been exposed to sunlight, and these presentations succeed one another so rapidly as to produce a sense of continuous See also:vision. By means of this apparatus we can test with considerable accurac the duration of the phenomenon after the light has been cut oft. For this purpose we require to know merely the number of sectors in the disks and the See also:rate at which they are turned. Thermoluminescence.—Some bodies which do not emit light at See also:ordinary temperatures in a dark See also:room begin to do so if they are heated to a temperature below a visible red See also:heat. In the case ofchlorophane, a variety of fluor-spar, the heat of the See also:hand is sufficient. Many yellow diamond, exhibit this See also:form of luminescence. It has been shown, however, that a previous exposure to light is always necessary. See also:Sir See also:James See also:Dewar found that if ammonium platinocyanide, Balmain's paint and some other substances are cooled to the temperature of liquid See also:air and exposed to light, they do not phosphoresce, but as soon as they are allowed to warm up to the ordinary temperature they emit a brilliant light.

On the other hand, some bodies, such as gelatin, celluloid, See also:

paraffin and See also:ivory, are phosphorescent at very See also:low temperatures, but lose the property at ordinary temperatures. Triboluminescence (from rpil3ew, to rub) is luminescence excited by See also:friction, percussion, cleavage or such mechanical means. Calcium chloride, prepared at a red heat, exhibits this property. If See also:sugar is broken in the dark, or two crystals of See also:quartz rubbed together, or a piece of See also:mica cleft, a flash of light is seen, but this is probably of See also:electrical origin. Closely allied to this form of luminescence is crystalloluminescence, a phosphorescent light seen when some substances crystallize from See also:solution or after See also:fusion. This property is exhibited by arsenious See also:acid when crystallizing from solution in hydrochloric acid. Chemiluminescence is the name given to those cases in which chemical See also:action produces light without any great rise of temperature. Phosphorus exposed to moist air in a dark room shines with a soft light due to slow oxidation. Decaying See also:wood and other See also:vegetable substances often exhibit the same property. Electroluminescence is luminescence due to electrical causes. Many gases are phosphorescent for a See also:short time after an electric See also:discharge has been passed through them, and some solid sub-stances, especially diamonds and rubies, are strongly phosphorescent when exposed to kathode rays in a vacuum See also:tube. See generally, See also:Winkelmann, Handbuch der Physik, Bd. vi.

(1906); E. Becquerel, La Lumibre (1867). (J. R. C.) Phosphorescence in See also:

Zoology. The emission of light by living substance is a widespread occurrence, and is part of the general See also:metabolism by which the potential energy introduced as See also:food is transformed into kinetic energy and appears in the form of See also:movement, heat, See also:electricity and light. In many cases it is probably an accidental by-product, and like the heat radiated by living tissues, is not necessarily of use to the organism. But in other cases the capacity to produce light is awakened on stimulation, as when the See also:wind ripples the See also:surface of the See also:sea, or when the See also:water is disturbed by the blade of an See also:oar. It has been suggested that the response to the stimulus may be protective, and that enemies are frightened by the flash of light. In luminous See also:insects and deep-sea See also:fish the See also:power of emitting light appears to have a See also:special significance, and very elaborate mechanisms have been See also:developed. The pale glow of phosphorescence has a certain resemblance to the light emitted by phosphorus, and it was an early See also:suggestion that the phenomenon in living organisms was due to that substance. Phosphorus, however, and its luminous compounds are deadly poisons to all living tissues, and never occur in them in the course of natural metabolism, and the phosphorescence of See also:life cannot therefore be assigned to the oxidation of phosphorus.

