Online Encyclopedia

Search over 40,000 articles from the original, classic Encyclopedia Britannica, 11th Edition.

HISTORY OF BRIDGE

Online Encyclopedia
Originally appearing in Volume V04, Page 538 of the 1911 Encyclopedia Britannica.
Spread the word: del.icio.us del.icio.us it!

See also:

HISTORY OF See also:BRIDGE See also:BUILDING 4. See also:Roman See also:Bridges.—The first bridge known to have been constructed at See also:Rome over the See also:Tiber was the See also:timber Pons Sub- Quattro Capi), of about 62 B.C., is practically intact; and the Pons See also:Cestius, built probably in 46 B.C., retains much of the See also:original See also:masonry. The Pons Aelius, built by See also:Hadrian A.D. 134 and repaired by See also:Pope See also:Nicholas II. and See also:Clement IX., is now the bridge of St Angelo. It had eight See also:arches, the greatest span being 62 ft.' Dio See also:Cassius mentions a bridge, possibly 3000 to 4000 ft. in length, built by See also:Trajan over the See also:Danube in A.D. 104. Some piers are said still to exist. A bas-See also:relief on the Trajan See also:column shows this bridge with masonry piers and timber arches, but the See also:representation is probably conventional (fig. I). Trajan also constructed the bridge of See also:Alcantara in See also:Spain (fig. 2), of a See also:total length of 67o ft., at 210 ft. above the stream. This had six arches and was built of See also:stone blocks without See also:cement.

The bridge of See also:

Narses, built in the 6th See also:century (fig. 3), carried the Via See also:Salaria over the Anio. It was destroyed in 1867, during the approach of See also:Garibaldi to Rome. It had a fortification such as became usual in later bridges for See also:defence or for the enforcement of tolls. The See also:great lines of aqueducts built by Roman See also:engineers, and dating from 300 B.C. onwards, where they are carried above ground, are arched bridge structures of remarkable magnitude (see AQUEDUCTS, § Roman). They are generally of See also:brick and See also:concrete. 5. See also:Medieval and other See also:Early Bridges.—Bridges with stone-piers and timber superstructures were no doubt constructed from Roman times onward, but they have perished. Fig. 4 shows a timber bridge erected by the See also:brothers Grubenmann at See also:Schaffhausen about the See also:middle of the 18th century. It had spans of 172 and 193 ft., and may be taken as a representative licius, the bridge defended by Horatius. The Pons Milvius, now See also:Ponte Molle, was reconstructed in stone by M.

See also:

Aemilius See also:Scaurus in 109 B.C., and some portions of the old bridge are believed to exist in the See also:present structure. The arches vary from 51 to 79 ft. span. The Pons See also:Fabricius (mod. Ponte dei type of bridges of this See also:kind. The Wittingen bridge by the same engineers had a span of 390 ft., probably the longest timber ' For the See also:ancient bridges in Rome see further Rome: See also:Archaeology, and such See also:works as R. Lanciani, Ruins and Excavations of Ancient Rome (Eng. trans., 1897), pp. 16 See also:foil. span ever constructed. Of stone bridges in Great See also:Britain, the earliest were the cyclopean bridges still existing on See also:Dartmoor, consisting of stone piers bridged by stone slabs. The bridge over the See also:East Dart near See also:Tavistock had three piers, with slabs rs ft. by 6 ft. (See also:Smiles, Lives of the Engineers, ii. 43).

It is reputed to have lasted for 2000 years. The curious bridge at See also:

Crowland near See also:Peterborough (fig. 5) which now spans roadways, the streams which formerly flowed under it having been diverted, is one of the earliest known stone bridges in See also:England. It is referred to in a See also:charter of the See also:year 943• It was probably built by the abbots. The first bridges over the See also:Thames at See also:London were no doubt of timber. See also:William of See also:Malmesbury mentions the existence of a bridge in 994. J. See also:Stow (Survey of the Cities of London and See also:Westminster) describes535 was destroyed for military reasons by See also:Carmagnola in 1416. The Rialto bridge at See also:Venice, with a span of 91 ft., was built in 1588 by See also:Antonio da Ponte. Fig. 7 shows the beautiful Ponte della Trinity erected at See also:Florence in 1566 from the See also:design of B. See also:Ammanati.