On the other hand, it is certainly the result of a See also:

process of oxidation, as the emission of light continues only in the presence of See also:oxygen. J. H. See also:Fabre showed in 1855 that the luminous fungus, Agaricus, discharges more carbonic acid when it is emitting light, and Max See also:Schultze in 1865 showed that in insects the luminous cells are closely associated with the tracheae, and that during phosphorescence they withdraw oxygen from them. In 188o B. Radziszewski showed that many fats, ethereal See also:oils and See also:alcohols emit light when slowly combined with oxygen in alkaline fluids at appropriate temperatures. Probably the phosphorescence of organisms is due to a similar process acting on the many fats, oils and similar sub-stances found in living cells. The colour varies much in different organisms; green has been observed in the glow-sworm, See also:fire-flies, brittle-stars, centipedes and annelids; blue in the See also:Italian fire-See also:fly (Luciola italica); blue and light green are the predominant See also:colours in the phosphorescence of marine organisms, but red and See also:lilac have also been observed. The See also:Lantern-Fly (Fulgora pyrorhynchus) is said to have a See also:purple light, and E. H. Giglioli has recorded that an individual Appendicularia appeared first red, and then blue, and then green. P.

Panceri, chiefly in the case of Salps, and S. P. See also:

Langley and F. W. Very in the case of See also:Pyrophorus, have investigated the light spectroscopically, and found that it consisted of a continuous See also:band without See also:separate See also:bright lines. The See also:solar spectrum extends farther both towards the violet and the red ends, but is less intense in the green when equal luminosities are compared. Many of the bacteria of putrefaction are phosphorescent, and the light emitted by dead fish or molluscs or flesh is probably due in every case to the presence of these. Under the miscroscope, the individual bacteria appear as shining points of light. The phosphorescence of decaying wood is due to the presence of the mycelium of Agaricus melleus, and various other See also:species of Agaricus have been found to be luminous. The great displays of phosphorescence in sea-water are usually due to the presence of very large See also:numbers of small luminous organisms, either See also:protozoa or protophyta. Of these Noctiluca miliaris and species of Peridinium and Pyrocystis are the most frequent, the two former near See also:land and the latter in See also:mid-ocean. In higher animals the phosphorescence tends to be limited to special parts of the body which may form elaborate and highly specialized luminous See also:organs.

Many coelenterates show the beginning of such localization ; in medusae the whole surface may be luminous, but the light is brighter along the radial canals, in the ovaries, or in the marginal sense-organs. In Pennatulids each See also:

polyp has eight luminous bands on the See also:outer surface of the See also:digestive cavity. Some Chaetopods (Chaetopterus and Tomopteris) have luminous organs at the bases of the lateral processes of the body. Pyrosoma, a colonial pelagic ascidian, is responsible for some of the most striking displays of phosphorescence in tropical seas; it has two small patches of cells at the See also:base of each inhalent tube which on stimulation discharge light, and the luminosity has been observed to spread through the See also:colony from the point of irritation. Amongst the See also:Crustacea, many pelagic Copepods are phosphorescent. W. Giesbrecht has shown that the light is produced by a fluid secreted by certain dermal glands. A similar fluid in other Copepods hardens to form a protective case, and it may be that the display of light is in such cases an accidental by-product. Glands in the See also:labrum of the Ostracod Pyrocypris and on the maxillae of the Mysid Gnathophausia similarly produce a luminous secretion. In the Euphausiacea, on the other hand, phosphorescence is produced by elaborate luminous organs which are situated on the thoracic appendages and the See also:abdomen, and which were at first believed to be ocular organs. The deep-sea Decapod Crustaceans belonging to many families are luminous. A.