6. See also:

Modern Bridges.— (a) Timber.—In England timber bridges of considerable span, either braced trusses or laminated arches (i.e. arches of planks bolted together), were built for some of the earlier See also:railways, particularly the Great Western and the See also:Manchester, See also:Sheffield & See also:Lincolnshire. They have mostly been replaced, decay having taken See also:place at the See also:joints. Timber bridges of large span were constructed in See also:America between the end of the 18th and the middle of the 19th century. The Amoskeag bridge over the See also:Merrimac at Manchester, N.H., U.S.A., built in 1792, had 6 spans of 92 ft. The See also:Bellows Falls bridge over the See also:Connecticut (built 1785–1792) had 2 spans of 184 ft. The singular See also:Colossus bridge, built in 1812 over the Schuylkill, a kind of See also:flat arched See also:truss, had a span of 340 ft. Some of these timber bridges are said to have lasted ninety years with See also:ordinary See also:repairs, but they were road bridges not heavily loaded. From 184o, trusses, chiefly of timber but with wrought-See also:iron ensionrods and See also:cast-iron shoes, were adopted in America. The See also:Howe truss of 1830 and the See also:Pratt truss of 1844 are examples. The Howe truss had timber chords and a lattice of timber struts, with See also:vertical iron ties. In the Pratt truss the struts were vertical and the ties inclined.

Down to 185o such bridges were generally limited to 15o ft. span. The timber was See also:

white See also:pine. As railway loads increased and greater spans were demanded, the Howe truss was stiffened by timber arches on each See also:side of each girder. Such a composite structure is, however, fundamentally defective, the See also:distribution of loading to the two See also:independent systems being indeterminate. Remarkably high timber piers were built. The Genesee viaduct, Boo ft. in length, built in 1851–1852 in ro spans, had timber trestle piers 190 ft. in From J. R. See also:Green's A See also:Short History of the See also:English See also:People, by permission of See also:Macmillan & Co., Ltd. the building of the first stone bridge commonly called Old London Bridge: `" About the year 1176, the stone bridge was begun to be founded by See also:Peter of Colechurch, near unto the bridge of timber, but more towards the See also:west." It carried timber houses (fig. 6) which were frequently burned down, yet the See also:main structure'existed till the beginning of the 19th century. The span of the arches ranged from to to 33 ft., and the total waterway was only 337 ft. The waterway of the present London Bridge is 690 ft., and the removal of the obstruction caused by the old bridge caused a lowering of the See also:low-See also:water level by 5 ft., and a considerable deepening of the See also:river-See also:bed.

(See Smiles, Lives of the Engineers, " See also:

Rennie.") The architects of the See also:Renaissance showed great boldness in their designs. A See also:granite See also:arch built in 1377 over the See also:Adda at Trezzo had a span at low water of 251 ft. This See also:noble bridgeheight. (See Mosse, " See also:American Timber Bridges," Proc. Inst. C.E. xxii. p. 305, and for more modern examples, cxlii. p. 409; and clv. p. 382; See also:Cooper, " American Railroad Bridges," Trans. Am. See also:Soc. C.E. vol. xxi. pp.

1-28.) These timber framed structures served as See also:

models for the earlier See also:metal trusses which began to be used soon after 185o, and which, except in a few localities where iron is costly, have quite superseded them. 7. (b) Masonry.—The present London Bridge, begun in 1824 and completed in 1831, is as See also:fine an example of a masonry arch structure as can be found (See also:figs. 8 and 9). The design was made by See also:John Rennie the See also:elder, and the acting engineer was his son, See also:Sir John Rennie. The semi-ellip- tical shape of the arches. the variation of span, the slight curvature of the roadway, and the See also:simple yet bold architectural details, combine to make it a singularly beautiful bridge. The centre arch has a span of 152 ft., and rises 29 ft. 6 in. above Trinity high-water See also:mark; the arches on each side of the centre have a span of 140 ft., and the See also:abutment arches 130 ft. The total length of the bridge is 1005 ft., its width from outside to outside 56 ft., and height above low .96' 0-- ---•-26.0 E6'0`-° --- water 6o ft. The two centre piers are 24 ft. thick, the exterior stones are granite, the interior, See also:half Bramley Fall and half from Painshaw, See also:Derbyshire. The voussoirs of the centre arch (all of granite) are 4 ft.

9 in. deep at the See also:

crown, and increase to not less than 9 ft. at the springing. The See also:general See also:depth at which the See also:foundations are laid is about 29 ft. 6 in. below low water. The total cost was £1,458,311, but the contractor's See also:tender for the bridge alone was £425,081. Since 1867 it had been recognized that London Bridge was inadequate to carry the See also:traffic passing over it, and a See also:scheme for widening it was adopted in 1900. This was carried out in 1002- Inst. C.E. vol. cxxxi. p. 323). In See also:Germany and America two- and three-hinged arches of masonry and concrete have been built, up to 15o ft. span, with much See also:economy, and the calculations being simple, an engineer can venture to See also:work closely to the dimensions required by theory. For hinges, Leibbrand, of See also:Stuttgart, uses sheets of See also:lead about i in. thick extending over the middle third of the depth of the See also:voussoir joints, the See also:rest of the joints being See also:left open. As the lead is plastic this construction is virtually an See also:articulation. If the pressure on the lead is uniformly varying, the centre of pressure must be within the middle third of the width of the lead; that is, it cannot deviate from the centre of the voussoir See also:paper by H.

M. See also:

Martin (Proc. Inst. C. E. vol. xciii. p. 462); and for that of the elastic arch, to a paper by A. E. See also:Young (Proc. See also:Scale of Feel e 5o 100 Zoo sgo FIG. 8.-London New Bridge. 1904, the footways being carried on granite corbels, on which are mounted cornices and open parapets. The width between parapets is now 65 ft., giving a roadway of 35 ft. and two See also:foot-ways of 15 ft. each.

The architect was See also:

Andrew See also:Murray and the engineer, G. E. W. Cruttwell. (See also:Cole, Proc. Inst. C.E. clxi. p. 290.) The largest masonry arch is the Adolphe bridge in See also:Luxemburg, erected in 1900-1903. This has a span of 278 ft., 138 ft. rise above the river, and 102 ft. from See also:foundation to crown. The thickness of the arch is 4 ft. 8 in. at the crown and 7 ft. 2 in. where it joins the spandrel masonry.

The roadway is 52 ft. 6 in. wide. The bridge is not continuous in width, there are arch rings on each See also:

face, each 16.4 ft. wide with a space between of 19.7 ft. This space is filled with a flooring of reinforced concrete, resting on the two arches, and carrying the central roadway. By the method adopted the total masonry has been reduced one-third. One centering was used for the two arch rings, supported on See also:dwarf walls which formed a slipway, along which it was moved after the first arch was built. Till near the end of the 19th century bridges of masonry or See also:brickwork were so constructed that they had to be treated as rigid blockwork structures. The stability of such structures depends on the position of the See also:line of pressure relatively to the See also:intrados and See also:extrados of the arch See also:ring. Generally, so far as Fm. 9.-Half See also:Elevation and Half See also:Section of Arch of London Bridge. could be ascertained, the line of pressure lies within the middle half of the depth of the voussoirs. In finding the abutment reactions some principle such as the principle of least See also:action must be used, and some assumptions of doubtful validity made.

But if hinges are introduced at crown and springings, the calculation of the stresses in the arch ring becomes simple, as the line of pressures must pass through the hinges. Such hinges have been used not only for metal arches, but in a modified See also:

form for masonry and concrete arches. Three cases therefore arise: (a) The arch is rigid at crown and springings; (b) the arch is two-hinged (hinges at springings) ; (c) the arch is three-hinged (hinges at crown and springings). For an elementary See also:account of the theory of arches, hinged or not, reference may be made to a See also:joint by more than one-eighteenth of its depth. In any See also:case the position of the line of pressures is confined at the lead articulations within very narrow limits, and See also:ambiguity as to the stresses is greatly diminished. The restricted See also:area on which the pressure acts at the lead joints involves greater intensity of stress than has been usual in arched bridges. In the See also:Wurttemberg hinged arches a limit of stress of See also:Ito tons per sq. ft. was allowed, while in the unhinged arches at See also:Cologne and Coblentz the limit was 5o to 6o tons per sq. ft. (Annales See also:des Fonts et Chaussees, 1891). At Rechtenstein a bridge of two concrete arches has been constructed, span 751 ft., with lead articula. . tions : width of arch 11 ft.; depth of arch at crown and springing 2•I and 2.96 ft. respectively. The stresses were calculated to be 15, 17 and 12 tons per sq. ft. at crown, joint of rupture, and springing respectively. At See also:Cincinnati a concrete arch of 7o ft. span has been built, with a rise of to ft.