See also:

Alcock observed that in some of the deep-sea prawns a luminous secretion was discharged at the bases of the antennae, but in most cases the luminous organs are numerous eye-like structures on the limbs and body. The See also:rock-See also:boring mollusc, Pholas, which Pliny knew to be phosphorescent, has luminous organs along the anterior border of the See also:mantle, two small triangular patches at the entrance of the anterior See also:siphon, and two See also:long parallel cords within the siphon. The cells of these organs have See also:peculiar, granulated contents. W. E. See also:Hoyle, in his presidential address to the Zoological See also:Section of the See also:British Association in 1907, brought together observations on the occurrence of luminous organs in no less than See also:thirty-three species of Cephalopods. In Heteroteuthis, Sepiola and Rossia the light is produced by the secretion of a glandular See also:organ on the ventral See also:side of the body behind the See also:funnel. The secretion glows through the transparent See also:wall with a greenish colour, but, at least in the case of Heteroteuthis, continues to glow after being ejected into the water. In most cases the luminous organs are nonglandular and may be See also:simple, or possess not only a generator but a reflector, See also:lens and See also:diaphragm. The different organs shine with different coloured See also:lights, and as the Cephalopods are for the most part inhabitants of the depths of the sea, it has been suggested that they serve as recognition marks. Some centipedes (e.g. Geophilus electricus and G. phosphoreus) are luminous, and, if allowed to crawl over the hand, are stated to leave a luminous trail.

Amongst insects, elaborate luminous organs are developed in several cases. The abdomen of a Ceylonese May-fly (Teleganodes) is luminous. The so-called New See also:

Zealand " glow-See also:worm " is the larva of the fly Boletophila luminosa, and some gnats have been observed to be luminous, although the suggestion is that in their case disease is present and the light emanates from phosphorescent bacteria. An See also:ant (Orya) and a poduran (Anurophorus) are occasionally luminous. The so-called lantern flies are Homoptera allied to the Cicadas, and the supposed luminous organ is a huge See also:projection of the front of the See also:head, regarding the luminosity of which there is sore doubt. The glow-See also:worms and true fire-flies are beetles. Eggs, larvae and adults are in some cases luminous. The organs consist of a pale transparent superficial layer which gives the light, and a deeper layer which may See also:act as a reflector. They are in close connexion with the tracheae and the light is produced by the oxidation of a substance formed under the influence of the See also:nervous See also:system, and probably some kind of organic See also:fat. In the See also:females the phosphorescence is probably a sexual lure; in the See also:males its See also:function is unknown. Phosphorescent organs known as photophores are characteristic structures in many of the deep-sea Teleostome fishes, and have been developed in widely different families (Stomiatidae, Scopelidae. Halosauridae and Anomalopidae), whilst numerous simple luminous organs have been detected in many species of Selachii.

The number, See also:

distribution and complexity of the organs vary much in different fish. They are most frequent on the sides and ventral surface of the anterior part of the body and the head, and may extend to the tail. The simpler forms are generally arranged in rows, sometimes metamerically distributed; the more complex organs are larger and less numerous. In Opostomias micrionus there is a large organ on a median See also:barbel See also:hanging down from the See also:chin, others below the eyes, and one on the elongated first ray of the See also:pectoral fin. In Sternoptyx diaphana there is one on the See also:lower See also:jaw, and in many species one or two below the eyes. The luminous organs appear to be specialized skin glands which secrete a fluid that becomes luminous on slow oxidation. The essential part of the organ remains a collection of gland cells, but in the more complex types there are See also:blood vessels and nerves, a protecting membrane, an See also:iris-like diaphragm, a reflector and lens. As the distribution and probably the colour of the light varies with the species, these organs may serve as recognition marks. They may also attract See also:prey, and from their association with the eyes in such a position as to send light downwards and forwards it is probable that in the higher types they are used by the fish actually as lanterns in the dark abysses of the sea. (P. C.

End of Article: PHOSPHORESCENCE

Additional information and Comments

There are no comments yet for this article.
» Add information or comments to this article.
Please link directly to this article:
Highlight the code below, right click, and select "copy." Then paste it into your website, email, or other HTML.
Site content, images, and layout Copyright © 2006 - Net Industries, worldwide.
Do not copy, download, transfer, or otherwise replicate the site content in whole or in part.

Links to articles and home page are always encouraged.

[back]
PHOSPHATES
[next]
PHOSPHORITE