The concrete is reinforced by eleven 9-in. See also:

steel-rolled joists, spaced 3 ft. apart and supported by a See also:cross-channel See also:joist at each springing. The arch is 15 in. thick at the crown and 4 ft. at the abutments. The concrete consisted of I cement, 2 See also:sand and 3 to 4 broken stone. An important See also:series of experiments on the strength of masonry, brick and concrete structures will be found in the Zeitschr. des osterreichen See also:Ing. and Arch. Vereiner (1895). The thermal coefficient of expansion of steel and concrete is nearly the same, otherwise changes of temperature would cause shearing stress at the junction of the two materials. If the two materials are disposed symmetrically, the amount of load carried by each would be in See also:direct proportion to the coefficient of See also:elasticity and inversely as the moment of inertia of the cross section. But it is usual in many cases to provide a sufficient section of steel to carry all the tension. For concrete the coefficient of elasticity E varies with the amount of stress and diminishes as the ratio of sand and stone to cement increases. Its value is generally taken at 1,500,000 to 3,000,000 lb per sq. in. For steel E =28,000,000 to 30,000,000, or on, the See also:average about twelve times its value for concrete. The maximum! compressive working stress on the concrete may be 500 lb per sq.

In,,. the tensile working stress 50 lb per sq. in., and the working shearing stress 75 lb per sq. in. The tensile stress on the steel may be 16,000 lb per sq. in. The amount of steel in the structure may vary from 0.75 to 1.5%. The concrete not only affords much of the strength to resist See also:

compression, but effectively protects the steel from corrosion, 8. (c) Suspension Bridges.—A suspension bridge consists of two or more chains, constructed of links connected by pins, or of See also:twisted See also:wire strands, or of wires laid parallel. The chains pass over lofty piers on which they usually rest on saddles carried by rollers, and are led down on either side to anchorages in See also:rock See also:chambers. A level See also:platform is hung from the chains by See also:sus-See also:pension rods. In the suspension bridge iron or steel can be used in its strongest form, namely hard-See also:drawn wire. Iron suspension bridges began to be used at the end of the 18th century for road bridges with spans unattainable at that See also:time in any other See also:system. In 1819 T. See also:Telford began the construction of the Menai bridge (fig. 1o), the span being 570 ft. and the See also:dip 43 ft.

This bridge suffered some injury in a See also:

storm, but it is still in See also:good See also:condition and one of the most graceful of bridges. Other bridges built soon after were the See also:Fribourg bridge of 87o ft. span, the See also:Hammersmith bridge of 422 ft. span, and the Pest bridge of 666 ft. span. The merit of the simple suspension bridge is its cheapness, and its defect is its flexibility. This last becomes less fismlm fN. '. .. W ern._ :. A ~~~yy il(~IN II N~IIM serious as the dead See also:weight of the structure becomes large in proportion to the live or temporary load. It is, therefore, a type specially suited for great spans. Some suspension bridges have broken down in consequence of the oscillations produced by bodies of men marching in step. In 185o a suspension bridge See also:cable was carried on a See also:separate See also:saddle on rollers on each See also:pier. The stiffening girder, constructed chiefly of timber, was a See also:box-shaped braced girder t8 ft. deep and 25 ft. wide, carrying the railway on See also:top and a roadway within.

After various repairs and strengthenings, including the replacement of the timber girder by an iron one in 188o, this bridge in 1896-1897 was taken down and a steel arch built = sm-m crmcr .I!11IIIIIIIIIIII000I ..m1111111ntiIlflilliiIJI ...~Q~~unmIIIIIIIIIII~~I~ I~l ~~II~~~Illlllilllhuuuuu i1 at See also:

Angers gave way when 487 soldiers were marching over it, and 226 were killed. To obtain greater stiffness various plans have been adopted. In the Ordish system a certain number of intermediate points in the span are supported by oblique chains, on which girders rest. The Ordish bridge built at See also:Prague in 1868 had oblique chains supporting the stiffening girders at intermediate points of the span. A curved See also:chain supported the obique chains and kept them straight. In 186o a bridge was erected over the Danube See also:canal at See also:Vienna, of 264 ft. span which had two parallel chains one above the other and 4 ft. apart on each side of the bridge. The chains of each pair were connected by bracing so that they formed a stiff inverted arch resisting deformationin its place. It was not strong enough to See also:deal with the increasing weight of railway traffic. In 1836 I. K. See also:Brunel constructed the towers and abutments for a suspension bridge of 702 ft. span at See also:Clifton over the See also:Avon, but the project was not then carried further; in 186o, however, the See also:link chains of the See also:Hungerford suspension bridge which was being taken down were available at small cost, and these were used to See also:complete the bridge. There are three chains on each side, of one and two links alternately, and these support wrought iron stiffening girders.

There are wrought iron saddles and steel rollers on the piers. At 196 ft. on either side from the towers the chains are carried over similar saddles without rollers, and thence at 45° with the See also:

horizontal down to the anchorages. Each chain has an See also:anchor See also:plate 5 ft. by 6 ft. The links are 24 ft. See also:long at the centre of the bridge, and longer as they are more inclined, so that their horizontal See also:projection is 24 ft. The chains are so arranged that there is a suspending See also:rod at each 8 ft., attached at the joint of one of the under unequal loading. The bridge carried a railway, but it proved weak owing to errors of calculation, and it was taken down in 1884. The principle was See also:sound and has been proposed at various times. About 1850 it was perceived that a bridge stiff enough to carry railway trains could be constructed by combining supporting chains with stiffening girders suspended from them. W. J. M. See also:Rankine proved (Applied See also:Mechanics, p.

370) that the necessary strength of a stiffening girder would be only one-seventh See also:

part of that of an independent girder of the same span as the bridge, suited to carry the same moving load (not including the dead weight of the girder which is sup-ported by the chain). (See " Suspension Bridge with Stiffened Roadway," by Sir G. See also:Airy, and the discussion, Proc. Inst. C.E., three chains. For erection a suspended platform was constructed on eight wire See also:ropes, on which the chains were laid out and connected. Another wire rope with a travelling See also:carriage took out the links. The sectional area of the chains is 481 sq. in. at the piers and 440 sq. in. at the centre. The two stiffening girders are plate girders 3 ft. deep with flanges of 1t sq. in. area. In addition, the See also:hand railing on each side forms a girder 4 ft. 9 in. deep, with flanges 41 sq. in. area. Of later bridges of great span, perhaps the bridges over the East river at New See also:York are the most remarkable.

The See also:

Brooklyn bridge, begun in 1872, has a centre span of 15951 and side spans of 930 ft. The Brooklyn approach being 971 ft., and the New York approach 15621 ft., the total length of the bridge is 5989 ft. There are four cables which carry a See also:promenade, a roadway and an electric railway. The stiffening girders of the main span are 40 ft. deep and 67 ft. apart. The saddles for the chains are 329 ft. above high water. 1867, See also:xxvi. p. 258; also " Suspension Bridges with Stiffening Girders," by Max am Ende, Proc. Inst. C.E. cxxxvii. p. 3o6.) The most remarkable bridge constructed on this system was the See also:Niagara bridge built by J. A. See also:Roebling in 1852-1855 (fig.

1I). The span was 821 ft., much the largest of any railway bridge at that time, and the height above the river 245 ft. There were four suspension cables, each 10 in. in See also:

diameter; each was composed of seven strands, containing 520 parallel wires, or 3640 wires in each cable. Each The cables are 151 in. in diameter. Each cable has 19 strands of 278 parallel steel wires, 7 B.W.G. Each wire is taken separately across the river and its length adjusted. Roebling preferred parallel wires as to % stronger than twisted wires. Each strand when made up and clamped was lowered to its position. The See also:Williamsburg bridge (fig. 12), begun in 1897 and opened for traffic in 1903, has a span of 1600 ft., a versed sine of 176 ft., and a width of 118 ft. It has two decks, and carries two elevated railway tracks, four electric tramcar lines, two carriageways, two footways and two 538 See also:bicycle paths. There are four cables, one on each side of the two main trusses or stiffening girders.

These girders are supported by the cables over the centre span but not in the side spans. Inter-mediate piers support the trusses in the side spans. The cables are 18; in. in diameter; each weighs about 1116 tons, and has a nominal breaking strength of 22,320 tons, the actual breaking strength being the See also:

floor into rectangles 3 ft. by 31 ft. covered with buckled plates. The roadway is of pine blocks dowelled. The bascules rotate through an See also:angle of 82°, and their See also:rear ends in the bascule chambers of the piers carry 365 tons of counterweight, the total weight of each being 1070 tons. They rotate on steel shafts 21 in. in diameter and 48 ft. long, and the bascules can be lifted or lowered in one See also:minute, probably greater. The saddles are 332 ft. above the water. The 1 but usually the time taken is one and a four cables support a dead load of 7140 tons and a live load of 4017 worked by See also:hydraulic machinery. tons. Each cable is composed of 37 strands of 208 wires, or 7696 parallel steel wires, No. 8 B.W.G., or about iA in. in diameter. The wire was required to have a tensile strength of 89 tons per sq. in., and 21% See also:elongation in 5 ft. and 5% in 8 in. Cast steel clamps hold the cable together, and to these the suspending rods are attached.

The cables are wrapped in See also:

cotton See also:duck soaked in oxidized oil and See also:varnish, and are sheathed in See also:sheet iron. A later bridge, the Manhattan, is designed to carry four railway tracks and four See also:tramway lines, with a wide roadway and footpaths, supported by cables 21 in. in diameter, each composed of 9472 galvanized steel wires 116 in. in diameter. The See also:Tower Bridge, London (fig. 13), is a suspension bridge with a secondary bascule bridge in the centre "span to permit the passage of See also:ships. Two main towers in the river and two towers on the See also:shore abutments carry the suspension chains. The opening bridge between the river towers consists of two leaves or bascules, pivoted near the faces of the piers and rotating in a vertical See also:plane. When raised, the width of zoo ft. between the main river piers is unobstructed up to the high-level foot-bridge, which is 141 ft. above Trinity H.W. The clear width of the two shore spans is 270 ft. The total length of the bridge is 940 ft., and that of the approaches 1260 ft. on the See also:north and 78o ft. on the See also:south. The width of the bridge between parapets is 60 ft., except across the centre span, where it is 49 ft. The main towers consist of a See also:skeleton of steel, enclosed in a facing of granite and See also:Portland stone, backed with brickwork. There are two high-level footways for use when the bascules are raised, the main girders of which are of the See also:cantilever and suspended girder type.

The cantilevers are fixed to the shore side of the towers. The middle girders are 120 ft. in length and attached to the cantilevers by links. The main suspension chains are carried across the centre span in the form of horizontal ties resting on the high-level footway girders. These ties are jointed to the See also:

hanging chains by pins 20 in. in diameter with a ring in halves surrounding it 5 in. thick. One half ring is rigidly attached to the tie and one to the hanging chain, so that the See also:wear due to any See also:movement is distributed over the length of the See also:pin. A rocker bearing under these pins transmits the load at the joint to the steel columns of the towers. The abutment towers are similar to the river towers. On the abutment towers the chains are connected by horizontal links, carried on rockers, to anchor ties. The suspension chains are constructed in the form of braced girders, so that they are stiff against unsymmetrical loading. Each chain over a shore span consists of two segments, the longer attached to the tie at the top of the river tower, the shorter to the link at the top of the abutment tower, and the two jointed together at the lowest point. Transverse girders are hung from the chains at distances of 18 ft. There are fifteen main transverse girders to each shore span, with nine See also:longitudinal girders between each pair.

The trough flooring, s in. thick and 6 in. deep, is riveted to the longitudinals. The anchor ties are connected to girders embedded in large concrete blocks in the foundations of the approach viaducts. The two bascules are each constructed with four main girders.

End of Article: HISTORY OF BRIDGE

Additional information and Comments

There are no comments yet for this article.
» Add information or comments to this article.
Please link directly to this article:
Highlight the code below, right click, and select "copy." Then paste it into your website, email, or other HTML.
Site content, images, and layout Copyright © 2006 - Net Industries, worldwide.
Do not copy, download, transfer, or otherwise replicate the site content in whole or in part.

Links to articles and home page are always encouraged.

[back]
HISTORY OF BANKING HOUSES
[next]
HISTORY OF ENGLISH